
COS 333: Advanced Programming Techniques
• How to find me

– bwk@cs, www.cs.princeton.edu/~bwk
– 311 CS Building
– 609-258-2089 (but email is always better)

• TA's:
– Matvey Arye (arye), Tom Jablin (tjablin), Nick Johnson (npjohnso)

• Today
– course overview
– administrative stuff
– regular expressions and grep

• Check out the course web page (CS, not Blackboard!)
– notes, readings and assignments posted (only) there

monitor the web page every day
– Assignment 1 is posted
– initial project information is posted

• Do the survey if you haven't already

Themes

• languages and tools
– mainstream: C, C++, Java, C#, (Objective-C?), ...
– scripting: AWK, (Perl?), Python, (PHP?), Javascript, ...
– programmable tools, application-specific languages
– frameworks, toolkits, development environments, interface builders
– debuggers (gdb), source code control (SVN), ...

• programming
– design, prototyping, reuse, components, interfaces, patterns
– debugging, testing, performance, mechanization
– portability, standards, style
– tricks of the trade

• reality
– tradeoffs, compromises, engineering

• history and culture of programming
• etc.

Very Tentative Outline
Feb 2 regular expressions; grep, shell
Feb 9 AWK; testing; project stuff
Feb 16 Perl, Python, PHP
Feb 23 Javascript, Ajax, CGI
Mar 2 frameworks, databases
Mar 9 networks, user interfaces

Mar 15 (spring break)

Mar 23 C++, STL, objects
Mar 30 Java, collections
Apr 6 components: COM, .NET, C#
Apr 13 XML, REST/Atom, JSON
Apr 20 ?
Apr 27 ?

May 5-7 demo days: project presentations

Some Mechanics

• prerequisites
– C, Unix (COS 217); Java (COS 126, 226)

• 5 programming assignments in first half
– posted on course web page Tuesday, due Friday evening 10 days later
– deadlines matter

• project in second half (starts earlier!)
– groups of 3-5; start identifying potential teammates
– start thinking about topic
– deadlines matter

• monitor the web page
– readings for most weeks
– notes generally posted ahead of time
– newsgroup for discussion, finding partners, ...

• class attendance and participation <=> no midterm or final
– sporadic unannounced short quizzes are possible

Regular expressions and grep

• regular expressions
– notation
– mechanization
– pervasive in Unix tools
– not in most general-purpose languages

though common in scripting languages and (some) text editors
– basic implementation is remarkably simple
– efficient implementation requires good theory and good practice

• grep is the prototypical tool
– people used to write programs for searching

(or did it by hand)
– tools became important
– tools are not as much in fashion today

Grep regular expressions
c any character matches itself, except for

metacharacters . [] ^ $ * \

r1r2 matches r1 followed by r2
. matches any single character
[...] matches one of the characters in set ...

a set like a-z or 0-9 includes any character in the range
[^...] matches one of the characters not in set

a set like a-z or 0-9 includes any char in the range
^ matches beginning of line when ^ begins pattern

no special meaning elsewhere in pattern
$ matches end of line when $ ends pattern

no special meaning elsewhere in pattern
* any regular expression followed by * matches 0 or more
\c matches c unless c is () or digit
\(...\) tagged regular expression that matches ...

the matched strings are available as \1, \2, etc.

Examples of matching
thing thing anywhere in string
^thing thing at beginning of string
thing$ thing at end of string
^thing$ string that contains only thing
^ matches any string, even empty
^$ empty string
. non-empty, i.e., at least 1 char
thing.$ thing plus any char at end of string
thing\.$ thing. at end of string
\\thing\\ \thing\ anywhere in string
[tT]hing thing or Thing anywhere in string
thing[0-9] thing followed by one digit
thing[^0-9] thing followed by a non-digit
thing[0-9][^0-9] thing followed by digit, then non-digit
thing1.*thing2 thing1 then any text then thing2
^thing1.*thing2$ thing1 at beginning and thing2 at end

egrep: fancier regular expressions

r+ one or more occurrences of r
r? zero or one occurrences of r
r1|r2 r1 or r2

(r) r (grouping)
grammar:

r: c . ^ $ [ccc] [^ccc]
r* r+ r?
r1 r2

r1|r2

(r)
precedence:

* + ? higher than concatenation, which is higher than |

([0-9]+\.?[0-9]*|\.[0-9]+)([Ee][-+]?[0-9]+)?

The grep family

• grep
• egrep

– fancier regular expressions, trades compile time and space for run time
• fgrep

– parallel search for many fixed strings
• agrep

– "approximate" grep: search with errors permitted
• relatives that use similar regular expressions

– ed original Unix editor
– sed stream editor
– vi, emacs, sam, ... editors
– lex lexical analyzer generator
– awk, perl, python, … all scripting languages
– Java, C# ... libraries in mainstream languages

• simpler variants
– filename "wild cards" in Unix and other shells
– "LIKE" operator in Visual Basic, SQL, etc.

Basic grep algorithm

while (get a line)
if match(regexpr, line)

print line

• (perhaps) compile regexpr into an internal representation suitable
for efficient matching

• match() slides the regexpr along the input line,
looking for a match at each point

regexpr
line

Grep (TPOP, p 226)

/* grep: search for regexp in file */
int grep(char *regexp, FILE *f, char *name)
{

int n, nmatch;
char buf[BUFSIZ];

nmatch = 0;
while (fgets(buf, sizeof buf, f) != NULL) {

n = strlen(buf);
if (n > 0 && buf[n-1] == '\n')

buf[n-1] = '\0';
if (match(regexp, buf)) {

nmatch++;
if (name != NULL)

printf("%s:", name);
printf("%s\n", buf);

}
}
return nmatch;

}

Match anywhere on a line
• look for match at each position of text in turn

/* match: search for regexp anywhere in text */
int match(char *regexp, char *text)
{

if (regexp[0] == '^')
return matchhere(regexp+1, text);

do { /* must look even if string is empty */
if (matchhere(regexp, text))

return 1;
} while (*text++ != '\0');
return 0;

}

Match starting at current position

/* matchhere: search for regexp at beginning of text */
int matchhere(char *regexp, char *text)
{

if (regexp[0] == '\0')
return 1;

if (regexp[1] == '*')
return matchstar(regexp[0], regexp+2, text);

if (regexp[0] == '$' && regexp[1] == '\0')
return *text == '\0';

if (*text!='\0' && (regexp[0]=='.' || regexp[0]==*text))
return matchhere(regexp+1, text+1);

return 0;
}

• follow the easy case first: no metacharacters
• note that this is recursive

– maximum depth: one level for each regexpr character that matches

Matching * (repetitions)
• matchstar() called to match c*...
• matches if rest of regexpr matches rest of input

– null matches require test at the bottom

/* matchstar: search for c*regexp at beginning of text */
int matchstar(int c, char *regexp, char *text)
{

do { /* a * matches zero or more instances */
if (matchhere(regexp, text))

return 1;
} while (*text != '\0' && (*text++ == c || c == '.'));
return 0;

}

• finds the leftmost shortest match
– just right for pattern matching in grep
– NOT usually what we want in a text editor

null matches are surprising and rarely desired

Profiling: where does the time go

• measure how long each function takes:

gcc -pg x.c

a.out

gprof

– display is very flaky

• count number of times each line is executed:

gcc -fprofile-arcs -ftest-coverage x.c

a.out

gcov x.c

cat x.c.gcov

Statement frequency counts
$ gcc -fprofile-arcs -ftest-coverage grep.c; a.out x ../bib >foo;
$ gcov grep.c; cat grep.c.gcov

/* matchhere: search for regexp at beginning of text */
int matchhere(char *regexp, char *text)

4360969 {
4360969 if (regexp[0] == '\0')

1326 return 1;
4359643 if (regexp[1] == '*')
return matchstar(regexp[0], regexp+2, text);

4359643 if (regexp[0] == '$' && regexp[1] == '\0')
return *text == '\0';

4359643 if (*text!='\0' && (regexp[0]=='.' || regexp[0]==*text))
1326 return matchhere(regexp+1, text+1);

4358317 return 0;
}

/* match: search for regexp anywhere in text */
int match(char *regexp, char *text)

31102 {
31102 if (regexp[0] == '^')

return matchhere(regexp+1, text);
4359643 do { /* must look even if string is empty */
4359643 if (matchhere(regexp, text))

1326 return 1;
4358317 } while (*text++ != '\0');

29776 return 0;
}

How to make grep faster

• use optimization (cc -O)

• change compilers

• code tuning
– e.g., match calls matchhere many times
– even though most of them must necessarily fail
– because the target string doesn't contain the first character of the

pattern

• algorithm changes

Code tuning variant
• checks whether target contains first character of pattern

before calling matchhere, unless it is x*

/* match: search for regexp anywhere in text */
int match(char *regexp, char *text)
{

char *p;
if (regexp[0] == '^')

return matchhere(regexp+1, text);
if (regexp[0] != '\0' && regexp[0] != '.'

&& regexp[1] != '*')
if ((p=strchr(text, regexp[0])) == NULL)

return 0;
do { /* must look even if string is empty */

if (matchhere(regexp, p))
return 1;

} while (*p++ != '\0');
return 0;

}

• is this faster?

Statement frequencies after change
int matchhere(char *regexp, char *text)
2652 {
2652 if (regexp[0] == '\0')
1326 return 1;
1326 if (regexp[1] == '*')

return matchstar(regexp[0], regexp+2, text);
1326 if (regexp[0] == '$' && regexp[1] == '\0')

return *text == '\0';
1326 if (*text!='\0' && (regexp[0]=='.' || regexp[0]==*text))
1326 return matchhere(regexp+1, text+1);

return 0;
}

int match(char *regexp, char *text)
31102 {
31102 char *p = text;
31102 if (regexp[0] == '^')
return matchhere(regexp+1, text);
31102 if (regexp[0] != '\0' && regexp[0] != '.' && regexp[1]!='*')
31102 if ((p=strchr(text, regexp[0])) == NULL)
29776 return 0;
1326 do { /* must look even if string is empty */
1326 if (matchhere(regexp, p))
1326 return 1;

} while (*p++ != '\0');
return 0;

}

Simple grep algorithm

• best for short simple patterns
– e.g., grep foo *.[ch]
– most use is like this
– reflects use in text editor for a small machine

• limitations
– tries the pattern at each possible starting point

e.g., look for aaaaab in aaaa….aaaab
potentially O(mn) for pattern of length m

– complicated patterns (.* .* .*) require backup
potentially exponential

– can't do some things, like alternation (OR)

• this leads to extensions and new algorithms
– egrep complicated patterns, alternation
– fgrep lots of simple patterns in parallel
– boyer-moore long simple patterns
– agrep approximate matches

Finite state machines/finite automata

• finite state machine
– a set of states
– an alphabet (e.g., ascii)
– transition rules: current state & input char -> new state
– a start state
– a set of final "accepting" states

• regular expressions are equivalent to finite state machines
– can go from one to the other mechanically

• ab*c

• anbn, if n < 4

– can't count: can't handle arbitrary n in a fixed number of states
– can't do palindromes: no memory

a
b
c

Non-deterministic finite automata (NDFA)

RE: .*ab.*abab

FSM: 0 1 2 3 4 5 6

input: x x a b a b a a b a b

state after: 0 0 1 2 3 4 5 ?

diff seq: 0 0 1 2 2 2 2 3 4 5 6

• if the machine could guess right every time, it would match properly
– avoids "backing up", decides about each character the first time it's seen

• a NDFA matches an input if there is any possible path from start state
to a final state.

• it rejects/does not match if there is no path from the start state to a
final state.

• how do we make a machine that's always lucky?
– make a deterministic finite automaton that simulates the NDFA

Egrep: regexpr -> NDFA -> DFA
• Example: (a|aa|aaa)b

• NDFA:

• Convert to DFA by inventing states that represent sets of states of the
NDFA:

• Recognition time is O(n)
• Construction time could be O(2m)

– because there are 2m subsets of the states
– newer versions construct states as needed:

lazy evaluation

a

a

a
a

a a

b

b

b

10

3

5

4

6

2

7

a

b
a

b

b

1,3,50

4,6

2

7
a

Important ideas from regexprs & grep

• tools: let the machine do the work
– good packaging matters

• notation: makes it easy to say what to do
– may organize or define implementation

• hacking can make a program faster, sometimes, usually at the
price of more complexity

• a better algorithm can make a program go a lot faster

• don't worry about performance if it doesn't matter (and it often
doesn't)

• when it does,
– use the right algorithm
– use the compiler's optimization
– code tune, as a last resort

