COS 333: Advanced Programming Techniques

How to find me
- bwk®@cs, www.cs.princeton.edu/~bwk
- 311 CS Building
- 609-258-2089 (but email is always better)
TA's:
- Matvey Arye (arye), Tom Jablin (tjablin), Nick Johnson (npjohnso)
Today
- course overview
- administrative stuff
- regular expressions and grep
Check out the course web page (Cs, not Blackboard!)
- notes, readings and assignments posted (only) there
monitor the web page every day
- Assignment 1 is posted
- initial project information is posted
Do the survey if you haven't already

Themes

languages and tools
- mainstream: C, C++, Java, C#, (Objective-C?), ...
scripting: AWK, (Perl?), Python, (PHP?), Javascript, ...
programmable tools, application-specific languages
frameworks, toolkits, development environments, interface builders
debuggers (gdb), source code control (SVN), ...
programming
- design, prototyping, reuse, components, interfaces, patterns
- debugging, testing, performance, mechanization
- portability, standards, style
- ftricks of the trade
reality
- tradeoffs, compromises, engineering
history and culture of programming
etc.

}

Very Tentative Outline

Feb 2 regular expressions; grep, shell
Feb 9 AWK; testing: project stuff
Feb 16 Perl, Python, PHP

Feb 23 Javascript, Ajax, CGI

Mar 2 frameworks, databases

Mar 9 networks, user interfaces

Mar 15 (spring break)

Mar 23 C++, STL, objects

Mar 30 Java, collections

Apr 6 components: COM, .NET, C#
Apr 13 XML, REST/Atom, JSON
Apr 20 ?

Apr 27 ?

May 5-7 demo days: project presentations

Some Mechanics

prerequisites
- C, Unix (COS 217); Java (COS 126, 226)
5 programming assignments in first half
- posted on course web page Tuesday, due Friday evening 10 days later
- deadlines matter
project in second half (starts earlier!l)
- groups of 3-5; start identifying potential teammates
- start thinking about fopic
- deadlines matter
monitor the web page
- readings for most weeks
- notes generally posted ahead of time
- newsgroup for discussion, finding partners, ...
class attendance and participation <=> no midterm or final
- sporadic unannounced short quizzes are possible

Regular expressions and grep

* regular expressions
- notation
- mechanization
- pervasive in Unix tools
- not in most general-purpose languages
though common in scripting languages and (some) text editors
- basic implementation is remarkably simple
efficient implementation requires good theory and good practice

grep is the prototypical tool
- people used to write programs for searching
(or did it by hand)
- tools became important
- tools are not as much in fashion today

Grep regular expressions

c any character matches itself, except for
metacharacters . [1 ™~ $ * \

r,r, matches r, followed by r,

. matches any single character

[---]1 matches one of the characters in set ...
a set like a-z or 0-9 includes any character in the range

[...] matches one of the characters not in set
a set like a-z or 0-9 includes any char in the range

A matches beginning of line when = begins pattern
no special meaning elsewhere in pattern
$ matches end of line when $ ends pattern
no special meaning elsewhere in pattern
* any regular expression followed by * matches O or more
\c matches c unless c is () or digit

\(-.-\) tagged regular expression that matches ...
the matched strings are available as \1, \2, etc.

Examples of matching

thing thing anywhere in string

"thing thing at beginning of string
thing$ thing at end of string

~thing$ string that contains only thing

N matches any string, even empty
"$ empty string

- non-empty, i.e., at least 1 char
thing.$ thing plus any char at end of string
thing\.$ thing. at end of string
\\thing\\ \ thing\ anywhere in string
[tT]hing thing or Thing anywhere in string
thing[0-9] thing followed by one digit
thing["0-9] thing followed by a non-digit

thing[0-9]["0-9]1 thing followed by digit, then non-digit
thingl.*thing2 thingl then any text then thing2
~thingl.*thing2$ thingl at beginning and thing2 at end

egrep: fancier regular expressions

P+ one or more occurrences of r
r? Zero or one occurrences of r
rylr, r, or r,
(r) r (grouping)
grammar:
rre . ° % [ccc) [Teecl
r* r+ r?
ryr
rydr,
(r)
precedence:

* + ? higher than concatenation, which is higher than |

([0-9]1+\.?[0-9]1*|\-[0-9]) (IEe]l[-+17[0-9]+)~?

The grep family

grep
egrep

- fancier regular expressions, trades compile time and space for run time
fgrep

- parallel search for many fixed strings
agrep

- "approximate" grep: search with errors permitted
relatives that use similar regular expressions

- ed original Unix editor

- sed stream editor

- vi,emacs, sam, ... editors

- lex lexical analyzer generator

- awk, perl, python, .. all scripting languages

- Java, C# ... libraries in mainstream languages
simpler variants

- filename "wild cards" in Unix and other shells

- "LIKE" operator in Visual Basic, SQL, etc.

Basic grep algorithm

while (get a line)
if match(regexpr, line)
print line

(perhaps) compile regexpr into an internal representation suitable
for efficient matching

match() slides the regexpr along the input line,
looking for a match at each point

regexpr I 1T 11—
line CI T T T T T T T T T 17

Grep (tpop, p 226)

/* grep: search for regexp In file */
int grep(char *regexp, FILE *f, char *name)

int n, nmatch;
char buf[BUFSIZ];

nmatch = 0;
while (fgets(buf, sizeof buf, f) = NULL) {
n = strien(buf);
if (n >0 & buf[n-1] == *"\n")
buf[n-1] = *\0";
1T (match(regexp, buf)) {
nmatch++;
1T (name != NULL)
printf(""%s:", name);
printf(""%s\n"", buf);

}

return nmatch;

Match anywhere on a line
look for match at each position of text in turn

/* match: search for regexp anywhere iIn text */
int match(char *regexp, char *text)
{
It (regexp[0] == "~%)
return matchhere(regexp+l, text);

do { /* must look even i1f string i1s empty */
1T (matchhere(regexp, text))
return 1;
} while (Ctext++ = *\0%);
return O;

Match starting at current position

/* matchhere: search for regexp at beginning of text */
int matchhere(char *regexp, char *text)

{
it (regexp[0] == "\0%)
return 1;
if (regexp[l] == "*")
return matchstar(regexp[0], regexp+2, text);
iIT (regexp[0] == "$" && regexp[l] == "\0")
return *text == "\0";
iIT (Ctext!="\0" && (regexp[0]=="." || regexp[0]==*text))
return matchhere(regexp+1, text+1l);
return O;
+

follow the easy case first: no metacharacters

note that this is recursive
- maximum depth: one level for each regexpr character that matches

Matching * (repetitions)

- matchstar() called to match c*...
- matches if rest of regexpr matches rest of input
- null matches require test at the bottom

/* matchstar: search for c*regexp at beginning of text */
int matchstar(int c, char *regexp, char *text)

{
do { /* a * matches zero or more instances */
it (matchhere(regexp, text))
return 1;
} while (*text = "\0" && (*text++ == c || ¢ == "."));
return O;
be

finds the leftmost shortest match
- just right for pattern matching in grep
- NOT usually what we want in a text editor
null matches are surprising and rarely desired

Profiling: where does the time go
* measure how long each function takes:

gcc -pg X.cC
a.out
gprof

- display is very flaky
« count number of times each line is executed:

gcc -fprofile-arcs -ftest-coverage x.c
a.out

gcov X.cC

cat x.c.gcov

Statement frequency counts

$ gcc -fprofile-arcs -ftest-coverage grep.c: a.out x ../bib >foo;
$ gcov grep.c: cat grep.c.gcov

/* matchhere: search for regexp at beginning of text */
int matchhere(char *regexp, char *text)

4360969 {
4360969 it (regexp[0] == "\0")
1326 return 1;
4359643 if (regexp[l] == "*7")
HHHEHH return matchstar(regexp[0], regexp+2, text);
4359643 if (regexp[0] == "$" && regexp[1l] == "\0")
HitHHHHT return *text == "\0";
4359643 it (Ctext!="\0" && (regexp[0]=="." || regexp[0]==*text))
1326 return matchhere(regexp+l, text+l);
4358317 return O;
}

/* match: search for regexp anywhere in text */
int match(char *regexp, char *text)

31102 {

31102 if (regexp[0] == "~")
HiHHHHT return matchhere(regexp+1, text);
4359643 do { /* must look even if string is empty */
4359643 if (matchhere(regexp, text))

1326 return 1;

4358317 } while (*text++ 1= *"\0%);

29776 return O;

How to make grep faster

use optimization (cc -O)
change compilers

code tuning
- e.g., match calls matchhere many times
- even though most of them must necessarily fail

- because the target string doesn't contain the first character of the
pattern

algorithm changes

Code tuning variant

checks whether target contains first character of pattern
before calling matchhere, unless it is x*

/* match: search for regexp anywhere iIn text */
int match(char *regexp, char *text)

{

char *p;
it (regexp[0] == "~%)
return matchhere(regexp+1l, text);
it (regexp[0] '= "\O0" && regexp[0] = ".*
&& regexp[l] '= **%)
iIT ((p=strchr(text, regexp[0])) == NULL)

return O;
do { /* must look even if string is empty */
1T (matchhere(regexp, p))
return 1;
} while (*p++ 1= *\0");
return O;

is this faster?

Statement frequencies after change

int matchhere(char *regexp, char *text)

2652 {
2652 if (regexp[0] == "\0")
1326 return 1;
1326 if (regexp[l] == "*%)
HHHHH return matchstar(regexp[0], regexp+2, text);
1326 if (regexp[0] == "$" && regexp[l] == "\07)
HHHHIH return *text == "\0";
1326 iT (Ctext!="\0" && (regexp[0]=="." || regexp[0]==*text))
1326 return matchhere(regexp+1, text+1l);
HEH return O;
}
int match(char *regexp, char *text)
31102 {
31102 char *p = text;
31102 it (regexp[0] == "~")
HHHHHH return matchhere(regexp+1, text);
31102 if (regexp[0] '= "\0" && regexp[0] '= "." && regexp[1]!="*")
31102 if ((p=strchr(text, regexp[0])) == NULL)
29776 return O;
1326 do { /* must look even if string is empty */
1326 if (matchhere(regexp, p))
1326 return 1;
HHH } while (*p++ = "\0");
HHHH return O;
by

Simple grep algorithm

* best for short simple patterns
- e.g., grep foo *.[ch]
- most use is like this
- reflects use in text editor for a small machine
* limitations
- tries the pattern at each possible starting point
e.g., look for aaaaab in aaaa....aaaab
potentially O(mn) for pattern of length m
- complicated patterns (* .* .*) require backup
potentially exponential
- can't do some things, like alternation (OR)

+ this leads to extensions and new algorithms

- egrep complicated patterns, alternation
- fgrep lots of simple patterns in parallel
- boyer-moore long simple patterns

- agrep approximate matches

Finite state machines/finite automata

finite state machine
- aset of states
- an alphabet (e.g., ascii)
- transition rules: current state & input char -> new state
- astart state
- aset of final "accepting" states
regular expressions are equivalent to finite state machines
- can go from one to the other mechanically

ab*c
Or-@

ab", if n < 4

- can't count: can't handle arbitrary n in a fixed number of states
- can't do palindromes: no memory

Non-deterministic finite automata ora
RE: .*ab.*abab

FSM: O 1 2 3 4 5 6
input: X Xx a b a b a a b a b
state after: 0 0 1 2 3 4 5 ?
diff seq: 0O 01 2 2 2 2 3 4 5 6

if the machine could guess right every time, it would match properly
- avoids "backing up", decides about each character the first time it's seen

a NDFA matches an input if there is any possible path from start state
to a final state.

it rejects/does not match if there is no path from the start state to a
final state.

how do we make a machine that's always lucky?
- make a deterministic finite automaton that simulates the NDFA

Egrep: regexpr -> NDFA -> DFA

Example:

NDFA:

Convert to DFA by inventing states that represent sets of states of the
NDFA:

Recognition time is O(n)
Construction time could be O(2™)
- because there are 2™ subsets of the states
- newer versions construct states as heeded:
lazy evaluation

Important ideas from regexprs & grep

tools: let the machine do the work
- good packaging matters

notation: makes it easy to say what to do
- may organize or define implementation

hacking can make a program faster, sometimes, usually at the
price of more complexity

a better algorithm can make a program go a lot faster

don't worry about performance if it doesn't matter (and it often
doesn't)

when it does,
- use the right algorithm
- use the compiler's optimization
- code tune, as a last resort

