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Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
» Interesting and broadly useful abstraction.

* Challenging branch of computer science and discrete math.
* Hundreds of graph algorithms known.
» Thousands of practical applications.




Protein interaction network

Reference: Jeong et al, Nature Review | Genetics



The Internet as mapped by the Opte Project
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Map of science clickstreams
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High-school dating

Reference: Bearman, Moody and Stovel, 2004
image by Mark Newman



Kevin's facebook friends (Princeton network)
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One week of Enron emails
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Graph applications

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

chemical compound

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

molecule

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond




Graph terminology

cycle —
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Some graph-processing problems

Path. Is there a path between s and 1?
Shortest path. What is the shortest path between s and 1?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency matrices represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

1



» graph API
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Graph representation

Vertex representation.
* This lecture: use integers between O and V-1.
* Real world: convert between names and integers with symbol table.

Issues. Parallel edges, self-loops.

13



Graph APT

public class Graph

graph data type

Graph (int V)
Graph (In in)
void addEdge (int v, int w)
Iterable<Integer> adj(int v)

int V()

In in = new In();
Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))

A

/* process edge v-w */

create an empty graph with V vertices

create a graph from input stream

add an edge v-w

return an iterator over the neighbors of v

return number of vertices

read graph from
standard input

process both
v-w and w-v

D W W O O O O J oe

more tiny.txt

o O x> O U1 N
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Set of edges representation

Maintain a list of the edges (linked list or array).
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Adjacency-matrix representation

Maintain a two-dimensional V-by-V boolean array:;

true.

adj [w] [v]

for each edge v-w in graph: adj[v] [w]

two entries

for each ed
0
5
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Adjacency-matrix representation: Java implementation

public class Graph
{

private final int V;
private final boolean[][] adj;

public Graph(int V)
{
this.V = V;
adj = new boolean[V] [V];

public void addEdge (int v, int w)
{

adj[v] [w] = true;

adj [w] [v]

true;

public Iterable<Integer> adj(int v)
{ return new AdjIterator(v); }

adjacency matrix

create empty graph
with V vertices

add edge v-w
(no parallel edges)

iterator for v's neighbors
(code for AdjIterator omitted)

17



Adjacency-list representation

Maintain vertex-indexed array of lists (implementation omitted).

two entries
for each edge

10:

11:

12:

7 e

10 e—> 11 o———> 12 o

9 e

9 e—> 12 o

9 e——— 11 o

18



Adjacency-set graph representation

Maintain vertex-indexed array of sets.

10:

11:

12:

{1 2 5 6}

{ 0} two entries

{ 0 }/ for each edge

{ 4, 5}
{3, 5, 6
{0, 3, 4}
{ 0, 4}
{ 81}
{71}
{ 10, 11, 12 }
{91}
{9, 12}

{ 9, 11 }

19



Adjacency-set representation: Java implementation

public class Graph
{

private final int V;
private final SET<Integer>[] adj; NN

public Graph (int V)
{
this.V = V;
adj = (SET<Integer>[]) new SET[V], <«—f—
for (int v = 0; v < V; v++4)
adj[v] = new SET<Integer>() ;

public void addEdge (int v, int w)
{

adj[v] .add(w) ;

adj[w] .add(v) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

adjacency sets

create empty graph
with V vertices

add edge v-w
(no parallel edges)

iterator for v's neighbors

20



Graph representations

In practice. Use adjacency-set (or adjacency-list) representation.
» Algorithms based on iterating over edges incident to v.
 Real-world graphs tend to be "sparse.”

huge number of vertices,
small average vertex degree

: : edge between iterate over edges
representation insert edge .
v and w? incident to v?
list of edges E E E E
adjacency matrix V2 1 1 Vv
adjacency list E+V degree(v) degree(v) degree(v)
adjacency set E+V log (degree(v)) log (degree(v)) degree(v)

21



» maze exploration
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Maze exploration

Maze graphs.

e Vertex = intersection.

» Edge = passage.
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Goal. Explore every passage in the maze.
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Trémaux maze exploration

Algorithm.

 Unroll a ball of string behind you.

* Mark each visited intersection by fturning on a light.
* Mark each visited passage by opening a door.

First use? Theseus entered labyrinth to kill the monstrous Minotaur:;
Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

24
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Maze exploration
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Maze exploration
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Rat in a maze

place wals | fing patn | _pause PSRN
Random

pathLength = 12

Number of walls = 127

Speed = 3 frames/sec

To pause path construction press pausd

Instructions.

1) "place walls" as you wish
2) “find path”
3) “clear maze” or "clear path” and rep#d
NOTE: instead of making a maze
you can use a “premade maz¢g

start tile
finish tile

|_ wall tile

. path tile

blocked tile

28



» depth-first search
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Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex s)

Mark s as visited.
Recursively visit all unmarked
vertices v adjacent to s.

Running time.

* O(E) since each edge examined at most twice.

Usually less than V in real-world graphs.

Typical applications.

Find all vertices connected to a given s.

Find a path from s to t.




Design pattern for graph processing

Design goal. Decouple graph data type from graph processing.

// print all vertices connected to s
In in = new In(args[0]);
Graph G = new Graph(in) ;
int s 0;
DFSearcher dfs = new DFSearcher (G, s);
for (int v = 0; v < G.V(); v++)
if (dfs.isConnected(v))
StdOut.println(v) ;

Typical client program.

* Create a Graph.

 Pass the Gcraph to a graph-processing routine, e.g., DFSearcher.
* Query the graph-processing routine for information.



Depth-first search (connectivity)

public class DFSearcher
{

private boolean[] marked; <«—+—— trueif connected fo s

public DFSearcher (Graph G, int s)
{

marked = new boolean[G.V()];
dfs (G, s); constructor marks
vertices connected to s

private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);

recursive DFS does the work

A

public boolean isConnected(int v) client can ask whether any
} T

{ return marked[v]; vertex is connected to s




Flood fill

1))

Photoshop "magic wand"
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Graph-processing challenge 1

Problem. Flood fill.
Assumptions. Picture has millions to billions of pixels.

How difficult?

e Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.

No one knows.

Impossible.

34



Connectivity application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

* Vertex: pixel.

» Edge: between two adjacent red pixels.
 Blob: all pixels connected to given pixel.

\ recolor red blob to blue

35



Connectivity application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

* Vertex: pixel.

» Edge: between two adjacent red pixels.
 Blob: all pixels connected to given pixel.

\ recolor red blob to blue

36



Graph-processing challenge 2
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* Need to be a typical diligent COS 226 student.

e Hire an expert.

1H

How difficult?

e Any COS 126 student could do it.

e Intractable.
* No one knows.
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Paths in graphs: union find vs. DFS

Goal. Is there apath from s fo t?

union-find V + Elog*V log*V f

DFS E+V 1 E+V

+ amortized

If so, find one.

 Union-find: not much help (run DFS on connected subgraph).
* DFS: easy (see next slides).

Union-find advantage. Can intermix queries and edge insertions.

DFS advantage. Can recover path itself in time proportional to its length.

38



Keeping track of paths with DFS

DFS tree. Upon visiting a vertex v for the first time, remember that you
came from pred[v] (parent-link representation).

Retrace path. To find path between s and v, follow pred[]1 back from v.

1R Ry e

’:yjo
)Y
)
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Depth-first-search (pathfinding)

private int[] pred;

pred = new int[G.V()];
for (int v = 0; v < G.V(); v++)
pred[v] = -1;

add instance variable for parent-link
representation of DFS tree

initialize it in the constructor

set parent link

add method for client
to iterate through path

40



Depth-first-search (pathfinding iterator)

public Iterable<Integer> path(int v)
{
Stack<Integer> path = new Stack<Integer>() ;
while (v '= -1 && marked[v])
{
path.push (v) ;
v = pred|[v];
}

return path;

41



DFS summary

Enables direct solution of simple graph problems.

v/ * Find path from s to t.
Connected components (stay tuned).

Euler tour (see book).

Cycle detection (simple exercise).

Bipartiteness checking (see book).

Basis for solving more difficult graph problems.
 Biconnected components (see book).
* Planarity testing (beyond scope).

42



» breadth-first search
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Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue.
Repeat until the queue is empty:
= remove the least recently added vertex v

» add each of v's unvisited neighbors to the queue,
and mark them as visited.

Property. BFS examines vertices in increasing distance from s.

44



Breadth-first search scaffolding

public class BFSearcher

{

private int[] dist; <«——+— distances froms

public BFSearcher (Graph G, int s)

{
dist = new int[G.V ()]
for (int v = 0; v < G.V(); v++)
dist[v] = G.V() + 1; <«———+— initialize distances
dist[s] = 0;
bfs (G, s); <«——+— compute distances
}

public int distance(int v) .
<«——+— answer client query

{ return dist[v]; }

private void bfs (Graph G, int s)
{ /* See next slide */ }
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Breadth-first search (compute shortest-path distances)

46



BFS application

* Facebook.

 Kevin Bacon numbers.
» Fewest number of hops in a communication network.

ARPANET LOGICAL MAP, MARCH 1977
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BFS application

* Facebook.
 Kevin Bacon numbers.
» Fewest number of hops in a communication network.

ann The Oracle of Bacon

Al L EC G ML + 18] € o iwww oricleofbacsn 0rg /(g Bis meviel nks \game = (4 Arstname = Kevie o faco © 2 Q-

[ The Curtis | woe of Music  COS 126 FOR  ACM Awands  Wang 518 McCachy | Memepage  Stocks  COSIZ6 FOT  TPM  BSS (1742)v  Eschanen

THE ORACLE

OF BACON

Help
Credits Buzz Mauro

How it Works
Contact Us . ) l

Other games »

Tatana Ramirez

Interior de un silencio, El (2005) |
Andro; Suarez
Carlita's s-om (2004) |
Paula L;ms 0}
FrostNixon (2008)

Kevin Bacon

Kewn Bacon 10 suzz Mauro i b ) ( More cptions > >
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Kevin Bacon graph

* Include vertex for each performer and movie.

* Connect movie to all performers that appear in movie.
» Compute shortest path from s = Kevin Bacon.

— Caligola

\ /

Patrick
Allen

|
Dial M Grace
for Murder Kelly

The Stepford

Glenn
Close

John
Gielguld

Wives

—To Catch
a Thief

Portrait
of a Lady - —1 The Eagle
, Nicole Has Landed
Kidman // N
| Murder on the = AN
Orient Express Donald
e — ol Sutherland Kathleen
Mountain Quinlan
7\
\ /
An American John Animal
Hamlet f— Haunting Belushi House
/ I / \ Apollo 13
Vernon \N | ~
Dobtcheff
obtche 1 The
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| 1 I N (Psm
Wild \ axton
L 1 -
| " Things The River -
Jude 7T wild [
7 \ I AN Paul
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L~ Meryl
= Enigma Streep
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77T 1\
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\ e

Joe Versus
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71\

The Da
Vinci Code

Serretta
Wilson

A tiny portion of the movie-performer relationship graph
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» connected components
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Connectivity queries

Def. Vertices vand w are connected if there is a path between them.
Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is v connected to w?
in constant time

1) o) 1)
D J/ 0\@
yd

3

O©W 0 JdJ o LI & WDN R

J—.2)

B R
N B O

Union-Find? Not quite.

0

O,N Vertex Component
0

PR OO RrRr dMNDODMOOOHRLBR
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Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmavrked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

E+V 1 v




Depth-first search for connected components

public class CCFinder

{
private final static int UNMARKED = -1;

private int components;

private int[] cc; Dm— component labels
public CCFinder (Graph G)
{ /* see next slide */ }

public int connected(int v, int w) I T
(——

{ return ccl[v] == cc[w]; } connectivity query




Depth-first search for connected components

public CCFinder (Graph G)
{
cc = new int[G.V()];
for (int v = 0; v < G.V(); v++)
cc[v] = UNMARKED;
for (int v = 0; v < G.V(); v++)

if (cc[v] == UNMARKED)
{
dfs (G, v);
components++;

private void dfs(Graph G, int v)
{

cc[v] = components;
for (int w : G.adj(v))

if (cc[w] == UNMARKED) dfs (G, w);

A

DFS for each component

standard DFS
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Connected components application: image processing

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

assuming contiguous states

Input. Scanned image. /
Output. Number of red and blue states.
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Connected components application: image processing

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

Efficient algorithm.

* Create grid graph.

» Connect each pixel to neighboring pixel if same color.
 Find connected components in resulting graph.
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Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
* Vertex: pixel.

» Edge: between two adjacent pixels with grayscale value = 70.

* Blob: connected component of 20-30 pixels. N

black = 0
white = 255

A

Particle tracking. Track moving particles over time.
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» challenges
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Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?

Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.

No one knows.

Impossible.

3j—'4
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Bridges of Kénigsberg
The Seven Bridges of Konigsberg. [Leonhard Euler 1736]

“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these

bridges, it was asked whether anyone could arrange a route in such a

way that he could cross each bridge once and only once.”

Euler tour. Is there a cyclic path that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see Algs in Java).
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Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

AN
lj— ZI— 9
How difficult? /
* Any COS 126 student could do it. )/3//_ 4/
* Need to be a typical diligent COS 226 student. >
* Hire an expert. 0-5-3-4-6-2-1-0

Intractable.

No one knows.

Impossible.

ook W W MhNhNPREPr OO OO
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Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

R
1) \2) %
How difficult? /
« Any COS 126 student could do it. )/3//_ v
* Need to be a typical diligent COS 226 student. >
* Hire an expert.
e Intractable. .
* No one knows. K Y 0)
» Impossible. 2L 4
5 ‘<6

3//

o ©O U1 1 b O O O
| 1 1 | 1 1 |
w0 W Wdhho

{ Y Y I Y I |
w_ W oy WO o xR
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Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

5 4
How difficult? vj><s/

e Any COS 126 student could do it. 3
Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.
No one knows.

Impossible.

a bd W WMNdMNDMNDPRLO
OO O o I WINDNDN



4.2 Directed Graphs
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Directed graphs

Digraph. Set of vertices connected pairwise by oriented edges.
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Link structure of political blogs

®

Data from the blogosphere. Shown is a link structure within a community of political blogs (from 2004),
where red nodes indicate conservative blogs, and blue liberal. Orange links go from liberal to conservative,
and purple ones from conservative to liberal. The size of each blog reflects the number of other blogs that
link to it. [Reproduced from (8) with permission from the Association for Computing Machinery]




Web graph

Vertex = web page.

Edge = hyperlink.




WordNet graph

Vertex = synset.
Edge = hypernym relationship.

event
happeningoccurrence occurrent natural_event
miracle
act human_action human_activity
change alteration modification miracle \
/ \ \ group_action
damage harmimpairment transition increase forfeitforfeiture. sacrlflce action
/ / T resistance opp05|t|on transgression
run ladderravel leap jump saltation jumpleap
change
demotlon /l\ variation

motion movement move

TS~

locomotiontravel descent
runrunning jump parachuting

i

dash sprint




Digraph applications

transportation street intersection one-way street
web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial stock, currency transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
control flow code block jump




Some digraph problems

Path. Is there a directed path from s to 1?
Shortest path. What is the shortest directed path from s and t?

Strong connectivity. Are all vertices mutually reachable?
Transitive closure. For which vertices vand w is there a path from v to w?

Topological sort. Can you draw the digraph so that all edges point
from left to right?

Precedence scheduling. Given a set of tasks with precedence constraints,
how can we best complete them all?

PageRank. What is the importance of a web page?



» digraph API



Digraph APT

public class Digraph digraph data type
Digraph (int V) create an empty digraph with V vertices
Digraph(In in) create a digraph from input stream
void addEdge (int v, int w) add an edge from v to w
Iterable<Integer> adj(int v) return an iterator over the neighbors of v
int V() return number of vertices

In in = new In();

Digraph G = new Digraph(in) ;

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
/* process edge v—w */




Set of edges representation

Store a list of the edges (linked list or array).
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Adjacency-matrix representation

Maintain a two-dimensional v-by-v boolean array:

true.

for each edge v — w in the digraph: adj[v] [w]

to

12

11

10

0

from

10

11

0

12

1



Adjacency-list representation

Maintain vertex-indexed array of lists.

2:
@ @ same as undirected graph,
3:
but one entry for each edge
4: 3 e

O -

10 e—> 11 o——— 12 o

©

O—® O—B

11: 12 e

12:
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Adjacency-set representation

Maintain vertex-indexed array of sets.

0: {1 2 5 6}

1: {1}

2: {1}
@ @ same as undirected graph,
3: t but one entry for each edge
4: { 31}
@ ( ) 5: {3, 41}
r//' 6: {4}
= o d
8:

{1}

&

9: {10, 11, 12 }
@—’ e @ 10: {1

11: { 12 }

1728 {1}
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Adjacency-set representation: Java implementation

Same as Graph, but only insert one copy of each edge.

public class Digraph
{
private final int V; ,
<—+— adjacency sets
private final SET<Integer>[] adj;
public Digraph (int V)
{ i create empty graph with
this.V = V; V vertices
adj = (SET<Integer>[]) new SET[V];
for (int v = 0; v < V; v++4)
adj[v] = new SET<Integer>() ;
}
—
{ adj[v].add(w);, } (no parallel edges)
public Iterable<Integer> adj(int v)
. <«—F— iterator for v's neighbors
{ return adj[v];, }
}

14



Digraph representations

In practice. Use adjacency-set (or adjacency-list) representation.
 Algorithms all based on iterating over edges incident fo v.
 Real-world digraphs tend to be sparse.

huge number of vertices,
small average vertex degree

representation insert et%gvev edvgtz fvrf?m iteralteeasi\;egr S;iges
list of edges E E E E
adjacency matrix V2 1 1 \Y
adjacency list E+V outdegree(v) outdegree(v) outdegree(v)
adjacency set E+V log (outdegree(v)) log (outdegree(v)) outdegree(v)




Typical digraph application: Google's PageRank algorithm GOUgle

Goal. Determine which pages on web are important.
Solution. Ignore keywords and content, focus on hyperlink structure.

Random surfer model.

e Start at random page.

» With probability 0.85, randomly select a hyperlink to visit next;
with probability 0.15, randomly select any page.

» PageRank = proportion of tfime random surfer spends on each page.

Solution 1. Simulate random surfer for a long time.
Solution 2. Compute ranks directly until they converge.
Solution 3. Compute eigenvalues of adjacency matrix!

None feasible without sparse digraph representation.

16



» digraph search
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Reachability

Problem. Find all vertices reachable from s along a directed path.

F I< I > @
Y
>X<—¢<—¢—>‘
A A
Y Y
- @@=« O=< @ »@
A A A
\ Y Y
’4 B >’ >’ »>0—>0 >0
Y Y Y Y
o> 0O« +< 14 ’ >‘<—’—>‘
\ Y Y
<0 >0 >0 <0 > >Q—>@
A A A
Y Y Y
¢—>O—>+< r >’ >‘<—’<—6
Y Y
I—»b—»t«—‘—»‘ <@
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Depth-first search in digraphs
Same method as for undirected graphs.
Every undirected graph is a digraph.

* Happens to have edges in both directions.
* DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked
vertices w adjacent to v.

19



Depth-first search (single-source reachability)

Identical to undirected version (substitute pigraph for Graph).

public class DFSearcher
{

private boolean[] marked; <«—+—— ftrue if connected to s

public DFSearcher (Digraph G, int s)
{

<«—F+—— constructor marks vertices

connected to s
marked = new boolean[G.V()];

dfs (G, s);

private void dfs(Digraph G, int v)
{ <«—F— recursive DFS does the work
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);

public boolean isReachable (int v) client can ask whether any
{ return marked[v]; } vertex is reachable from s

20



Reachability application: program control-flow analysis

Every program is a digraph.

» Vertex = basic block of instructions (straight-line program).

» Edge = jump.

Dead code elimination.

Find (and remove) unreachable code.

Infinite loop detection.

Determine whether exit is unreachable.
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Reachability application: mark-sweep garbage collector
Every data structure is a digraph.

e Vertex = object.

* Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

1/9\7
»w/’/-

\-/u- ~
SM/'
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Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
e Mark: mark all reachable objects.

» Sweep: if object is unmarked, it is garbage, so add to free list.

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.

’/%\‘[
»w/’/-

\/i
SM/'
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Depth-first search (DFS)

DFS enables direct solution of simple digraph problems.
Reachability.
Cycle detection.

Topological sort.

Transitive closure.

Basis for solving difficult digraph problems.
 Directed Euler path.

e Strong connected components.

24



Breadth-first search in digraphs

Every undirected graph is a digraph.

* Happens to have edges in both directions.

* BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue.
Repeat until the queue is empty:
= remove the least recently added vertex v
= add each of v's unvisited neighbors to the
queue and mark them as visited.

e
.

i
i

n
L

Property. Visits vertices in increasing distance from s.




Digraph BFS application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.
Solution. BFS with implicit graph.

BFS.
e Start at some root web page.

* Maintain a gueue of websites to explore.
e Maintain a ser of discovered websites.
* Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

26



Web crawler: BFS-based Java implementation

Queue<String> q = new Queue<String>() ; «—
SET<String> visited = new SET<String>() ; «—

String s = "http://www.princeton.edu";
g.enqueue (s) ; -

visited.add(s) ;

while (!'q.isEmpty())

{

String v = gq.dequeue() ;
StdOut.println(v) ;

In in = new In(v);

String input = in.readAll();

String regexp = "http:// (\\w+\\.)* (\\w+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher (input) ;
while (matcher.find())

{
String w = matcher.group() ;
if ('visited.contains(w))
{
visited.add (w) ; ——
g.enqueue (W) ;
}
}

—— queue of websites to crawl

set of visited websites

start crawling from website s

read in raw html for next website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz

if unvisited, mark as visited
and put on queue

27



» transitive closure

28



Graph-processing challenge (revisited)

Problem. Is there an undirected path between v and w?
Goals. Linear preprocessing time, constant query time.

How difficult?

* Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.

No one knows.

Impossible.

ye



Digraph-processing challenge 1

Problem. Is there a directed path from v tow?

Goals. Linear preprocessing time, constant query time.

How difficult?

* Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.

No one knows.
v/ ¢ Impossible.

T

can't do better than V?
(reduction from boolean matrix multiplication)

1/
)

¥

0—1

30



Transitive closure

Def. The fransitive closure of a digraph G is another digraph with a directed

edge from v to w if there is a directed path from v fo w in 6.

digraph G

05-0,
O

&=

transitive closure TC(G)

audWDhKHEO

O o0OoO0OOoOkrHr K |O

O oo krHrKrOoO|Hr

O oOoOrRrHFOKRF|N

OOk OOO|W

H R R OOO |

P RPROOORKR| WL

aud WDMhDEKFEO

corKHKER|O

CORKRKEER|K

COoOKrRKEKERI|N

OOk OOO|W

H R R RRR|S

R R RRERR[O

digraph G is usually sparse

TC(6G) is usually dense
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Digraph-processing challenge 1 (revised)

Problem. Is there a directed path from v tow?

Goals. ~ V2 preprocessing time, constant query time.

How difficult?

Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.

No one knows. «—— open research problem

Impossible.

1/
)

¥

0—1
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Digraph-processing challenge 1 (revised again)

Problem. Is there a directed path from v tow?
Goals. ~ V E preprocessing time, ~ V¢ space, constant query time.

How difficult?

Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert. T

Intractable. Use DFS once for each vertex
to compute rows of transitive closure

No one knows.

//

Impossible. t

T
©

¥

0—1
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Transitive closure: Java implementation

Use an array of pDFsearcher objects, one for each row of ftransitive closure.

public class TransitiveClosure

{

private DFSearcher|[] tc;

public TransitiveClosure (Digraph G)
{
tc = new DFSearcher[G.V ()]
for (int v = 0; v < G.V(); v++)
tc[v] = new DFSearcher (G, v);

public boolean reachable(int v, int w)
{ return tc|[v].isReachable(w); }

array of DFSearcher objects

initialize array

is there a directed path
fromv tow ?

34



» topological sort
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Digraph application: scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

Graph model.
e Create a vertex v for each task.

* Create an edge v—w if task v must precede task w.

tasks

l

read programming assignment
download files

write code

attend precept

wnh = o

precedence ——>
constraint graph

feasible
schedule
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Topological sort

DAG. Directed acyclic graph.

Fact. Digraph is a DAG iff no directed cycle.

37



Digraph-processing challenge 2a

Problem. Check that a digraph is a DAG; if so, find a topological order.
Goal. Linear time.

How difficult?

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student. 2_)2

* Hire an expert. I -

e Intractable. Lo DFS 2:2

e No one knows. 49

» Impossible. 64
6—9
7—6
8—7
9—10
9—11
9—12

012387645910 11 12 11-12



Topological sort ina DAG: Java implementation

public class TopologicalSorter

{
private boolean[] marked;
private Stack<Integer> sorted;

public TopologicalSorter (Digraph G)
{
marked = new boolean[G.V()];
sorted = new Stack<Integer>() ;
for (int v = 0; v < G.V(); v++)
if ('marked[v]) tsort(G, v);

private void tsort(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked|[w]) tsort(G, w);
sorted.push (v) ;

public Iterable<Integer> order ()
{ return sorted; }

vertices in topological order

reverse DFS postorder

39



Topological sort ina DAG: trace

Visit means call tsort () and leave means return from tsort ().

visit O:

visit 1:

visit 3:

visit 6:
leave 6:

leave 3:

[

marked|[]

[
o
o
o
o

o

sorted

R
NN

=

N
(S0
o o

o O

0

“ @\4@ 9

/
O

@/’

0—1
0—6
0—2
3—-4
352
5—-4
5—0
3—-5
2—-1
6—4
3—-1

3

360521414
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Topological sort ina DAG: correctness proof
Proposition. If digraph is a DAG, algorithm yields a topological order.

Pf.
* Algorithm terminates in O(E + V) time since it's just a version of DFS.

» Consider any edge v—w. When tsort (G, v) is called,
- Case 1! tsort(G, w) has already been called and returned.
Thus, w will appear after v in fopological order.

- Case 2: tsort(G, w) has not yet been called, so it will get called directly
or indirectly by tsort(e, v) and it will finish before tsort(c, v).
Thus, w will appear after v in topological order.

- Case 3: tsort(G, w) has already been called, but not returned. Then the
function call stack contains a directed path from w to v. Combining this
path with the edge v—w yields a directed cycle, contradicting DAG.

41



Digraph-processing challenge 2b

Problem. Given a digraph, is there a directed cycle?
Goal. Linear time.

run DFS-based topological sort algorithm;
if it yields a topological sort, no directed cycle

How difficult? (can modify code to find cycle)

* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student. 0—1
0—6

e Hire an expert. 02

e Intractable. U
2—-3

e No one knows. 49

e Impossible. 6—4
6—9
7—6
8—7
9—10
9—-11
9—-12

012387645910 11 12 11-12
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Topological sort and cycle detection applications

Causalities.

Email loops.

Compilation units.

Class inheritance.

Course prerequisites.
Deadlocking detection.
Precedence scheduling.
Temporal dependencies.
Pipeline of computing jobs.
Check for symbolic link loop.

Evaluate formula in spreadsheet.

43



Cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

% javac A.java

A.java:1l: cyclic inheritance
involving A

public class A extends B { }

A

1 error

44



Cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbarl)

® 00 ‘| Workbook1
< A | B | C | D
" " " " "__ "
1 "=Bl1+1 =Cl +1 =Al +1
7 Microsoft Excel cannot calculate a formula.
8 Cell references in the formula refer to the formula's
result, creating a circular reference. Try one of the
9 following:
10 « If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
1 1 help for using it to correct your formula.

» To continue leaving the formula as it is, click Cancel.

12 ( Cancel ) G—OH

'« < » »i Tl Sheetl |Sheet2 | Sheet3

B EE Ed




Cycle detection application: symbolic links

The Linux file system does not do cycle detection.

ln -s a.txt b.txt
ln -s b.txt c.txt
ln -s c.txt a.txt

o® o° o

o\°

more a.txt
a.txt: Too many levels of symbolic links
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Topological sort application: precedence scheduling

Precedence scheduling. - prereq
A -

e Task v takes time[v] units of time.

begin

. . B framing
 Can work on jobs in parallel. _
. . c roofing
* Precedence constraints: must finish task v 5 ciding
before beginning task w. E  windows
* Goal: finish each task as soon as possible. F plumbing
G electricity
Ex. H paint

0

4

2

w W

o

o

R

>
v
o

I
3
N —/ N

\_/
0 4 2W6

9,

0
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Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize £in[v] = time[v] for all vertices v.

» Consider vertices v in fopologically sorted order.

= fOI" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])

@~<’”

> o
m [

V

o
1Y
I\)
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Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize £in[v] = time[v] for all vertices v.

» Consider vertices v in fopologically sorted order.

= fOI" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])

@~<‘"*

a
0 y's 4 6
(®) () (1) O
° N/ N
0 4 2 4 6 0
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Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize £in[v] = time[v] for all vertices v.

» Consider vertices v in fopologically sorted order.

= fOI" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])

10 3
s
/?
@6\ 5 3
4 6 5
0 Vs 2 4 6 0
0

4 ZWG 0
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Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize £in[v] = time[v] for all vertices v.

» Consider vertices v in fopologically sorted order.

= fOI" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])

10 3
6
/‘)
3
@6\k 5
4 6 5 10 12
0 V4 2 & g 0
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Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize £in[v] = time[v] for all vertices v.

» Consider vertices v in fopologically sorted order.

= fOI" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])
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Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.
 Initialize £in[v] = time[v] for all vertices v.
» Consider vertices v in fopologically sorted order.

= fOI" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])

10

st

6 10 12
0 & 2 A 19 6 21 0
. N R o
O—0) () (O——(D)——)
0 4 2 4 6 0
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Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize £in[v] = time[v] for all vertices v.

» Consider vertices v in fopologically sorted order.

= fOI" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])

13
10 3
6
/‘)
15

4 6 S 10 12 13
0 & 2 A4 19 6 21 g
0 4 2 W 6 0
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Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize £in[v] = time[v] for all vertices v.

» Consider vertices v in fopologically sorted order.

= fOI" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])

13
10 3
6
_/‘)
15
4 6 >\ 10 12 25 13
0 & 2 A 19 6 21 g
, () , (1) (1
O—C—CO—@ (=) @
0 4 2 W 6 0
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Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize £in[v] = time[v] for all vertices v.

» Consider vertices v in fopologically sorted order.

= fOI" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])

13
10 3
s
_/‘)
15
25
4 6 >\ 1e 12 25 13
0 y'4 2 4 19 6 2T 0
N VD LN R (1
O—C)——O——O© O,
0 4 2 W 6 0
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Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize £in[v] = time[v] for all vertices v.

» Consider vertices v in fopologically sorted order.

= fOI" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])

13
10 3
s
_/‘)
15
25
4 6 >\ 1e 12 25 13
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Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

» Compute topological order of vertices.

* Initialize £in[v] = time[v] for all vertices v.

» Consider vertices v in fopologically sorted order.

= fOI" each edge v—w, Set fin[w] = max(fin[w], fin[v] + time[w])

13
10 3
s
/—)
15
25
4 6 >\ 16 12 25 13
0 y'4 2 A4 19 & 2T 0
_/ N \_/ N

0 4 2 W 6 0
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Program Evaluation and Review Technique / Critical Path Method

" : index | ti s | finish
Critical path. Longest path from source to sink.
A 0 - 0

B 4 A 4

To compute: c ) s ¢
* Remember vertex that set value (parent-link). b | &6 B 10
* Work backwards from sink. E 5 b 15
F 3 D 13

G 4 C, E 19

1 H C, E 25

© (D—>
0 4 2\/ 0

3 6
10
— I 0 F, H 25
3
5
0 4 6 19 25 25
4 6
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PERT/CPM: Java implementation

G = DAG of precedence constraints

|

double[] fin = new double[G.V()];
0; v < G.V(); v++)
time[v];

for (int v =
fin[v] =

TopologicalSorter ts = new TopologicalSorter (G) ;

ts.order())

G.adj(v))

= Math.max(fin[w],

for (int v :
for (int w :

fin[w] fin[v] + time[w])

fin[v] = finishing time of task v

i apply updates to vertices

in topological order
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» strong components
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Strongly connected components

Def. Vertices v and w are strongly connected if there is a directed path
from v to w and one from w to v.

Def. A strong component is a maximal subset of strongly connected vertices.

strongly connected
component—
Y

directed cycleﬂ
Y

AVl

\




S S

Digraph-processing challenge 3

Problem. Are v and w strongly connected?
Goal. Linear preprocessing time, constant query time.

implementation: use DFS twice to find

How difficult? strong components (see textbook)
* Any COS 126 student could do it. l

* Need to be a typical diligent COS 226 student.

* Hire an expert (or a COS 423 student).

e Intractable. T

* No one knows. correctness proof 5 strong components

VE

=
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Ecological food web graph

Vertex = species.

Edge: from producer to consumer.

~

\ - )
northern copperbelly blue 9! I fis

water snake 7/
o T

\ <
Aoy —

spotted salamander

m / vola g reat eq ret
fox /‘ \ ‘.

LoRibiat'

£
.Q’.’ A
o

leopard frog

algae (mag nified)

Strong component.

Subset of species with common energy flow.
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Software module dependency graph

Vertex = software module.
Edge: from module to dependency.

devel."ORBit

x11-oolkits/qtk12
’ xi-fontsfonteonfig

.’

Firefox Internet explorer

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!
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Strong components algorithms: brief history

1960s: Core OR problem.
» Widely studied; some practical algorithms.
e Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

e Classic algorithm.

* Level of difficulty: CS226++.

* Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).
* Forgot notes for teaching algorithms class; developed alg in order to teach it!
e Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms (Gabow, Mehlhorn).
* Gabow: fixed old OR algorithm.
* Mehlhorn: needed one-pass algorithm for LEDA.
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Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components
* Run DFS on GR and compute postorder.

e Run DFS on G, considering vertices in reverse postorder.

S
(v
NS
wn
N (o
ol
|
©
o
oo
(e
N[
(=]
N

oW
(]

0
post | 8

=
[

01 2 3 4 5 6 7 8 9 101112
scf2 1 2 2 2 2 2 3 3 0 0 0 O

Proposition. Trees in second DFS are strong components. (!)
Pf. [see COS 423]
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Digraph-processing summary: algorithms of the day

single-source
reachability

012345 0123
(D<) oj/101001 0“79 oj1110
, 1110000 é&""lh 1{1110

[ 2(011000
transitive closure QP dfeaiiie CEAPY 3iiis
4000011 L3 40000
=) s5/lo00011 G )=(4) 5/0000

topological sort
(DAG)

strong components 2 @; / @<
Ny

HFRRERRR(S
HRRERRRRO

DFS

DFS
(from each vertex)

DFS

Kosaraju
DFS (twice)
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4.3 Minimum Spanning Trees
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Reference: Algorithms in Java, 3" edition, Part 5, Chapter 20

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2009 -  January 26, 2010 8:00:14 AM



Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

_® 24
4
6 23 9
16
8
7

v 10 14

21 \;

graph G




Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.
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Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

4
6 23 9
y 18
16
8
10 14
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not acyclic




Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

- 24
4
6 23 9

y 18
16

8
7
w 10 14
21 N

spanning tree T: cost=50=4+6+8+5+11+9+7

Brute force. Try all spanning trees.



Applications

MST is fundamental problem with diverse applications.

Cluster analysis.

Max bottleneck paths.

Real-time face verification.

LDPC codes for error correction.

Image registration with Renyi entropy.

Find road networks in satellite and aerial imagery.

Reducing data storage in sequencing amino acids in a protein.

Model locality of particle interactions in turbulent fluid flows.
Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
Network design (communication, electrical, hydraulic, cable, computer, road).
Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

http://www.ics.uci.edu/~eppstein/gina/mst.html



Network design

MST of bicycle routes in North Seattle
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http://www.£flickr.com/photos/ewedistrict/21980840



Medical image processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta0l_archlevel.html



Genetic research
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MST of tissue relationships measured by gene expression correlation coefficient
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Two greedy algorithms

Kruskal's algorithm. Consider edges in ascending order of weight.
Add to T the next edge unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T from s.

At each step, add to T the edge of min weight with exactly one endpoint in T.

MICHATL DOUGLAS CHARLEE SHFEN DARYL HANAH
AV(TRR SRR ALY

ALL STREHF

“Greed is good. Greed is right. Greed works. Greed
clarifies, cuts through, and captures the essence of ‘

the evolutionary spirit. ” — Gordon Gecko

Proposition. Both greedy algorithms compute MST.

10



» weighted graph API
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Edge API

Edge abstraction needed for weighted edges.

public class Edge implements Comparable<Edge>

Edge (int v, int w, double weight) create a weighted edge v-w
int either() either endpoint
int other(int v) the endpoint that's not v
double weight () the weight
Comparator<Edge> ByWeight () compare by edge weight

12



Weighted graph APT

public class

WeightedGraph

void
void
Iterable<Edge>

int

Conventions.
* Allow self-loops.

WeightedGraph (int V)
WeightedGraph (In in)
addEdge (Edge e)
removeEdge (Edge e)
adj (int wv)

V()

create an empty graph with V vertices
create a graph from input stream
add edge e
delete edge e
return an iterator over edges incident to v

return number of vertices

 Allow parallel edges (provided they have different weights).

13



Weighted graph APT

public class

WeightedGraph

void
void
Iterable<Edge>

int

for (int v = 0; v < G.V();

{

WeightedGraph (int V)
WeightedGraph (In in)
addEdge (Edge e)
removeEdge (Edge e)
adj (int wv)

V()

for (Edge e : G.adj(v))

{

int w = e.other(v);
// process edge v-w

create an empty graph with V vertices
create a graph from input stream
add edge e
delete edge e
return an iterator over edges incident to v

return number of vertices

v++)

iterate through all edges
(once in each direction)

14



Weighted graph: adjacency-set implementation

public class WeightedGraph
{
private final int V;
private final SET<Edge>[] adj;

public WeightedGraph (int V)
{
this.V = V;
adj = (SET<Edge>[]) new SET[V];
for (int v = 0; v < V; v++)
adj[v] = new SET<Edge>() ;

public void addEdge (Edge e)
{

int v = e.either(), w = e.other(v);

adj[v] .add(e) ;
adj[w] .add (e) ;

public Iterable<Edge> adj(int v)
{ return adj[v]; }

same as Graph, but
adjacency sets of Edges
instead of integers

constructor

add edge to both
adjacency sets

15



Weighted edge: Java implementation

public class Edge implements Comparable<Edge>
{

private final int v, w;

private final double weight;

public Edge(int v, int w, double weight)
{
this.v = Math.min(v, w); <«<———F— constructor
this.w = Math.max (v, w);
this.weight = weight;

public int either() ) .
( & ) <«——+— either endpoint
return v;
public int other (int vertex)
{
if (vertex == v) return w;
else return v;

A

other endpoint

public int weight()

. <«——+— weight of edge
{ return weight; }

// See next slide for compare methods.

16



Weighted edge: Java implementation (cont)

public static class ByWeight implements Comparator<Edge>
{

public int compare (Edge e, Edge f)

{

. . . «—F
if (e.weight > f.weight) return +1; (for sorting in Kruskal)
return O;
}
}
public int compareTo (Edge that)
{
if (this.v < that.v) return -1;
if (this.v > that.v) return +1; lexicographic order,
. . D ; . .
if (this.w < that.w) return -1; breaking ties by weight
if (this.w > that.w) return +1; (for use in a symbol table)

if (this.weight < that.weight) return -1;
if (this.weight > that.weight) return +1;
return O;




» cycles and cuts
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Cycle and cut properties
Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge
belonging o C. Then the MST T* does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min weight
edge with exactly one endpoint in S. Then the MST contains e.

f
cut ve\./‘]

f is not in the MST T* e isin the MST T*

cycle C

19



Cycle property: correctness proof
Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge
belonging o C. Then the MST T* does not contain f.

Pf. [by contradiction]

» Suppose f belongs o T*. Let's see what happens.

Deleting f from T* disconnects T*. Let S be one side of the cut.
Some other edge in C, say e, has exactly one endpoint in S.
T=T*U{e}-{f}is also aspanning tree.

Since we < wg, weight(T) < weight(T*).

Contradicts minimality of T*. = falz

20



Cut property: correctness proof
Simplifying assumption. All edge weights we are distinct.

Cut property. Let S be any subset of vertices, and let e be the min weight
edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. [by contradiction]

* Suppose e does not belong to T*. Let's see what happens.
Adding e to T* creates a cycle Cin T*.

Some other edge in C, say f, has exactly one endpoint in S.
T=T*U{e}-{f}is also aspanning tree.

Since we < wg, weight(T) < weight(T*).

Contradicts minimality of T*. = falz

21



» Kruskal’s algorithm
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Kruskal's algorithm

Kruskal's algorithm. [Kruskal 1956] Consider edges in ascending order of weight.

Add to T the next edge unless doing so would create a cycle.

.18
.21
.25
.29
.31

.34

.46

23



Kruskal's algorithm: correctness proof

Proposition. Kruskal's algorithm computes the MST.

Pf. [Case 1] Suppose that adding e to T creates a cycle C.

* Edge e is the max weight edge in C. «<—— why max weight?
» Edge e is not in the MST (cycle property).

24



Kruskal's algorithm: correctness proof
Proposition. Kruskal's algorithm computes the MST.

Pf. [Case 2] Suppose that adding e = v-w to T does not create a cycle.
e Let S be the vertices in v's connected component.

* Vertex wis notin S. why min weight?

» Edge e is the min weight edge with exactly one endpoint in S.

» Edge e is in the MST (cut property). =

25



Kruskal implementation challenge

Problem. Check if adding an edge v-w to T creates a cycle.

How difficult?
e O(E +V) time.
. run DFS from v, check if w is reachable
* O(V) Time. (T has at most V-1 edges)
* O(log V) time.
° O(IOQ* V) time. <«—— use the union-find data structure !

Constant time.

26



Kruskal's algorithm implementation
Problem. Check if adding an edge v-w to T creates a cycle.

Efficient solution. Use the union-find data structure.
* Maintain a set for each connected component in T.

* If vand w are in same component, then adding v-w creates a cycle.

* To add v-w to T, merge sets containing v and w.

7

Case 1: adding v-w creates a cycle Case 2: add v-w to T and merge sets

27



Kruskal's algorithm: Java implementation

public class Kruskal
{
private SET<Edge> mst = new SET<Edge> () ;

public Kruskal (WeightedGraph

G)
{ /

Edge[] edges = G.edges() ;
Arrays.sort (edges, new Edge.ByWeight()); <—

UnionFind uf = new UnionFind(G.V())
for (Edge e : edges)
{
int v = e.either(), w = e.other(v);
if (Yuf.find(v, w))
{
uf.unite (v, w);
mst.add(e) ;

public Iterable<Edge> mst ()
{ return mst; 1}

L _— get all edges in graph

sort edges by weight

greedily add edges fo MST

28



Kruskal's algorithm running time

Proposition. Kruskal's algorithm computes MST in O(E log E) time.

Pf.

sort 1 Elog E
union \Y log* V 1
find E log* V1

T amortized bound using weighted quick union with path compression

Improvements.
» Stop as soon as there are V-1 edges.
» If edges are already sorted, time is proportional to E log* V.

T

recall: log* V < 5 in this universe

29



Kruskal's algorithm example

s LN o
3 VB
4
S
L )
L PO
25% - ’ s
5% 1

50% %,\ \:v
o
a
PR 3

75%

100%
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» Prim’s algorithm
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Prim's algorithm example

Prim's algorithm. [Jarnik 1930, Dijkstra 1957, Prim 1959]
Start with vertex O and greedily grow tree T. At each step,
add to T the edge of min weight with exactly one endpoint in T.

7-1 7-6 0-1
7-4 0-6 0-5

edges with exactly one endpoint in T, sorted by weight

O O O O O O O o o o o o

.32
.29
.60
.51
.31
.21
.34
.18
.40
.51
.46
.25

32



Prim's algorithm correctness proof

Proposition. Prim's algorithm computes the MST.
Pf.

e Let S be the subset of vertices in current tree T.

* Prim adds the min weight edge e with exactly one endpoint in S.
* Edge e is in the MST (cut property). =

33



Prim implementation challenge
Problem. Find min weight edge with exactly one endpoint in S.

How difficult?

O(E) time. «—— tryall edges

O(V) time.

O(log E) time.  «——  useapriority queue !
O(log™ E) time.

Constant time.

34



Prim’s algorithm implementation (lazy)
Problem. Find min weight edge with exactly one endpoint in S.

Efficient solution. Maintain a PQ of edges with (at least) one endpoint in S.
» Delete min to determine next edge e = v-w to add to T.

 Disregard if both vand w are in S.

e Let w be vertex not in S:

- add to PQ any edge incident to w (assuming other endpoint not in S)
-addwto S

w

[ T

35



Prim's algorithm example: lazy implementation

Use PQ: key = edge.
(lazy version leaves some obsolete entries on the PQ)

.32
.29
.60
.51
.31
.21
.34
.18
.40
.51
.46
.25

0-2 0-7 0-1 0-7 0-1 0-6 0-5 7-1 7-6 0-1 7-6 0-1 7-4
0-6 0-5 \ 7-4 0-6 0-5 0-6 0-5 3-4

black = PQ edge with exactly one endpoint in S, sorted by weight
gray = PQ edge with both endpoints in S (obsolete)

O O O O O O O o o o o o
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Lazy implementation of Prim's algorithm

public class LazyPrim

{

private boolean[] scanned; // vertices in MST
private Queue<Edge> mst; // edges in the MST
private MinPQ<Edge> pgq // the priority queue of edges

public LazyPrim(WeightedGraph G)
{
scanned = new boolean[G.V()];
mst = new Queue<Edge> () ;
P9 = new MinPQ<Edge> (Edge.ByWeight()) ;
prim (G, O0); N\

} comparator by edge weight
(instead of by lexicographic order)

public Iterable<Edge> mst()
{ return mst; }

// See next slide for prim() implementation.

37



Lazy implementation of Prim's algorithm

private void scan (WeightedGraph G, int v)
{

scanned[v] = true;

for (Edge e : G.adj(v)) <«

if (!'scanned[e.other(v)])
pPd.insert (e) ;

private void prim(WeightedGraph G, int s)
{
scan (G, s);
while (!'pqg.isEmpty())
{
Edge e = pqg.delMin() ; “
int v = e.either(), w = e.other(v);
if (scanned[v] && scanned[w]) continue; «—
mst.enqueue (e) ;
if ('scanned[v]) scan(G, Vv); <«
if ('scanned[w]) scan(G, w);

for each edge v-w, add to
PQ if w not already in S

repeatedly delete the
min weight edge v-w from PQ

ignore if both endpoints in S

add e to MST and scan v and w

38



Prim's algorithm running time

Proposition. Prim's algorithm computes MST in O(E log E) time.

Pf.
delete min E ElogE
insert E ElogE
Improvements.

Stop when MST has V-1 edges.
Eagerly eliminate obsolete edges from PQ.

Maintain on PQ at most one edge incident fo each vertex v not in T
= at most V edges on PQ.

Use fancier priority queue: best in theory yields O(E + V log V).
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Prim's algorithm example

25%

50%

75%

100%
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Removing the distinct edge weight assumption
Simplifying assumption. All edge weights are distinct.
Approach 1. Introduce tie-breaking rule for compare() in ByWeight.

public int compare (Edge e, Edge f)

{
if (e.weight < f.weight) return -1;
if (e.weight > f.weight) return +1;
if (e.v < f£.v) return -1;
if (e.v > f£.v) return +1;
if (e.w < f.W) return -1: <«——+— return e.compareTo(f) ;

w

if (e.w > f.w) return +1;

Approach 2. Prim and Kruskal still find MST if equal weights!
(only our proof of correctness fails)

41



» advanced topics
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Does a linear-time MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

1975 E log log Vv

1976 E log log vV Cheriton-

1984 Elog*V, E+VlogV Fredman-

1986 E log (log* V) Gabow-Galil-Spencer-
1997 E a(V) log a(V)

2000 E a(V)

2002 optimal Pettie-Ramachandran
20xx E 7”7

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).
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Euclidean MST

Given N points in the plane, find MST connecting them, where the distances
between point pairs are their Euclidean distances.

o 0
¢ o
[+ <
Ooo
© < o
o ©

Brute force. Compute ~ N2/2 distances and run Prim's algorithm.
Ingenuity. Exploit geometry and do it in ~c N Ig N.
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Scientific application: clustering

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.

 Routing in mobile ad hoc networks.

* Document categorization for web search.

 Similarity searching in medical image databases.

 Skycat: cluster 10° sky objects into stars, quasars, galaxies.

45



Single-link clustering

k-clustering. Divide a set of objects classify into k coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Single link. Distance between two clusters equals the distance
between the two closest objects (one in each cluster).

Single-link clustering. Given an integer k, find a k-clustering that maximizes
the distance between two closest clusters.

distance between
two closest clusters

\

4-clustering
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Single-link clustering algorithm

“"Well-known" algorithm for single-link clustering:

* Form V clusters of one object each.
 Find the closest pair of objects such that each object is in a different

cluster, and merge the two clusters.
* Repeat until there are exactly k clusters.

Observation. This is Kruskal's algorithm Wi (t Z... -

(stop when k connected components). P ( S %{\

m:;if %

Alternate solution. Run Prim's algorithm and delete k-1 max weight edges.
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Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

BA NA RM FI MI TO

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/hierarchical.html
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Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

]

BA  NA RM FI MI TO

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/hierarchical.html
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Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

)

BA  NA RM FI MI TO

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/hierarchical.html
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Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

BA  NA RM FI MI TO

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/hierarchical.html
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Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

BA  NA RM FI MI TO

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/hierarchical.html
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Dendrogram

Dendrogram. Tree diagram that illustrates arrangement of clusters.

BA  NA RM FI MI TO

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/hierarchical.html

53



Dendrogram of cancers in human

Tumors in similar tissues cluster together.

mmmﬁm i

Gene 1

Gene n
Skin Liver Lung Breast Tumors Breast Normal Kidney Prostate Brain APL Ovary
Luminal Tumors Breast
Basal

B gene expressed

Reference: Botstein & Brown group B oere not e
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Shortest paths in a weighted digraph

Given a weighted digraph G, find the shortest directed path from s to t.

32
: @ — =
9 —

e

\/5//34

16\\‘
. 0

shortest path: s—6—-3—=5—t
cost: 14+18+2+16 =50




Shortest path versions

Which vertices?
* From one vertex to another.
* From one vertex to every other.

» Between all pairs of vertices.

Restrictions on edge weights?
* Nonnegative weights.

e Arbitrary weights.
 Euclidean weights.



Early history of shortest paths algorithms
Shimbel (1955). Information networks.
Ford (1956). RAND, economics of transportation.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957).
Combat Development Dept. of the Army Electronic Proving Ground.

Dantzig (1958). Simplex method for linear programming.
Bellman (1958). Dynamic programming.
Moore (1959). Routing long-distance telephone calls for Bell Labs.

Dijkstra (1959). Simpler and faster version of Ford's algorithm.



Shortest path applications

e Maps.

* Robot navigation.

e Texture mapping.

e Typesetting in TeX.

* Urban traffic planning.

» Optimal pipelining of VLSI chip.

» Telemarketer operator scheduling.

e Subroutine in advanced algorithms.

* Routing of telecommunications messages.

» Approximating piecewise linear functions.

* Network routing protocols (OSPF, BGP, RIP).

» Exploiting arbitrage opportunities in currency exchange.
» Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.



» Dijkstra's algorithm



Edsger W. Dijkstra: select quote

“ The question of whether computers can think is like the question

»

of whether submarines can swim.
“ Do only what only you can do. ”

“ In their capacity as a tool, computers will be but a ripple on the
surface of our culture. In their capacity as intellectual challenge,

they are without precedent in the cultural history of mankind. ”

Edger Dijkstra
Turing award 1972

“The use of COBOL cripples the mind, its teaching should,

»

therefore, be regarded as a criminal offence.

“APL is a mistake, carried through to perfection. It is the
language of the future for the programming techniques

2

of the past: it creates a new generation of coding bums.




Single-source shortest-paths

Input. Weighted digraph G, source vertex s.
Goal. Find shortest path from s to every other vertex.
Observation. Use parent-link representation to store shortest path tree.

32

: o — =
9=

source s

I
N,

50

dist[v] 0 32 45 34 14

V




Dijkstra's algorithm

e Tnitialize S to s, dist[s] to 0.
* Repeat until S contains all vertices connected to s:
- find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

10



Dijkstra's algorithm

e Tnitialize S to s, dist[s] to 0.

* Repeat until S contains all vertices connected to s:
- find edge e with v in S and w not in S that minimizes dist[v] + e.weight().
- set dist[w] = dist[v] + e.weight() and pred[w] =e
-addwto S

dist[w]
pred[w]

dist[v] + e.weight() ;
e/

>

1



Dijkstra's algorithm example

edge with vin S and w not in S

*@(F

<

<

edge in shortest path tree

0’
T
5

/ O

®

0—5 (.29) 0—1 (.41) 5—4 (.50)
0—1 (.41) 5—4 (.50 = .29 + .21) 1—-4 (.73 = .41 + .32)
5—1 (.58 = .29 + .29) 1-2 (.92 = .41 + .51)

o

4—2 (.82 = .50 + .32)

T

4—3 (0.86)

<&
<

o
st

-

.41
.29
.51
.32
.50
.45
.38
.32
.36
.29
.21

4—3 (.86 = .50 + .36)
1—2 (.92)

2—3 (1.32 = .82 + .50)



Dijkstra's algorithm: correctness proof

Invariant. For vin S, dist[v] is the length of the shortest path from s to v.

Pf. (by induction on [S])

* Let w be next vertex added to S.

Let P* be the s ~ w path through v.

Consider any other s ~ w path P, and let x be first node on path outside S.
P is already as long as P* as soon as it reaches x by greedy choice.

Thus, dist[w] iS the length of the shortest path from s to w.

-
—————

13



Shortest path trees

Remark. Dijkstra examines vertices in increasing distance from source.

I
25% ‘%\

|
75% }%% ‘\_Ii E :2 2 100%

0%

14



» implementation

15



Weighted directed graph API

public class DirectedEdge implements Comparable<DirectedEdge>

DirectedEdge (int v, int w, double weight) create a weighted edge v—w

int from()
int to()

double weight()

public class WeightedDigraph

vertex v
vertex w

the weight

weighted digraph data type

WeightedDigraph (int V)

WeightedDigraph (In in)

void addEdge (DirectedEdge e)
Iterable<DirectedEdge> adj(int v)

int V()

create an empty digraph with V vertices
create a digraph from input stream
add a weighted edge from v to w
return an iterator over edges leaving v

return number of vertices

16



Weighted digraph: adjacency-set implementation in Java

public class WeightedDigraph

{

private final int V;
private final SET<Edge>[] adj;

public WeightedDigraph (int V)
{
this.V = V;
adj = (SET<DirectedEdge>[]) new SET[V];
for (int v = 0; v < V; v++)
adj[v] = new SET<DirectedEdge>() ;

public void addEdge (DirectedEdge e)
{

int v = e.from() ;

adj[v] .add(e) ; G

public Iterable<DirectedEdge> adj(int v)
{ return adj[v]; }

public int V()
{ return V; }

same as weighted undirected
graph, but only add edge to
v's adjacency set

17



Weighted directed edge: implementation in Java

public class DirectedEdge implements

{

private final int v, w;

private final double weight;

public DirectedEdge (int v, int w,

{

this.v = v;

this.w = w;

this.weight = weight;

public
public
public

public

{
if
if
if
if
if
if

int from() {
int to() {
int weight() {

return v;

return w;
return weight; }

Comparable<DirectedEdge>

double weight)

int compareTo (DirectedEdge that)

(this.
(this.
(this.
(this.

< that.v)
> that.v)
< that.w)

v
v
w
w > that.w)

return
return
return
return

-1;
+1;
-1;
+1;

(this.weight < that.weight) return -1;
(this.weight > that.weight) return +1;
return 0O;

same as Edge, except
t— from() and to () replace
either () and other ()

for use in a symbol table
I— (allow parallel edges with
different weights)

18



Shortest path data type
Design pattern.

e Dijkstra class is a weightedDigraph client.
* Client query methods return distance and path iterator.

public class Dijkstra

Dijkstra (WeightedDigraph G, int s) shortest path from s in graph G
double distanceTo (int v) length of shortest path from s to v

Iterable <DirectedEdge> path(int v) shortest path from s to v

In in = new In("network.txt") ;

WeightedDigraph G = new WeightedDigraph (in) ;

int s =0, t =G.V() - 1;

Dijktra dijkstra = new Dijkstra(G, s);

StdOut.println("distance = " + dijkstra.distanceTo(t))

for (DirectedEdge e : dijkstra.path(t))
StdOut.println(e) ;




Dijkstra implementation challenge

Find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

How difficult?
Intractable.

O(E) time. <«—— try all edges

O(V) time.

O(log E) time.  <—— Dijkstrawith a binary heap
O(log* E) time.

Constant time.




Lazy Dijkstra's algorithm example

w@\/vf

<«
<

0—5 (.29) 0—1 (.41)
0—1 (.41) 5—=4 (.50 = .29 + .21)
\ 5—1 (.58 = .29 + .29)

priority queue

o o
o o
YA

3
1—4 (.73) 4—3 (0.86)
4—2 (.82 = .50 + .32) 1—-2 (.92)

4—3 (.86 = .50 + .36)
1—2 (.92)

2—3 (1.32 = .82 + .50)

5—4 (.50)
1—-4 (.73 = .41 + .32)
1-2 (.92 = .41 + .51)

0

°~L
- o

1—-2 (.92)
2—3 (1.32)

.41
.29
.51
.32
.50
.45
.38
.32
.36
.29
.21

21



Lazy implementation of Dijkstra's algorithm

public class LazyDijkstra

{

private boolean[] scanned;
private double[] dist;

private DirectedEdge[] pred;
private MinPQ<DirectedEdge> pq;

private class ByDistanceFromSource implements Comparator<DirectedEdge>
{
public int compare (DirectedEdge e, DirectedEdge f) ({
double distl = dist[e.from()] + e.weight()
double dist2 = dist[f.from()] + f.weight()

if (distl < dist2) return -1;

else if (distl > dist2) return +1;

else return 0; compare edges in pq by
} dist[v] + e.weight()

public LazyDijkstra (WeightedDigraph G, int s) {
scanned = new boolean[G.V()];
pred = new DirectedEdge[G.V()];
dist = new double[G.V ()]
P9 = new MinPQ<DirectedEdge> (new ByDistanceFromSource()) ;
dijkstra (G, s);

22



Lazy implementation of Dijkstra's algorithm

private void dijkstra (WeightedDigraph G, int s)
{
scan (G, s);
while (!'pg.isEmpty()) {
DirectedEdge e = pg.delMin() ;
int v = e.from(), w = e.to();

A

if (scanned[w]) continue;
predw] = e;

A

dist[w] = dist[v] + e.weight();
scan (G, w);

private void scan (WeightedDigraph G, int v) {
scanned[v] = true;
for (DirectedEdge e : G.adj(v))

A

if (!'scanned[e.to()]) pg.insert(e);

both endpoints in S

found shortest path to w

add all edges v->w to pq,
provided w not already in S

23



Dijkstra's algorithm running time

Proposition. Dijkstra's algorithm computes shortest paths in O(E log E) time.

Pf.
delete min E log E
insert E log E
Improvements.

 Eagerly eliminate obsolete edges from PQ.

e Maintain on PQ at most one edge incident to each vertex v notin T
= at most V edges on PQ.

» Use fancier priority queue: best in theory yields O(E + V log V).

24



Priority-first search

Insight. All of our graph-search methods are the same algorithm!
* Maintain a set of explored vertices S.

* Grow S by exploring edges with exactly one endpoint leaving S.

DFS. Take edge from vertex which was discovered most recently.
BFS. Take edge from vertex which was discovered least recently.
Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to s.

Challenge. Express this insight in reusable Java code.

25



» negative weights
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Currency conversion

Problem. Given currencies and exchange rates, what is best way to convert

one ounce of gold to US dollars?
e 10z gold = $327.25.

e 10z.gold = £208.10 = $327.00. [ 208.10 x 1.5714 ]

e 10z gold = 455.2 Francs = 304.39 Euros = $327.28. [455.2 x 6677 x 1.0752 ]
UK pound 1.0000 0.6853  0.005290  0.4569 0.6368  208.100

Euro 1.45999 1.0000 0.007721 0.6677 0.9303 304.028
Japanese Yen 189.50 129.520 1.0000 85.4694 120.400 39346.7
Swiss Franc 2.1904 1.4978 0.01574 1.0000 1.3941 455.200

US dollar 1.5714 1.0752 0.008309 0.7182 1.0000 327.250

Gold (0z.) 0.004816 0.003295 0.0000255 0.002201 0.003065 1.0000

27



Currency conversion

Graph formulation.
e Vertex = currency.

* Edge = transaction, with weight equal to exchange rate.

 Find path that maximizes product of weights.

327.25

— \,

a: 0.003065

0.004816 208.100 455 .2 1.3941

)\ 4

2.1904 —>° 0.6677

Challenge. Express as a shortest path problem.

0.008309

1.0752

129.520

o’

28



Currency conversion

Reduce to shortest path problem by taking logs.

* Let weight of edge v—w be - Ig (exchange rate from currency v to w).
e Multiplication turns to addition.

e Shortest path with given weights corresponds to best exchange sequence.

327.25

<&
<

0.004816 208.100

)\ 4

0.003065

0.008309

~1g(455.2) = -8.8304
-0.1046

455.2 1.3941 e

129520

2.1904 —>° 0.6677 a/
0.5827

Challenge. Solve shortest path problem with negative weights.

29



Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.

2 6 Dijkstra selects vertex 3 immediately after 0.
But shortest path from 0 to 3 is 0—-1—-2—3.

Re-weighting. Add a constant to every edge weight also doesn't work.

o——0

Adding 9 to each edge changes the shortest path
i1 15 because it adds 9 to each edge;
wrong thing to do for paths with many edges.

Bad news. Need a different algorithm.

30



Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

A
o b

Observations. If negative cycle C is on a path from s to t, then shortest path
can be made arbitrarily negative by spinning around cycle.

cost(C) <0

Worse news. Need a different problem.

31



Shortest paths with negative weights

Problem 1. Does a given digraph contain a negative cycle?
Problem 2. Find the shortest simple path from s to t.

cost(C) <0

Bad news. Problem 2 is intractable.

Good news. Can solve problem 1 in O(VE) steps:
if no negative cycles, can solve problem 2 with same algorithm!

32



Edge relaxation

Relax edge e from v to w.

* dist[v] is length of some path from s to v.
* dist[w] is length of some path from s to w.

e If v—w gives a shorter path to w through v, update dist[w] and pred[w].

dist[w] =/4rf 44
dist[s] = 0

dist[v]

int v = e.from(), w = e.to();
if (dist[w] > dist[v] + e.weight())
{
dist[w] = dist[v] + e.weight())
pred[w] e;




Shortest paths with negative weights: dynamic programming algorithm

A simple solution that works!
e Tnitialize dist[v] = ®©, dist[s]= O.

* Repeat v times: relax each edge e.

for (int i = 1; i <= G.V(); i++) <« phase i

for (int v = 0; v < G.V(); v++)
for (DirectedEdge e : G.adj(v))
{

int w = e.to();
if (dist[w] > dist[v] + e.weight())
{

dist[w] = dist[v] + e.weight()) <«—t— relax edge v-w

pred[w]

e/




Dynamic programming algorithm trace

o Yo

*@(F @(F

‘—
<«

0
0—1 (.41 = 0 + .41)
dlSt[V] / 0—5 (.50 = 0 + .50)

relaxed edges that update dist[]

* () * (@)

1\ 1 .41 1\ 1 .41

o

.29 @ .29 @

.50 \y ¥ .50 \4 ¥

.86 (3 4—@ .82 .86 ( 3 <—@ .82

2—3 (1.33 = .83 + .50)
4—3 (.86 = .50 + .36)
4—2 (.82 = .50 + .32)

1—-2 (.92 = .41 + .51)
1—-4 (.73 = .41 + .32)
5—4 (.50 = .29 + .21)

can stop early since
no entries in dist[] updated

.41
.29
.51
.32
.50
.45
.38
.32
.36
.29
.21
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Dynamic programming algorithm: analysis
Running time. Proportional to E V.

Invariant. At end of phase i, dist[v] < length of any path from s to v
using at most i edges.

Proposition. If there are no negative cycles, upon fermination dist[v] is the
length of the shortest path from from s to v.

AN

and pred[] gives the shortest paths

36



Bellman-Ford-Moore algorithm

Observation. If dist[v] doesn't change during phase 1,
no need to relax any edge leaving v in phase i+1.

FIFO implementation. Maintain queue of vertices whose distance changed.

I

be careful to keep at most one copy of each vertex on queue

Running time.

 Proportional to EV in worst case.
* Much faster than that in practice.

37



Single source shortest paths implementation: cost summary

algorithm typical case

nonnegative . , E loa E E
costs Dijkstra (binary heap) g
. dynamic programming EV EV
no negative
cycles
Y Bellman-Ford EV E

Remark 1. Negative weights makes the problem harder.
Remark 2. Negative cycles makes the problem intractable.

38



Shortest paths application: arbitrage

Is there an arbitrage opportunity in currency graph?

« Ex: $1 = 1.3941 Francs = 0.9308 Euros = $1.00084.
 Is there a negative cost cycle?

327.25

— T

<&

< 0.003065 e\
0.008309
-0.1046
0.004816 208.100 455 .2 1.3941 1.0752
-0.4793
129.520
A 4
e_ 2.1904 0.6677
0.5827

0.5827 - 0.1046 - 0.4793 < 0

Remark. Fastest algorithm is valuable!

39



Negative cycle detection

If there is a negative cycle reachable from s.
Bellman-Ford-Moore gets stuck in loop, updating vertices in cycle.

L
>

\ 4
A

.
»

pred[v]

- A
Ll »

Proposition. If any vertex v is updated in phase v, there exists a negative

cycle, and we can trace back pred[v] to find it.

40



Negative cycle detection

Goal. Identify a negative cycle (reachable from any vertex).

-8.3542

— \,
< 8.3499 e
\

6.91111

7.6979 -7.7011
-8.8303 -0.4793 -0.1046

-7.0170

\ 4
e— -1.1311 0.5827 e/

Solution. TInitialize Bellman-Ford by setting dist[v] = 0 for all vertices v.

41



Shortest paths summary

Dijkstra's algorithm.

* Nearly linear-time when weights are nonnegative.

Priority-first search.
» Generalization of Dijkstra's algorithm.
» Encompasses DFS, BFS, and Prim.

» Enables easy solution to many graph-processing problems.

Negative weights.

* Arise in applications.

 If negative cycles, problem is intractable (1)

* If no negative cycles, solvable via classic algorithms.

Shortest-paths is a broadly useful problem-solving model.

42
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String processing
String. Sequence of characters.

Important fundamental abstraction.
e Java programs.
e Natural languages.

* Genomic sequences.

“ The digital information that underlies biochemistry, cell
biology, and development can be represented by a simple
string of G's, A's, T's and C's. This string is the root data

structure of an organism's biology. ” — M. V. Olson




The char data type
C char data type. Typically an 8-bit integer.

e Supports 7-bit ASCIT.
* Need more bits to represent certain characters.

012 3 45¢6 738 9 ABCDE

0 [NuL LF CR
1

2 |sp| ! #1$|%|& ) + - .
310(112|13(4|5(6|7[8]9|:];]|<|=]|>
4 A/B|C|DIE|F|G|H|I|J|K|L[M|N
5/PIQ|R|IS|T|U[V|W[X|Y|Z|[|\|]]|A
6 alblc|d|e|[f|g|h|i|j|k|[T|m|n
7lpla|lr|s|t|lu|v|w|x|y|z|[{]]]|}]|~

Hexadecimal to ASCIl conversion table

Java char data type. A 16-bit unsigned integer.
» Supports original 16-bit Unicode.
e Awkwardly supports 21-bit Unicode 3.0.



The String data type

Character extraction. Get the i™h character.
Substring extraction. Get a contiguous sequence of characters from a string.
String concatenation. Append one character to end of another string.

s t r i n g s

0 1 2 3 4 5 6
String s = "strings"; // s = "strings"
char c = s.charAt(2); // ¢ = 'r'
String t = s.substring(2, 6); // t = "ring"
String u = t + c; // u = "ringr"




Implementing strings in Java

Java strings are immutable = two strings can share underlying char[] array.

public final class String implements Comparable<String>

{

private
private
private
private

private
{
this
this
this

char[] wvalue; // characters

int offset; // index of first char in array
int count; // length of string

int hash; // cache of hashCode ()

String(int offset, int count, char[] value)

.0offset = offset;
.count = count;
.value = wvalue;

public String substring(int from, int to)
{ return new String(offset + from, to - from, wvalue);

public char charAt(int index)
{ return value[index + offset]; }

}

*\\\
L

java.lang.String

::::> constant time




Implementing strings in Java

public String concat(String that)
{

char[] buffer = new char[this.length() + that.length())
for (int i = 0; i < this.length(); i++)
buffer[i] = this.value[i];
for (int j = 0; j < that.length(); j++)
buffer[this.length() + j] = that.valuel[j];
return new String(0, this.length() + that.length(), buffer);

Memory. 40 + 2N bytes for a virgin string of length N.

use byte[] or char[] instead of String to save space

operation guarantee extra space

charAt () 1 1

substring() 1 1

concat () N N




String VS. StringBuilder

String. [immutable] Constant substring, linear concatenation.
StringBuilder. [mutable] Linear substring, constant (amortized) append.

Ex. Reverse a string.

public static String reverse (String s)
{
String rev = "";
for (int i = s.length() - 1; i >= 0; i--)
rev += s.charAt(i);

A

quadratic time

return rev;

}

public static String reverse(String s)
{
StringBuilder rev = new StringBuilder() ;
for (int i = s.length() - 1; i >= 0; i--)
rev.append (s.charAt(i));
return rev.toString() ;

A

linear time




String challenge: array of suffixes

Challenge. How to efficiently form array of suffixes?

input string

a a c a a gt t t a c a a g c

10 11 12 13 14

8 9

7

suffixes

a ac aag¢t t t acaagec

0

a c aag ¢t t t ac a agoc

1

c a agttt a-caagoc

2

a agtt t acaagoc

8

a gt t t ac a a g c

4

g t t t a c a a g c

5

t t t acaagoc

6

t t acaagec

7

t a c a a g oc

a c aagc

9

c aagoc

10

a a g c

11

a g c
g c

12

13

14



String challenge: array of suffixes

Challenge. How to efficiently form array of suffixes?

'A' public static String[] suffixes(String s)
{
int N = s.length();
String[] suffixes = new String|[N];
. . . . —F
for (int i = 0; i < N; i++)
suffixes[i] = s.substring(i, N);
return suffixes;
}
B. public static String[] suffixes (String s)
{
int N = s.length();
StringBuilder sb = new StringBuilder(s)
String[] suffixes = new String|[N]; <

for (int i = 0; i < N; i++)
suffixes[i] = sb.substring(i, N);

return suffixes;

linear fime and space

quadratic time and spacel!



Alphabets

Digital key. Sequence of digits over fixed alphabet.
Radix. Number of digits R in alphabet.

name R() IgR() characters
BINARY 2 1 01
OCTAL 8 3 01234567
DECIMAL 10 4 0123456789
HEXADECIMAL 16 4 0123456789ABCDEF
DNA 4 2 ACTG
LOWERCASE 26 5 abcdefghijkImnopqrstuvwxyz
UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ
PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY
wstor o6 GO
ASCII 128 7 ASCII characters
EXTENDED_ASCII 256 8 extended ASCII characters
UNICODE16 65536 16 Unicode characters

Standard alphabets

10



6.1 Sorting Strings

example
LSD Q used

Sortln d.g.t » key-indexed counting

kh Way ™ ine s-zesort » LSD string sort

method » MSD string sort

& might . .
many ushm? B » 3-way string quicksort
e one » suffix arrays
number

strings

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2009 -  January 26, 2010 8:15:36 AM



Review: summary of the performance of sorting algorithms

Frequency of operations = key compares.

insertion sort N2 /2 N? /4 compareTo ()
mergesort NigN NigN N yes compareTo ()
quicksort 139NIgN”~ 1.39NIgN clgN no compareTo ()
heapsort 2NIgN 2NIgN no no compareTo ()

* probabilistic

Lower bound. ~ N Ig N compares are required by any compare-based algorithm.

Q. Can we do better (despite the lower bound)?
A. Yes, if we don't depend on compares.

12



» key-indexed counting

13



Key-indexed counting: assumptions about keys

Assumption. Keys are integers between O and R-1.
Implication. Can use key as an array index.

Applications.
Sort string by first letter.

Sort class roster by section.

Sort phone numbers by area code.

Subroutine in a sorting algorithm.

Remark. Keys may have associated data =
can't just count up number of keys of each value.

input

name  section

Anderson
Brown
Davis
Garcia
Harris
Jackson
Johnson
Jones
Martin
Martinez
Miller
Moore
Robinson
Smith
Taylor
Thomas
Thompson
White
WilTliams
Wilson

small integers

N

- DR WNADNWANRNNRER WA WREMNMWWw

keys are

sorted result
(by section)

Harris
Martin
Moore
Anderson
Martinez
Miller
Robinson
White
Brown
Davis
Jackson
Jones
Taylor
Williams
Garcia
Johnson
Smith
Thomas
Thompson
Wilson

A DA DDA PLWLWWLWWWWNNDNNNNRERR

14



Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

count
frequencies

int N = a.length;

int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)

aux[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

Count frequencies of each letter using key as index.

'.l.

© 00 JdJ oo U1 b W N B O

bR
B O

ali]

P A

M O B H DO QA O Hh Hh Q0

offset by 1
[stay tuned]

l

r count|r]

ST T

()

15



Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.

e Compute frequency cumulates which specify destinations.

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)

1.-
compute > count[r+l] += count[r];

cumulates
for (int i = 0; i < N; i++)

aux[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i afi]

0 d

1 a

2 c r count|r]
3 £ a 0
4 £ b 2
5 b c 5
6 d 6
7 b e 8
8 £ 9
9 b 12
10 e

11 a

6 keys<d, 8 keys<e
sodsgoinal[6] and a[7]

16



Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

P A

M O B H DO QA O Hh Hh Q0

r count|r]

[© PR o BN o N

()

© O oo 0 N O

12

'_l.

O 00 J4J oo U d W N B O

i
H o

aux[i]

17



Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

P A

M O B H DO QA O Hh Hh Q0

r count|r]

[© PR o BN o N

()

© O 1 U0 N O

12

'_l.

O 00 J4J oo U d W N B O

i
H o

aux[i]

18



Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

)

M O B H DO QA O Hh Hh Q0

r count|r]

[© PR o BN o N

()

© 00 J4 U N =

12

'_l.

O 00 J4J oo U d W N B O

i
H o

aux[i]
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Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

)

M O B H O QA O Hh Hh o0

r count|r]

[© PR o BN o N

()

© 00 J4 oo N B

12

'_l.

O 00 J4J oo U d W N B O

i
H o

aux[i]

20



Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

)

M O B H O QA O Hh o0

r count|r]

[© PR o BN o N

()

0 J oo b B

10
12

'_l.

O 00 J4J oo U d W N B O

i
H O

aux[i]
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Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

)

M O B Hm O QA O th o0

r count|r]

[© PR o BN o N

()

0 J oo b B

11
12

'_l.

O 00 J4J oo U d W N B O

R
H o

aux[i]

22



Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

)

M O B H DO QA O tHh o0

r count|r]

[© PR o BN o N

()

0o J4 oo W B

11
12

'_l.

O 00 J4J oo U d W N B O

R
H o

aux[i]

23



Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

)

P O b mH O QA O Hh Hh Q0

r count|r]

[© PR o BN o N

()

0w O o W B

11
12

'_l.

O 00 J4J oo U d W N B O

R
H o

aux[i]
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Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

)

M O b Hh O QA O tHh Hh Q0

r count|r]

[© PR o BN o N

()

0w 0O o & B

12

'_l.

O 00 J4J oo U d W N B O

i
H o

aux[i]
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Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

e

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

)

M O O W O QA O m Hh Q0

r count|r]

[© PR o BN o N

()

0 0O o » B

12

'_l.

O 00 J4J oo U d W N B O

i
H o

aux[i]
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Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

)

P ® O H O Q@ O m Hh 0

r count|r]

[© PR o BN o N

()

o 0O o U B

12

'_l.

O 00 J4J oo U d W N B O

i
H o

aux[i]

o o U

(0]
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Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

O mh O Q@ O W Hh o p

()

r count|r]

[© PR o BN o N

()

o 00 o U B

12
12

'_l.

O 00 J4J oo U d W N B O

R
H o

aux[i]

QA 0 O O U

th Hh H O
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Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

O mh O Q@ O W Hh o p

()

r count|r]

[© PR o BN o N

()

© 00 o U N

12
12

'_l.

O 00 J4J oo U d W N B O

R
H o

aux[i]

V)

o b o o

th Hh Hh O Q QA N
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Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

move
records

—_—

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux|[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)
af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

d

O mh O Q@ O W Hh o p

()

r count|r]

[© PR o BN o N

()

© 0O o U BN

12
12

'_l.

O 00 J4J oo U d W N B O

R
H o

aux[i]

o o o o o

th Hh Hh O Q QA N
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Key-indexed counting

Goal. Sort anarray a[] of N integers between o0 and r-1.

 Count frequencies of each letter using key as index.
e Compute frequency cumulates which specify destinations.

» Access cumulates using key as index o move records.

 Copy back into original array.

copy
back

int N = a.length;
int[] count = new int[R+1];

for (int i = 0; i < N; i++)
count[a[i]+1]++;

for (int r = 0; r < R; r++)
count[r+l] += count[r];

for (int i = 0; i < N; i++)
aux[count[a[i]]++] = a[i];

for (int i = 0; i < N; i++)

—> af[i] = aux|[i];

i

© 00 JdJ oo U1 b W N B O

R oE
R o

ali]

a

QA 0 O O O o

th Hh H 0

r count|r]

[© PR o BN o N

()

© 0O o U BN

12
12

'_l.

O 00 J4J oo U d W N B O

R
H o

aux[i]

o o o o o

th Hh Hh O Q QA N
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Key-indexed counting: analysis

Proposition. Key-indexed counting takes time proportional to N + R
to sort N records whose keys are integers between O and R-1.

Proposition. Key-indexed counting uses extra space proportional fo N + R.

Stable? Yes! _
Anderson 2 Harris 1
Brown 3 Martin 1
Davis 3 Moore 1
Garcia 4 Anderson 2
Harris 1 Martinez 2
Jackson 3 Miller 2
Johnson 4 Robinson 2
Jones 3 White 2
Martin 1 Brown 3
Martinez 2 Davis 3
MilTer 2 Jackson 3
Moore 1 Jones 3
Robinson 2 Taylor 3
Smith 4///////W1111ams 3
Taylor 3 Garcia 4
Thomas 4 Johnson 4
Thompson 4 Smith 4
White 2 Thomas 4
Williams 3 Thompson 4
WiTlson 4 WiTlson 4

32



» LSD string sort
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Least-significant-digit-first radix sort

LSD string sort.
» Consider characters from right to left.
* Stably sort using d™ character as the key (using key-indexed counting).

sort key sort key sort key
| |
0 d | a|b 0 d| a|b 0 d| a| b 0 a| c| e
1 a|d d 1 c | a|b 1 c | a|b 1 a | d| d
2 | c|a b \2 e bl b 2 | £ a d 2  b|la d
3 £l a|d 3 a | d| d 3| b|ajd 3| bl e d
4 f el e \4 £f | a|d 4 d | a|l d 4 b |l e|e
5 b a/ d|—>5 b | a|d 5 e | b| b 5 c al b
6 d | a/d|——>6 d | a|l d 6 a|c| e 6 d| a|l b
7 b el e 7 £f | e| d 7 a | d| d 7 d| a l d
8 £ e d /8 b e d 8 £ | e d 8 e|b b
9 | b d /9 f |l e e 9 | b e d 9 | £ | a|d
10 e | b| b 10 b | e | e 10 £ | e| e 10 £ | e| d
11| a | c | e 11| a | c | e 11 | b | e | e 11 | £ | e | e

sort must be stable
(arrows do not cross)



LSD string sort: correctness proof

Proposition. LSD sorts fixed-length strings in ascending order.

Pf. [thinking about the future]

* If the characters not yet examined differ,
it doesn't matter what we do now.

* If the characters not yet examined agree,

stability ensures later pass won't affect order.

© 00 Jd4 o U b~ W N rBr O

bR
)

sort key
|
d| a| b 0 a e
c a| b 1 a d
£f | a|ld 2 | b d
b| a|d 3 | b d
d | a d 4 b e
e b| b 5 c b
a c| e 6 | d b
a|d  d 7 d d
£f l e| d 8 e b
b|le|d \ 9 £ d
£f el e 10 | £ d
b e e \11 £ e
I
in order
by previous

passes
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LSD string sort: Java implementation

public class LSD
{

public static void sort(String[] a, int W) <«—+F— fixed-length W strings

{

int R = 256 «——+— radixR
int N = a.length;

String[] aux = new String[N];
for (int d = W-1; d >= 0; d--) «—
{

do key-indexed counting
for each digit from right to left

int[] count = new int[R+1];
for (int i = 0; i < N; i++)
count[a[i] .charAt(d) + 1]++;
for (int r = 0; r < R; r++)
count[r+l] += count|r]; <«—F—  key-indexed counting
for (int i = 0; i < N; i++)
aux[count[a[i] .charAt(d)]++] = a[i];
for (int i = 0; i < N; i++)
af[i] = aux[i];

36



Input

4PGCI938
2IYE230
3CI0720
1ICK750
10HV845
4]7Y524
1ICK750
3CI0720
10HV845
10HV845
2RLA629
2RLA629
3ATW723

d=6

O O 0 vl U1 UT DA WO OO O O

LSD string sort: example

20
20
23
24
29
29
30
38
45
45
45
50
50

d=4
230
524
629
629
720
720
723
750
750
845
845
845
938

d=3
A629
A629
C938
E230
K750
K750
0720
0720
V845
V845
V845
w723
Y524

d=2

CK750
CK750
GC938
HV845
HV845
HV845
10720
10720
LA629
LA629
TW723
YE230
7Y524

d=1
ATW723
CIO0720
CIO0720
ICK750
ICK750
IYE230
JZY524
OHV845
OHV845
OHV845
PGC938
RLA629
RLA629

d=0
1ICK750
1ICK750
10HV845
10HV845
10HV845
2IYE230
2RLA629
2RLA629
3ATW723
3CI0720
3CI0720
437Y524
4PGCI938

Output

1ICK750
1ICK750
10HV845
10HV845
10HV845
2IYE230
2RLA629
2RLA629
3ATW723
3CI0720
3CIO0720
4]7Y524
4PGCI938
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Summary of the performance of sorting algorithms

Frequency of operations.

insertion sort N2 /2 N2 /4
mergesort NigN NigN N
quicksort 139NIgN”~ 1.39NIgN clgN
heapsort 2NIgN 2NIgN 1
LsD T 2WN 2WN N +R

compareTo ()

yes compareTo ()

no compareTo ()

ho compareTo ()
yes charAt ()

* probabilistic
t fixed-length W keys

38



Sorting challenge 1

Problem. Sort a huge commercial database on a fixed-length key field.

Ex. Account number, date, SS number, ...

Which sorting method to use?

Insertion sort.

Mergesort.
Quicksort.
Heapsort.

v * LSD string sort.

T

256 (or 65536) counters;
Fixed-length strings sort in W passes.

B14-99-8765

756-12-AD46

CX6-92-0112

332-WX-9877

375-99-QWAX

Cv2-59-0221

"87-5S-0321

KJ-0. 12388

715-YT-013C

MJO0-PP-983F

908-KK-33TY

BBN-63-23RE

48G-BM-912D

982-ER-9P1B

WBL-37-PB81

810-F4-J87Q

LE9-N8-XX76

908-KK-33TY

B14-99-8765

CX6-92-0112

Cv2-59-0221

332-WX-23SQ

332-6A-9877
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Sorting challenge 2a

Problem. Sort 1 million 32-bit integers.

Ex. Google interview or presidential interview.

Which sorting method to use?
e Insertion sort.

Mergesort.
Quicksort.
Heapsort.

LSD string sort.
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LSD string sort: a moment in history (1960s)

card punch punched cards card reader mainframe line printer

To sort a card deck
start on right column
put cards into hopper
machine distributes into bins
pick up cards (stable)
move left one column
continue until sorted

not related to sorting

card sorter

Lysergic Acid Diethylamide
(Lucy in the Sky with Diamonds)
4



» MSD string sort
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Most-significant-digit-first string sort

MSD string sort.

 Partition file into R pieces according to first character
(use key-indexed counting).

* Recursively sort all strings that start with each character
(key-indexed counts delineate subarrays to sort).

0 a d d
1 a c e
0 d a|b g a e @ count|[]
1 a d d 1 a c| e
P 2 b |l ald
2 c | a|b 2 | bl ald al o0 /
3 b e e
b 27
3]f)ed 3| ble|e 4 | b|le| d \
4 | £ | e| e 4 b|el|d c| 5y sort these
independentl|
5 b | a  d 5  c|a|b d 6\\ 5  c|la bl P : v
(recursive)
6 d al d 6 d a| b e 8\
7 b el e 7 d d f 9\ 6 d al b
8 f el d 8 e b| b -] 12 7T1d|a]d
g b e d = £ a e 8 e b b
10 e b| b 10 | £ e | e
11 | a c| e 11 | £ e| d 9 £ a| d
T 10 f e e
sort key 11 | £ | e | d
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MSD string sort: top level trace

use key-indexed counting on first character recursively sort subarrays
count  transform counts distribute indices at completion
frequencies to indices and copy back of distribute phase
0 0 0 0 0 00 sort(a, 0, 0);
o[she L alo N ofare L a1l sortca 1. D o|are
ilsells 2 b1 2 b1 1 by 2 b[ 2| sort(a, 2, 1; by
ool 1 3 c| 2 3 cf 2 sort(a, 2, 1);
2| seashells 5 alal b 2| she 2 a5l sortca 2. 1.
3 by 5 e[ 0 5 e[ 2 3[sells 5 e[ 2] sort(a, 2, 1; 2|54
L the 6 f[ 0 6 f[ 2 Jdseashells 6 ¢ 2 sorttas 2o 1: 3 seashells
7 910 79 2 ool ot s ceashells
5] Sea 8 h| O 8 h| 2 51 sea 8 h| 2 sort(a, 2, 1);
el shore 9 iz 9 12 6l shore 9 1‘2 sortga, 2, 1§; s sells
10 j| o 10 j| 2 10 j| 2 sort(a, 2, 1);
7l the 11 k| 0 11 k| 2] 71shells 11 k| 2| sort(a, 2, 1); o cells
gl shells 12 1E 12 12 sl she 12 12 sort(a, 2, 1); 7 she
13 m|f O 13 m| 2 13 m| 2 sort(a, 2, 1);
9| she 14 n| o 14 n| 2| 9ol sells 14 n[ 2| sort(a, 2, 1; 5 she
0|sells 15 o[ 0| 15 o| 2| | surely 1502 sort@a, 2, »; 9| shells
16 p| O 16 p| 2 16 2 sort(a, 2, 1);
mare 17 q[ 0 17 q| 2 11| seashells 17 2_2 cort(a, 2, 1; 0 ~hore
12| surely 18 r[ 0] 18 r| 2] 12| the 52 sort(a, 2, 1; 1 curely
19 s[ 0 19 s| 2 19 5,12 sort(a, 12, 13);
13 seashells 20 t10 00t 12 13/ the 04 14 sort(a, 14, 13); 12 “he
21 u[ 2 2L ulld Nsart of s subarray L uf1a]  sorta, 14, 13); 45 the
22 v[ 0 22 v[14 22 v[14 sort(a, 14, 13);
23 w| o] 23 w|14] 1 +end of s subarray” 55 /14 sortca, 14, 13);
24 x| 0 24 x|14] 24 x|14] sort(a, 14, 13);
25 y| 0 25 y|14] 25 y|14] sort(a, 14, 13);
26 z| 0 26 z[14] 26 z[14|  sort(a, 14, 13);
27 | o] 27 |14 27 [14]  sort(a, 14, 13);
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MSD string sort: example

input d
she are aie are are are are are are
sells by lo_ b by by by by by by
seashells she ~\‘se11s seashells sea sea sea seas sea
by sells seashells sea seashells seashells seashells seashells seashells
the seashells sea seashells seashells seashells seashells seashells seashells
sea sea sells sells sells sells sells sells sells
shore shore seashells sells sells sells sells sells sells
the shells she she she she she she she
shells she shore shore shore shore shore shells shells
she sells shells shells shells shells shells shore shore
sells surely she she she she she she she
are seashells_surely surely surely surely surely surely surely
surely the lﬁ’/’the the the the the the the
seashells the the the the the the the the
need to examine end-of-string
every character goes before any
in equal keys char value output

are are are are are are are

by by by by by by by

sea F sea sea sea sea sea

seashells seashells seashells seashells seashells /seashells seashells seashells
seashells seashells seashells seashells seashellg seashells seashells seashells

sells sells sells sells sells sells sells sells
sells sells sells sells sells sells sells sells
she she she she she /’ she she she
shells shells shells shells she she she she
she she she she shells shells shells shells
shore shore shore shore shore shore shore shore
surely surely surely surely surely surely surely surely
the the the the the the the the
the the the the the the the the

Trace of recursive calls for MSD string sort (no cutoff for small subarrays, subarrays of size 0 and 1 omitted)
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Variable-length strings

Treat strings as if they had an extra char at end (smaller than any char).

2 s e 1 1 s | -1

3 s h | e | -1

4 's h| e | -1 7 she before shells
5 s h | e 1 1 s | -1

6 s | h|o|r | e | -1

private static int charAt(String s, int d)

{
if (d < s.length()) return s.charAt(d);

else return -1;

C strings. Have extra char '\o' at end = no extra work needed.
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MSD string sort: Java implementation

public static void sort(String[] a)
{

aux = new String[a.length];

can recycle aux[]

sort(a, aux, 0, a.length, 0); but not count[]

private static void sort(String[] a, String[] aux, int lo, int hi, int d)
if (hi <= 1lo0) return;
int[] count = new int[R+2];
for (int i = lo; i <= hi; i++)
count[charAt(a[i], d) + 2]++;
for (int r = 0; r < R+1; r++)
count[r+l] += count[r];
for (int i = lo; i <= hi; i++)
aux[count[charAt(a[i], d) + 1]++] = a[i];
for (int i = lo; i <= hi; i++)
a[i] = aux[i - lo];

key-indexed counting

for (int r = 0; r < R; r++) recursively sort subarrays
sort(a, aux, lo + count[r], lo + count[r+l] - 1, d+1l);
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MSD string sort: potential for disastrous performance
Observation 1. Much too slow for small subarrays.

* The count[] array must be re-initialized.

e ASCII (256 counts): 100x slower than copy pass for N = 2.
» Unicode (65536 counts): 32,000x slower for N = 2.

Observation 2. Huge number of small subarrays because of recursion.

Solution. Cutoff to insertion sort for small N.

a[l

count|[]
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Cutoff to insertion sort

Solution. Cutoff to insertion sort for small N.
e Insertion sort, but start at d™ character.
e Implement 1ess () so that it compares starting at d™ character.

public static void sort(String[] a, int lo, int hi, int d)
{
for (int i = lo; i1 <= hi; i++)
for (int j =1i; j > lo && less(a[j], al[j-11, 4); j--)
exch(a, j, j-1);

private static boolean less(String v, String w, int d)

{ return v.substring(d) .compareTo (w.substring(d)) < 0; }
A d

in Java, forming and comparing
substrings is faster than directly
comparing chars with charat () |
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MSD string sort: performance

Number of characters examined.

e MSD examines just enough characters to sort the keys.
e Number of characters examined depends on keys.
 Can be sublinear!

Random Non-ranqom Worst case
with duplicates

(sublinear) (nearly linear) (linear)

1E a 1DNB377
1H b 1DNB377
1R sea 1DNB377
2H seashells 1DNB377
21 seashells 1DNB377
2X sells 1DNB377
3CD sells 1DNB377
3CV she 1DNB377
31 she 1DNB377
3K shel 1DNB377
3T sho 1DNB377
4C S 1DNB377
4Q the 1DNB377
4Y the 1DNB377

Characters examined by MSD string sort
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Summary of the performance of sorting algorithms

Frequency of operations.

insertion sort

mergesort

quicksort

heapsort

LsD T

MSD *

N2 /2

NigN

139 NIgN "~

2NlIgN

2NW

2NW

N2 /4

Nlg N N
1.39NIgN clgN
2NIgN 1
2N W N +R
N logr N N+DR

7

yes

no

no

yes

yes

compareTo ()

compareTo ()

compareTo ()

compareTo ()

charAt ()

charAt ()

/

stack depth D = length of
longest prefix match

* probabilistic
t fixed-length W keys
¥ average-length W keys
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MSD string sort vs. quicksort for strings

Disadvantages of MSD string sort.

* Accesses memory "randomly" (cache inefficient).
 Inner loop has a lot of instructions.

» Extra space for count[].

* Extra space for aux[].

Disadvantage of quicksort.

* Linearithmic humber of string compares (not linear).

* Has to rescan long keys for compares.
[but stay tuned]
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» 3-way string quicksort
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3-way string quicksort (Bentley and Sedgewick, 1997)

Overview. Do 3-way partitioning on the d™ character.
* Cheaper than R-way partitioning of MSD string sort.
* Need not examine again characters equal to the partitioning char.

partitioning element ———— ofshe b
. S a
use first character value \
to partition into "less", "equal", S S
and "greater" subarrays b S
T S
< < recursively sort subarrays,
<« excluding first character
S S for "equal" subarray
t S
S S
S S
S S
a s /
S t
S t
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3-way string quicksort: frace of recursive calls

n + W n F T W0 n

[ )

gray bars represent

shells

the

b |a | are empty subarrays
a b by

S 3 e a

S o e a

s o e a

s 3 e 1

S e e 1

s h e she

S h e she

s h e 1
s h ore ] shore
s surely

t t h e

t t h e

the

three more passes
to reach end

no recursive calls
(end of string)

Trace of recursive calls for 3-way string quicksort (no cutoff for small subarrays)
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3-way string quicksort: Java implementation

private static void sort(String[] a)
{ sort(a, 0, a.length - 1, 0); }

private static void sort(String[] a, int lo, int hi, int d)
{
int 1t = lo, gt = hi; L
] 3-way partitioning,
int v = charAt(a[lo], d); using d™ character
int i = 1lo + 1;
while (i <= gt)

{
int t = charAt(a[i], 4d);
if (t < v) exch(a, 1lt++, i++);
else if (t > v) exch(a, i, gt--);
else i++;

}

sort(a, lo, 1lt-1, d);
if (v >= 0) sort(a, 1lt, gt, d+l); <«—— sort 3 piecesrecursively
sort(a, gt+l, hi, d);




3-way string quicksort vs. standard quicksort

Standard quicksort.
* Uses 2N In N string compares on average.
 Costly for long keys that differ only at the end (and this is a common case!)

3-way string quicksort.

» Uses 2 N In N character compares on average for random strings.
* Avoids recomparing initial parts of the string.

e Adapts to data: uses just "enough" characters to resolve order.
» Sublinear when strings are long.

Proposition. 3-way string quicksort is optimal (o within a constant factor);
ho sorting algorithm can (asymptotically) examine fewer chars.

Pf. Ties cost to entropy. Beyond scope of 226.
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3-way string quicksort vs. MSD string sort

MSD string sort.
* Has a long inner loop.
 Is cache-inefficient.

e Too much overhead reinitializing count[] and aux[].

library call numbers

3-way string quicksort.

. WUS-—----- 10706----- 7---10

* Has a short inner |00p. WUS-——————— 12692————— 4---27
. WLSOC------ 2542----30

 Is cache-friendly. TR~ 6015-P-63-1088

 Is in-place. LDS=--361H-4

Bottom line. 3-way string quicksort is the method of choice for sorting strings.
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Summary of the performance of sorting algorithms

Frequency of operations.

insertion sort N2 /2 N2 /4 compareTo ()
mergesort Nig N NigN N yes compareTo ()
quicksort 139NIgN~ 1.39NIgN clgN no compareTo ()
heapsort 2NIgN 2NIgN 1 no compareTo ()
LsSD T 2N W 2N W N +R yes charat ()
MSD * 2N W N logr N N+DR yes charAt ()
3Way STring 4 39 WNIgN*  139NIgN  log N+ W no charAt ()
quicksort

* probabilistic
t fixed-length W keys
¥ average-length W keys



» suffix arrays
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Warmup: longest common prefix

LCP. Given two strings, find the longest substring that is a prefix of both.

public static String lcp(String s, String t)
{

int n = Math.min(s.length(), t.length()):;

for (int i = 0; i < n; i++)

{

if (s.charAt(i) !'= t.charAt(i))
return s.substring(0, 1i);
}

return s.substring(0, n);

Running time. Linear-time in length of prefix match.
Space. Constant extra space.
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Longest repeated substring

LRS. Given a string of N characters, find the longest repeated substring.

Ex.
aacaagtttacaagcatgatgctgtacta
ggagagttatactggtcgtcaaacctgaa
cctaatccttgtgtgtacacacactacta
ctgtcgtcgtcatatatcgagatcatcaga
accggaaggccggacaaggcgggggg¢tat
agatagatagacccctagatacacataca
tagatctagctagctagctcatcgataca
cactctcacactcaagagttatactggtec
aacacactactacgacagacgaccaacca
gacagaaaaaaaactctatatctataaaa

Applications. Bioinformatics, cryptanalysis, data compression, ...
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Longest repeated substring: a musical application

Visualize r‘epeTiTionS iN MUSIC. http://www.bewitched.com

Mary Had a Little Lamb

Bach's Goldberg Variations
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Longest repeated substring

LRS. Given a string of N characters, find the longest repeated substring.

Brute force algorithm.

» Try all indices i and j for start of possible match.
» Compute longest common prefix (LCP) for each pair.

\ 4
®
A 4

Analysis. Running time < M N?, where M is length of longest match.
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Longest repeated substring: a sorting solution

10

11

12

13

14

form suffixes /

N PP Qo ¢ ¢ Q PO QOO P

o P M Qo & & Q O QP

9]

nQ ® p Qo QP o

N M Qe & &t Q O D

noQ M p Qo ¢ 8 QP

noQ ® p Qe o c & Q

nQ PP Qo ¢ c

input string

a a c a a g t

0

o Q M M QO ®

1

nQ M o Q

noQ M p o

2

nQ o® A

3

o o p

4

5

6

12

14

10

13

c a a g c

10 11 12 13 14

sort suffixes to bring repeated substrings together

V)

a

¢ Q@ Q 00 0 ppo o P
¢t & Q O P QQ N 0 » P

ﬂ

compute longest prefix between adjacent suffixes

(@

QP Q Q

V)
Q

]
Q

 » Q

a

e dQ

ﬂ

P QO O

o o® p p

P M Q N

P Q Q0 P
Q

a

Q

(-r

gttt

t a c a
c

a a c a a gt t t a ¢ a a g c

0

1

2

3

4

5

6

7

8

9

10 11 12 13 14

a

c aagoc

g C

a agoc
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Longest repeated substring: Java implementation

public String lrs(String s)
{
int N = s.length();

String[] suffixes = new String[N];
for (int i = 0; i < N; i++)
suffixes[i] = s.substring(i, N);

Arrays.sort (suffixes) ;

String lrs = "";

for (int i = 0; i < N-1; i++)

{
String x = lcp(suffixes[i], suffixes[i+l]);
if (x.length() > lrs.length()) 1lrs = x;

}

return lrs;

(o)

% java LRS < mobydick. txt

,— Such a funny, sporty, gamy, Jjesty, joky, hoky-poky lad,

create suffixes
(linear time and space)

——— sort suffixes

find LCP between
suffixes that are adjacent
after sorting

is the Ocean, oh! Th
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Sorting challenge

Problem. Five scientists A, B, C, D, and E are looking for long repeated
substring in a genome with over 1 billion nucleotides.

* A has a grad student do it by hand.

B uses brute force (check all pairs).

C uses suffix sorting solution with insertion sort.

D uses suffix sorting solution with LSD string sort.

v * E uses suffix sorting solution with 3-way string quicksort.

only if LRS is not long (!)

Q. Which one is more likely to lead to a cure cancer?

67



Longest repeated substring: empirical analysis

input file characters

suffix sort

length of LRS

1t estimated
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Suffix sorting: worst-case input
Longest repeated substring not long. Hard to beat 3-way string quicksort.
Longest repeated substring very long.

* Radix sorts are quadratic in the length of the longest match.
* Ex: two copies of Aesop's fables.

time to suffix sort (seconds)

abcdefgh R R E———————,
S brute-force 36,000 4000 *
bcdefgh

bcdefghabecdefgh

cdefgh quicksort 9.5 167
cdefghabcdefgh

defgh LSD not fixed length  not fixed length
efghabcdefgh

:Zﬁ:b e MSD 395 out of memory
fgh

ghabcdefgh MSD with cutoff 6.8 162

fh

iadeefgh 3-way string quicksort 2.8 400

1t estimated



Suffix sorting challenge

Problem. Suffix sort an arbitrary string of length N.

Q. What is worst-case running time of best algorithm for problem?
e Quadratic.
v/ o Linearithmic. <«<——— Manber's algorithm

v ¢ Linear. «——— suffix trees (see COS 423)

* Nobody knows.
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Suffix sorting in linearithmic time

Manber's MSD algorithm.

* Phase O: sort on first character using key-indexed counting sort.

 Phase i: given array of suffixes sorted on first 2! characters,
create array of suffixes sorted on first 2' characters.

Worst-case running time. N log N.
 Finishes aftfer Ig N phases.
 Can perform a phase in linear time. (!) [stay tuned]
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10

11

12

13

14

15

16

17

Linearithmic suffix sort example:

original suffixes

oM M M P P O OO O o p O O

oM ®M M p M O DO O o p o O O

oMM M M M M O DO O M M o O

oM M M M M OO DO O OO O P

oM M M M M O DO OO o o

aaaaado
aaaado
aaabo0
aado0
ao

phase O

key-indexed counting sort (first character)

17 0

1 abaaaabcbabaaaaalo
16 alo

3 aaaabcbabaaaaalo0

4 aaabcbabaaaaalo0

5 aabecbabaaaaalo

6 abcbabaaaaalo0

15 ajla 0

14 ajlaado0

13 alaaado

12 alaaaa6o

10 albbaaaaado

0 babaaaabcbabaaaaalo©
9 babaaaaado

1 baaaaado

7 bcbabaaaaao0

2 blaaaabcbabaaaaabo0©
8 cbabaaaaado

f

sorted

72



10

11

12
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14

15

16

17

Linearithmic suffix sort example:

original suffixes

oM M M P P O OO O o p O O

oM ®M M p M O DO O o p o O O

oMM M M M M O DO O M M o O

oM M M M M OO DO O OO O P

oM M M M M O DO OO o o

aaaaado
aaaado
aaabo0
aado0
ao

phase 1
index sort (first two characters)

17 0

16 a0

12 aaaaabo

3 aaaabcbabaaaaalo0

4 aaabcbabaaaaalo

5 aabcbabaaaaalo

13 aaaado

15 aalo

14 aaado

6 abcbabaaaaalo

1 ablaaaabcbabaaaaalo
10 abaaaaabo

0 babaaaabcbabaaaaalo
9 babaaaaado

11 baaaaado

2 balaaabcbabaaaaalo0
7 becbabaaaaao©

8 cbabaaaaalo

f

sorted
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11

12
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14

15

16

17

Linearithmic suffix sort example:

original suffixes

oM M M P P O OO O o p O O

oM ®M M p M O DO O o p o O O

oMM M M M M O DO O M M o O

oM M M M M OO DO O OO O P

oM M M M M O DO OO o o

aaaaado
aaaado
aaabo0
aado0
ao

phase 2

index sort (first four characters)

17
16
15

14

12

o

13

O P p M O DO PP PN M O
o oot » QO M O O O PO O O
o M OO D MO QD D P P O
O O PP D QO M D
o'®» ool b

p P O OO P PN D

(8]
o oo o o0 e p P O
P M P OO P DD WO

~

o

Q
P i O
P o N

0]
0
— U
V)
o

sorted

o

aaal6@o

aalOao

aaaa6@o0
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Linearithmic suffix sort example: phase 3

original suffixes

oM M M P P O OO O o p O O

oM ®M M p M O DO O o p o O O

oMM M M M M O DO O M M o O

oM M M M M OO DO O OO O P

oM M M M M O DO OO o o

aaaaado
aaaado
aaabo0
aado0
ao

index sort (first eight characters)

17 0

16 a0

15 aalo0

14 aaado

13 aaaado

12 aaaaabo

3 aaaabcbabaaa
4 aaabcbabaaaa
5 aabecbabaaaaa
10 abaaaaado

1 abaaaabcbaba
6 abcbabaaaaalo
11 baaaaabo

2 baaaabcbabaa
9 babaaaaado

0 babaaaabcbab
7 becbabaaaaao©
8 cbabaaaaalo

f

sorted

FINISHED! (no equal keys)

V)

aaal@o0

aalOao

aaaa6@o
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11
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14

15

16

17

Achieve constant-time string compare by indexing into inverse

original suffixes index sort (first four characters)
babaaaabcbabaaaaalo© 17 0
abaaaabcbabaaaaalo0 16 a0
baaaabcbabaaaaal0 15 aalo0
aaaabcbabaaaaao 14 aaado
aaabcbabaaaaalo 3 aaaabcbabaaaaalo0
aabcbabaaaaalo© 12 aaaaado
abcbabaaaaalo0 130

bcbabaaaaalo© 4cbabaaaaa0
cbabaaaaal0 5 aabecbabaaaaalo
babaaaaalo 1 abaaaabcbabaaaaalo
abaaaaaldo0 10 abaaaaa6o

baaaaa@0 6 abcbabaaaaalo0
aaaaado 0 +4=4 2 baaaabcbabaaaaal0ao0
aaaal0 Naao

aaado0 9 + 4 = aaa aaaa6o0
aadgo0 aa

ao aa

0 aa

suffixes,[13] < suffixes,;[4] (because inverse[13] < inverse[4])
SO0 suffixesg[9] < suffixesg[0]

inverse

15

16

17

14
9
12

11
16
17
15
10
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Suffix sort: experimental results

time to suffix sort (seconds)

algor‘i‘rhm mobydick. txt aesopaesop. txt

brute-force 36.000 * 4000 '
quicksort 9.5 167
LSD not fixed length  not fixed length
MSD 395 out of memory
MSD with cutoff 6.8 162
3-way string quicksort 2.8 400
Manber MSD 17 8.5

1 estimated
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String sorting summary
We can develop linear-time sorts.
» Compares not necessary for string keys.

» Use digits to index an array.

We can develop sublinear-time sorts.

» Should measure amount of data in keys, not number of keys.

* Not all of the data has to be examined.

3-way string quicksort is asymptotically optimal.
* 1.39 N Ig N chars for random data.

Long strings are rarely random in practice.
* Goal is often to learn the structure!
* May need specialized algorithms.
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Review: summary of the performance of symbol-table implementations

Frequency of operations.

_ _ typical case _
implementation ordered operations

_ operations on keys
search insert delete

red-black BST ~ 100lgN  100lgN  1.00IgN yes compareTo ()
: equals ()
haSh"\g 1 U 1 U 1 U no hashcode ()

T under uniform hashing assumption

Q. Can we do better?
A. Yes, if we can avoid examining the entire key, as with string sorting.



String symbol table basic API

String symbol table. Symbol table specialized to string keys.

public class StringST<Value> string symbol table type
StringST () create an empty symbol table
void put(String key, Value wval) put key-value pair into the symbol table
Value get(String key) return value paired with given key
boolean contains(String key) is there a value paired with the given key?

Goal. As fast as hashing, more flexible than binary search trees.



String symbol table implementations cost summary

character accesses (typical case)

search search space
implementation insert P moby.txt | actors.txt
hit miss (links)

red-black BST L+clg?N clg?N clg?N 14 97.4

hashing L L L 4Ntol6 N 0.76 40.6

* N = number of strings
* L = length of string moby . txt 1.2 MB 210 K

* R = radix
actors. txt 82 MB 114 M

32K
900 K

Challenge. Efficient performance for string keys.






Tries

Tries. [from retrieval, but pronounced "try"]

» Store characters and values in nodes (not keys).

* Each node has R children, one for each possible character.

EX. she sells sea shells by the

root

link to trie for all keys
that start with s

link to trie for all keys
that start with she

value for she in node
corresponding to
last key character

by 4

sea 2

sells 1

label each node with she 0
character associated —> 3

with incoming link shells 3

the 5

Anatomy of a trie




Search in a trie

Follow links corresponding to each character in the key.
e Search hit: node where search ends has a non-null value.
e Search miss: reach a null link or node where search ends has null value.

et("she"
get("sheﬂs" get( ) O
(s) ()

O )

© O

@D

T o ] o

(s)3

return the value in the
node corresponding to

return the value in the the last key character (0)
node corresponding to

the last key character (3)




Search in a trie

Follow links corresponding to each character in the key.
e Search hit: node where search ends has a non-null value.
e Search miss: reach a null link or node where search ends has null value.

get("shore™)
get("shell™)

D—0—

no link for the o,
soreturnnull

\Q

no value in the node
corresponding to the last key
character, so return null




Insertion into a trie

Follow links corresponding to each character in the key.
* Encounter a null link: create new node.
* Encounter the last character of the key: set value in that node.

put("sea", 7) put("shore", 8)

(2
()

node corresponding to
the last key character
exists, so set its value

/

nodes corresponding to
characters at the end of the
key do not exist, so create them
and set the value of the last one

7




Trie construction example

key value
root

she 0 /

9 value is in node
0 corresponding to

/ last character
(&)o

key
shells

nodes corresponding to
characters at the end of the

key do not exist, so create them
and set the value of the last one

sells 1 O
(s)
&
onenode/ 0

for each

key character (1)

sea 2

key is sequence /

of characters from
root to value

node corresponding to
the last key character
exists, so reset its value

10



Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node

{

private Object value;

private Node[] next = new Nodel[R];

use Object instead of Value since

no generic array creation in Java

characters are implicitly

defined by link index

‘ \ each node has

an array of links

and a value
Trie representation

1



Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node

{
private Object value; T
private Node[] next = new Nodel[R];

}

use Object instead of Value since
no generic array creation in Java

[TTTTRITITITTIT]

characters are implicitly

defined by link index

/lIIIIIIIII-'\|||||||||||||||
P ANRENERRERENRRNNRRNNRNEREER LI TG T o LI T I T TTTI T ITITITTI0T]
LI I LI TIITTI0]
each node has
an array of links
iJERNERNERNERNRNRRNNRNERREER and a value

Trie representation (R = 26)

12



R-way trie: Java implementation

public class TrieST<Value>

{
private static final int R = 256; <«—— extended ASCII
private Node root;

private static class Node
{ /* see previous slide */ }

public void put(String key, Value val)
{ root = put(root, key, val, 0); }

private Node put(Node x, String key, Value wval, int d)
{
if (x == null) x = new Node() ;
if (d == key.length()) { x.val = val; return x; }
char c = key.charAt(d);
x.next[c] = put(x.next[c], key, val, d+1);
return x;

13



R-way frie: Java implementation (continued)

public boolean contains (String key)
{ return get(key) '= null; }

public Value get(String key)

{
Node x = get(root, key, 0);
if (x == null) return null;
return (Value) x.val;

private Node get(Node x, String key,
{
if (x == null) return null;
if (d == key.length()) return x;
char c¢ = key.charAt(d);
return get (x.next[c], key, d+1);

int d)

14



Trie performance

Search miss.

 Could have mismatch on first character.

e Typical case: examine only a few characters.

Search hit. Need to examine all L characters for equality.
Space. R null links at each leaf.

(but sublinear space possible if many short strings share common prefixes)

Bottom line. Fast search hit, sublinear-time search miss, wasted space.

15



String symbol table implementations cost summary

character accesses (typical case)

search search space
implementation insert P moby . txt
hit miss (links)

red-black BST L+clg?N clg?N clg?N

actors. txt

97.4
hashing L L L 4Ntol1l6 N 0.76 40.6
R-way trie L logr N L (R+1)N 1.12 out of memory
R-way trie.

e Method of choice for small R.
e Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

16



Digression: out of memory?

“ 640 K ought to be enough for anybody. ”
— attributed to Bill Gates, 1981

(commenting on the amount of RAM in personal computers)

“64 MB of RAM may limit performance of some Windows XP
features; therefore, 128 MB or higher is recommended for
best performance. ”  — Windows XP manual, 2002

“ 64 bit is coming to desktops, there is no doubt about that.
But apart from Photoshop, I can't think of desktop applications
where you would need more than 4GB of physical memory, which
is what you have to have in order to benefit from this technology.
Right now, it is costly. ” — Bill Gates, 2003

17



Digression: out of memory?

A short (approximate) history.

address addressable typical actual
machine year cost
bits memory memory

PDP-8 1960s
PDP-10 1970s 18 256 KB 256 KB
IBM S/360 1970s 24 4 MB 512 KB
VAX 1980s 32 4GB 1 MB
Pentium 1990s 32 4GB 16B
Xeon 2000s 64 enough 4GB
?? future 128+ enough enough

$16K
$IM
$1IM
$IM
$1K
$100

$1

“ 512-bit words ought to be enough for anybody.
— RS, 1995

18



A modest proposal

Number of atoms in the universe (estimated). = 2%¢.

Age of universe (estimated). 14 billion years ~ 2°? seconds < 287 nanoseconds.

Q. How many bits address every atom that ever existed?
A. Use a unique 512-bit address for every atom at every time quantum.

266 bits | 89 bits | 157 bits

atom time cushion for whatever

Ex. Use 256-way trie to map atom to location.
* Represent atom as 64 8-bit chars (512 bits).
« 256-way trie wastes 255/256 actual memory.
* Need better use of memory.

19
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Ternary search tries

TST. [Bentley-Sedgewick, 1997]
» Store characters and values in nodes (not keys).

» Each node has three children: smaller (left), equal (middle), larger (right).

21



Ternary search tries

TST. [Bentley-Sedgewick, 1997]

» Store characters and values in nodes (not keys).

* Each node has three children: smaller (left), equal (middle), larger (right).

link to TST for all keys

! link to TST for all keys
that start with that star[with s y
a letter before s \

each node has o o 0 @
three links \

TST representation of a trie

22



Searchina TST

Follow links corresponding to each character in the key.
» If less, take left link; if greater, take right link.
* If equal, take the middle link and move to the next key character.

Search hit. Node where search ends has a non-null value.
Search miss. Reach a null link or node where search ends has null value.

get("sea") match: take middle link,
move to next char

mismatch: take left or right link,
do not move to next char

return value
associated with
last key character




26-way trie vs. TST

26-way trie. 26 null links in each leaf.

T 0t B e

©@WE @ WOHWE © @EeOWL @ © @@ 0 Wakle @ O @ (&
0J0I0I0I0I0IOINIOIOIOIIBIOIOIBIGINICINIOIOIOISIOINIOIOINIGIOICIOIO

26-way trie (1035 null links, not shown)

TST. 3 null links in each leaf.

®
® © ©®

e OO o ogicgpc

G X B o0 =a & o @ @ d

X SRR TR SRR T AR R SR X
O ® PG e Do N gl Q) ONE(G
OIICEgO @ ' © ® © @

GRORO @
XS

TST (155 null links)

now
for
tip
ilk
dim
tag
jot
sob
nob
sky
hut
ace
bet
men
egg
few
jay
owl
joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

24



TST representation in Java

A TST node is five fields:

A value.

private class Node

A character c. { .
private Value val;

A reference to a left TST. private char c;
. private Node left, mid, right;
A reference to a middle TST.

A reference to a right TST.

standard array of links (R = 26) ternary search tree (TST)
link for keys
\/ that start with s ——___ [
HEEENEENEEEEEEEEEEEENEEEEn QGQ

\ link for keys —

that start with su

Trie node representations

25



TST: Java implementation

public class TST<Value>
{

private Node root;

private class Node
{ /* see previous slide */ }

public void put(String key, Value val)
{ root = put(root, key, val, 0); }

private Node put(Node x, String key, Value val, int d)

{
char ¢ = s.charAt(d);

if (x == null) { x = new Node(); x.c = c; }

if (c < x.¢) x.left = put(x.left, key, val, d);
else if (¢ > x.c) x.right = put(x.right, key, val, d);
else if (d < s.length() - 1) x.mid = put(x.mid, key, val, d+1);
else x.val = val;

return x;

26



TST: Java implementation (continued)

public boolean contains (String key)
{ return get(key) !'= null; }

public Value get(String key)

{
Node x = get(root, key, 0);
if (x == null) return null;
return x.val;

private Node get(Node x, String key, int
{
if (x == null) return null;
char ¢ = s.charAt(d);
if (c < x.¢) return
else if (c > x.c) return

else if (d < key.length() - 1) return
else return

d)

get(x.left,

keYI d) ;

get(x.right, key, d);

get(x.mid,

X,

key, d+1);

27



String symbol table implementation cost summary

character accesses (typical case)

search search space
implementation insert P moby . txt actors. txt
hit miss (links)

red-black BST L+clg?N clg?N clg?N 14 97.4

hashing L L L 4 Nto16 N 0.76 40.6
R-way trie L logr N L (R+1)N 112 out of memory

TST L+InN InN L+InN 4N 0.72 38.7

Remark. Can build balanced TSTs via rotations to achieve L + log N
worst-case guarantees.

Bottom line. TST is as fast as hashing (for string keys), space efficient.

28



TST with R? branching at root

Hybrid of R-way trie and TST.
« Do R?-way branching at root.
 Each of R? root nodes points to a TST.

array of 262 roots

[ N J
TST TST TST

Q. What about one- and two-letter words?

~

29



String symbol table implementation cost summary

search search space
implementation insert moby . txt
hit miss (links)

red-black BST
hashing
R-way trie
TST

TST with R?

character accesses (typical case)

L+clg?N

L

L+InN

L+InN

clg?N
L

logr N
InN

In N

clg?N

L

L+InN

L+InN

4Ntol6 N
R+1N
4 N

4N +R2

0.76

1.12

0.72

0.51

actors. txt

97.4
40.6

out of memory
38.7

32.7
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TST vs. hashing

Hashing.

Need to examine entire key.

Search hits and misses cost about the same.

Need good hash function for every key type.

No help for ordered symbol table operations.

TSTs.

» Works only for strings (or digital keys).

* Only examines just enough key characters.

» Search miss may only involve a few characters.

 Can handle ordered symbol table operations (plus othersl).

Bottom line. TSTs are:

» Faster than hashing (especially for search misses).
More flexible than red-black trees (next).

31



» string symbol table API
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String symbol table APT

Character-based operations. The string symbol table API supports several
useful character-based operations.

by sea sells she shells shore the

Prefix match. The keys with prefix "sh" are "she", "shells", and "shore".

Longest prefix. The key that is the longest prefix of "shellsort" iS "shells".

Wildcard match. The key that match ".he" are "she" and "the".

33



String symbol table APT

public class StringST<Value>

void

Value

void

boolean

boolean

String
Iterable<String>

Iterable<String>
int

Iterable<String>

StringST()

StringST(Alphabet alpha)
put(String key, Value val)

get(String key)
delete(String key)
contains(String key)
isEmpty (O
TongestPrefix0f(String s)
keysWithPrefix(String s)

keysThatMatch(String s)

size()

keys()

create a symbol table with string keys
create a symbol table with string keys
whose characters are taken from alpha.

put key-value pair into the symbol table
(remove key from table if value is nu11)

value paired with key
(nu11 if key is absent)

remove key (and its value) from table

is there a value paired with key?

is the table empty?

return the longest key that is a prefix of s
all the keys having s as a prefix.

all the keys that match s (where .
matches any character).

number of key-value pairs in the table

all the keys in the symbol table

API for a symbol table with string keys

Remark. Can also add other ordered ST methods, e.g., £100r () and rank().

34



Deletion in an R-way tfrie

To delete a key-value pair:

 Find the node corresponding to key and set value to null.
e If that node has all null links, remove that node (and recur).

deTete("shells");

© O
set value O
0 to null O T
/ non-null value non-null link
e 3 T so do not remove node so do not remove node
(return link to node) (return link to node)
null value and links,

so remove node
(return null link)

Deleting a key (and its associated value) from a trie

35



Ordered iteration

To iterate through all keys in sorted order:
* Do inorder traversal of trie; add keys encountered to a queue.
* Maintain sequence of characters on path from root to node.

keysWithPrefix("");

key q
b
by by
S
se
sea sea
sel
sell
sells sells
sh
she
shell
shells
sho
shor
shore shore
t
th
the the

Collecting the keys in a trie (trace)

36



Ordered iteration: Java implementation

To iterate through all keys in sorted order:

* Do inorder traversal of trie; add keys encountered to a queue.
* Maintain sequence of characters on path from root to node.

public Iterable<String> keys ()
{

Queue<String> queue = new Queue<String>() ;

mww .
collect (root, , queue) ; sequence of characters
return queue; on path from root to x
}

/

private void collect (Node x, String prefix, Queue<String> q)
{

if (x == null) return;

if (x.val '= null) g.enqueue (prefix) ;
for (char ¢ = 0; ¢ < R; c++)

collect(x.next[c], prefix + c, q);

37



Prefix matches

Find all keys in symbol table starting with a given prefix.

Ex. Autocomplete in a cell phone, search bar, text editor, or shell.

» User types characters one at a time.

» System reports all matching strings.

WERTYUIOP

Alslolrlafuls[x]L
< aoEooonc

GOUSIQ

why is my comp)|

why is my computer so slow

why is my computer slow

why is my computer so slow all of a sudden
why is my computer so loud

why is my computer running so slowly

why is my computer screen so big

why is my computer freezing

why is my computer beeping

why is my computer slowing down

why is my computer so slow lately

Google Search | | I'm Feeling Lucky

38



Prefix matches
Find all keys in symbol table starting with a given prefix.

keysWithPrefix("sh™);
key

sh

she
shel
shell
shells
sho
shor
shore

find subtrie for all /

keys beginning with "sh"

collect keys
in that subtrie

Prefix match in a trie

she

shells

shore

public Iterable<String> keysWithPrefix (String prefix)
{

Queue<String> queue = new Queue<String>() ;

Node x = get(root, prefix, 0);

collect(x, prefix, queue); k\\

return queue; root of subtrie for all strings
) beginning with given prefix

39



Longest prefix

Find longest key in symbol table that is a prefix of query string.

Ex. Search IP database for longest prefix matching destination IP,
and route packets accordingly.

" 128 "

" " represented as 32-bit binary number
128.112 for IPv4 (instead of string)

"128.112.055"

"128.112.055.15"

"128.112.136"

"128.112.155.11"
"128.112.155.13"

"128.222"

"128.222.136"

prefix("128.112.136.11") = "128.112.136"
prefix("128.166.123.45") = "128"

Q. Why isn't longest prefix match the same as floor or ceiling?

40



Longest prefix

Find longest key in symbol table that is a prefix of query string.

» Search for query string.

» Keep track of longest key encountered.

she

search ends at
end of string
value is not null
return she

"sheﬂ" "shellsort"
O
2 ()

()

e 0 search ends at
end of strin
value is nu

0 / return she
o (last key on path)

Possibilities for TongestPrefix0f ()

search ends at
null link
return shells
(last key on path)

41



Longest prefix: Java implementation

Find longest key in symbol table that is a prefix of query string.

» Search for query string.
» Keep track of longest key encountered.

public String longestPrefixOf (String query)

{
int length = search(root, query, 0, 0);

return query.substring(0, length);

private int search(Node x, String query, int d, int length)

{
if (x == null) return length;
if (x.val '= null) length = d;
if (d == query.length()) return length;
char ¢ = query.charAt(d);
return search (x.next[c], query, d+1, length);

42



T9 texting
Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key until the desired
letter appears.

T9 text input. ["A much faster and more fun way to enter text."]
 Find all words that correspond to given sequence of numbers.
* Press O to see all completion options.

Ex. hello h 0 W

 Multi-tap: 4 4 33555555666 atpgonn jmorgionn g
e T9: 4 355 6 1 2abc | 3def

(4gh1 B ikt 6mno\

Zoar| [8tw | [Qwz

www.t9.com
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A Letter to t9.com

To: info@t9support.com
Date: Tue, 25 Oct 2005 14:27:21 -0400 (EDT)

Dear T9 texting folks,

I enjoyed learning about the T9 text system

from your webpage, and used it as an example

in my data structures and algorithms class.

However, one of my students noticed a bug

in your phone keypad
http://www.t9.com/images/how.gif

Somehow, it is missing the letter s. (!)

Just wanted to bring this information to

your attention and thank you for your website.

Regards,

Kevin

how

just pressonce  just pressonce  just press once
G o

1 Z2abc | 3def
(4 ghi.L B ikt /6mno\
o

7pqr 8tuv 9wxyz
N )

|

where's the "s" 2?
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A world without "s" ??

To: "'Kevin Wayne'" <wayne(@CS.Princeton.EDU>
Date: Tue, 25 Oct 2005 12:44:42 -0700

Thank you Kevin.

I am glad that you find T9 o valuable for your
cla. I had not noticed thi before. Thank for
writing in and letting u know.

Take care,

Brooke nyder

OEM Dev upport

AOL/Tegic Communication
1000 Dexter Ave N. uite 300
eattle, WA 98109

ALL INFORMATION CONTAINED IN THIS EMAIL IS CONSIDERED
CONFIDENTIAL AND PROPERTY OF AOL/TEGIC COMMUNICATIONS
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Compressing a trie

Collapsing 1-way branches at bottom.

Internal node stores character; leaf node stores suffix (or full key).

Collapsing interior 1-way branches.
Node stores a sequence of characters.

put("shells", 1);
put("shellfish", 2);

standard no one-way
trie branching
o
® OF :
O,
e internal
branching
D
(1)
OING
I
D e
branching
O,
(h) 2

Removing one-way branching in a trie
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A classic algorithm

Patricia tries. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]
 Collapse one-way branches in binary trie.
e Thread trie to eliminate multiple node types.

Applications.

e Database search.

P2P network search.

IP routing tables: find longest prefix match.

Compressed quad-tree for N-body simulation.

Efficiently storing and querying XML documents.

Implementation. One step beyond this lecture.

47



Suffix tree

Suffix tree. Threaded trie with collapsed 1-way branching for string suffixes.

root

mississippis$

Applications.
 Linear-time longest repeated substring.
» Computational biology databases (BLAST, FASTA).

Implementation. One step beyond this lecture.



String symbol tables summary
A success story in algorithm design and analysis.

Red-black tree.

» Performance guarantee: log N key compares.
» Supports ordered symbol table API.

Hash tables.
» Performance guarantee: constant number of probes.
* Requires good hash function for key type.

Tries. R-way, TST.
* Performance guarantee: log N characters accessed.
» Supports extensions to API based on partial keys.

Bofttom line. You can get at anything by examining 50-100 bits (IIl)
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5.3 Substring Search

just

(lad
index 3¢
pomter""

o Substrmg

nnnnnn

D8 m » brute force
pa er 8 » Knuth-Morris-Pratt
c arﬁaycgc?nfst; » Boyer-Moore
match » Rabin-Karp

o sposition
H @ implementation
2 brute-force

hash: state

3|qIsSO

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2009 - January 26, 2010 8:28:00 AM



Substring search

Goal. Find pattern of length M in a text of length N.
AN

typically N >> M

pattern—N E E D L E

text#/H==T N A H A Y S T A C K N E E D L E I N A

!

match

Computer forensics. Search memory or disk for signatures,
e.g., all URLs or RSA keys that the user has entered.

http://citp.princeton.edu/memory



Applications

* Parsers.

e Spam filters.

 Digital libraries.

* Screen scrapers.

* Word processors.

» Web search engines.

 Electronic surveillance.

* Natural language processing.

e Computational molecular biology.

» FBIs Digital Collection System 3000.

* Feature detection in digitized images.

ﬁ’ i ™

LexisNexis™

It’s how you know ™




Application: Spam filtering

Identify patterns indicative of spam.

PROFITS

LOSE WE1GHT

herbal Viagra

There is no catch.

LOW MORTGAGE RATES

This is a one-time mailing.

This message is sent in compliance with
spam regulations.

You're getting this message because you

registered with one of our marketing partners.




Application: Electronic surveillance

Need to monitor all
internet traffic.

o (security)

No way!
(privacy)

interested in
"ATTACK AT DAWN"

e~

OK. Build a
machine that just

Well, we're mainly

“ATTACK AT DAWN”
substring search
machine

found O




Application: Screen scraping
Goal. Extract relevant data from web page.

Ex. Find string delimited by <b> and </b> after first occurrence of

pattern Last Trade:.

Google Inc. (GOOG) A 11:1920 ET: 256.44 ¥ 5.99 (2.28%) e
<tr>
More On GOOG
Quotes <td class= "yfnc tableheadl"
» Summary Google Inc. (NasdagGS: GOOG) 5006 24-Nov 11:10am (C)Yahoo! . —_

Real-Time ECN NEW Real-time: 258.46 -3.97 (-1.57%) m ] width= "48%">

Options e

Historical Prices Last Trade: 256.44 Day's Range: 250.26 - 269.95 zsoi S 1 o

%6 == 25t Last Trade:

Charts Trade Time: 11:19AM ET 52wk Range: 247.30-72480 50|l , , , , , ., .,

Interactive . o Vol : 3,800,804 10am 12pm Zpm dpm

Basic Chart Change: ¥5.99 (2.28%) Ao u\r/ne 334.210 1d 5d 3m &m 1y 2y Sy </td>

Basic Tech. Analysis  prey Close: 262.43 vg Vol (3m): 7,334, customize chart < l " f "

= n abl 1">

News & Info Open: 269.65 Market Cap: 80.67B 4 Add GOOG to Your Portfolio td class y c—‘t edata
Headlines Bid: 256.31 x 100 PIE (tm): 1548 UL SetAertfor GOOG <big><b>452.92</b></big>

Financial Blogs EPs 16.56 ¥ Download Data

Company Events Ask: 256.57 x 100 (ttm: - % Download Annual Report

Message Board 1y Target Est 511.87 Div & Yield: N/A (N/A) 4k Add Quotes to Your Web Site < / td>< / tr>

<td class= "yfnc tableheadl”
http://finance.yahoo.com/g?s=goo . -
p:// y /q?s=goog width= "48%">

Trade Time:
</td>
<td class= "yfnc_tabledatal">




Screen scraping: Java implementation

Java library. The indexof () method in Java's string library returns the index
of the first occurrence of a given string, starting at a given offset.

public class StockQuote
{
public static void main(String[] args)
{
String name = "http://finance.yahoo.com/g?s=";
In in = new In(name + args[0]);
String text = in.readAll()

int start = text.indexOf ("Last Trade:", 0);
int from = text.indexOf ("<b>", start);
int to = text.indexOf ("</b>", from);

String price = text.substring(from + 3, to);
StdOut.println (price) ;

% java StockQuote goog
256.44

% java StockQuote msft
19.68







Brute-force substring search

Check for pattern starting at each text position.

1 j 1+3 0 1 2 3 4 5 6 7 8 910
txtt—A B A C A D A B R A C

0 2 2 A B R <~ pat

1 0 1 A entries in red are

7 1 3 A B / mismatches

3 0 3 A entries in gray are

for reference only

4 L > entries in black A B /

> 0 > match the text A

6 4 10 A B R A

™ return i when j isM A

match

Brute-force substring search




Brute-force substring search: Java implementation

Check for pattern starting at each text position.

public static int search(String pat, String txt)

{

int M = pat.length();

int N = txt.length();

for (int i = 0; i <= N - M; i++)
{

int j;
for (j = 0; j < M; j++)
if (txt.charAt(i+j) !'= pat.charAt(j))
break;
if (j == M) return i; index in text where

pattern starts

}

return N; <«— not found

10



Brute-force substring search: worst case

Brute-force algorithm can be slow if text and pattern are repetitive.

1 J 1+] O 1 2 3 4 5 6 7 8 9
txt—A A A A A A A A A B

0 4 4 A A A A B <—npat

1 4 5 A A A A B

2 4 6 A A A A B

3 4 / A A A A B

4 4 8 A A A A B

5 4 9 A A A A B
Brute-force substring search (worst case)

Worst case. ~ M N char compares.



Backup

In typical applications, we want to avoid backup in text stream.
e Treat input as stream of data.
e Abstract model: stdin.

“ATTACK AT DAWN”
substring search

machine

found O

Brute-force algorithm needs backup for every mismatch

matched chars

mismatch
| o
AAAAAA
AAAAAB
/ backup
A
A

/

shift pattern right one position

Approach 1. Maintain buffer of size m (build backup into stdin)
Approach 2. Stay tuned.



Brute-force substring search: alternate implementation
Same sequence of char compares as previous implementation.

* i points to end of sequence of already-matched chars in text.
» j stores number of already-matched chars (end of sequence in pattern).

public static int search(String pat, String txt)

int i, txt.length() ;

N
int j, M = pat.length();

for (1 =0, j=0; 1 <N && j < M; i++)
{
if (txt.charAt(i) == pat.charAt(j)) j++;
else { 1 -= 3; J =20; } <«<——1— backup
}
if (j == M) return i - M;

else return N;




Algorithmic challenges in substring search

Brute-force is often not good enough.

Theoretical challenge. Linear-time guarantee. <— fundamental algorithmic problem

Practical challenge. Avoid backup in text stream. «— oftenno room or time fo save text

Now is the time for all people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for many good people to come to the aid of their party.
Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good
people to come to the aid of their party. Now is the time for all of the good people to come to the aid of
their party. Now is the time for all good people to come to the aid of their party. Now is the time for
each good person to come to the aid of their party. Now is the time for all good people to come to the aid
of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
time for all good people to come to the aid of their party. Now is the time for many or all good people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for all good Democrats to come to the aid of their party. Now is the time for all people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for many good people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for a lot of good people to come to the aid of their
party. Now is the time for all of the good people to come to the aid of their party. Now is the time for
all good people to come to the aid of their attack at dawn party. Now is the time for each person to come
to the aid of their party. Now is the time for all good people to come to the aid of their party. Now is
the time for all good Republicans to come to the aid of their party. Now is the time for all good people
to come to the aid of their party. Now is the time for many or all good people to come to the aid of their
party. Now is the time for all good people to come to the aid of their party. Now is the time for all good
Democrats to come to the aid of their party.




» Knuth-Morris-Pratt
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Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern BaaAAAAAAA,

* Suppose we match 5 chars in pattern, with mismatch on 6™ char.
» We know previous 6 chars in fext are BAAAAB.

* Don't need to back up text pointer! assuming {A, B} alphabet

text

. SNA B A A A
after mismatch
onsixthchar— B A A A

brute-force backs B
up to try this — B
and this -~ B

and this ~ B

a”df’“'s//BAAAAAAAAA
and this

1'
B A A AAAAAAA
A

~<~— pattern

A
A

butnobackup/' AAA A A A A A AA

is needed

Remark. It is always possible to avoid backup (1)



KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on match?
A. Easy: compare next pattern char to next text char.

matched chars current char

l is match
ABABALC
ABABAC
pat.charAt (6)
j 0O 1 2 3 4 5
pat.charAt(j) A B A B A C
A 1 3 5 current text char: c
dfal]1[j] B p) 4 current pattern index: j
C @ next pattern index: dfafc][j]

table giving pattern char to compare to the next text char
17



KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left to right.

matched chars current char

is mismatch
l / mism
ABABAA
x ABABAC
X A
X ABAB
X A
X AB
v A

\

j 0 1 2 3 4 5
pat.charAt(j) A B A B A C pat.charAt (1)
A ®
dfa[]J[j] B
C 6

table giving pattern char to compare to the next text char

18



KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left to right.

current char

/is mismatch

matched chars

> > |

pat.charAt (4)

0
pat.charAt(j) A

dfal][j]

ve]
m@l—‘ﬁm

table giving pattern char to compare to the next text char

19



KMP substring search preprocessing (concept)

Fill in table columns by doing computation for each possible mismatch position.

j pat. dfal][j] text (pattern itself)
charAt(j) A B C ABABAC
0 A 1 A
B
0
C
0
1 B 2 AB
AA
1 A
AC
0
2 A 3 ABA
ABB
0
ABC
0

Jj pat. dfal][j] text (pattern itself)
charAt(j) A B C ABABAC

3 B 4 ABAB
ABAA
1 A
ABAC
0
4 A 5 ABABA
ABABB
0
match (move to next char) ABABC
set dfa[pat.charAt(3)1[j]1 O
to j+1
5 C 6 ABABAC known text chars
ABABAA «~ on mismatch
1 A
. f ABABAB
mismatch 4 ABAB

(back up in pattern)

backup is length of max overlap
ojpbeginning of pattern
with known text chars

Pattern backup for ABABAC in KMP substring search

20



Deterministic finite state automaton (DFA)

DFA is abstract string-searching machine.

 Finite number of states (including start and hal?).

» Exactly one transition for each char in alphabet.

» Accept if sequence of transitions leads to halt state.

internal representation

J 0 1 2 3 4 5
pat.charAt(j) A B A B A C
A 1 1 3 1 5 1
dfafI[jl(B 0 2 0O /4 0 4
c O 0 0 0 0 6
mismatch \
transition match
(back up) transition
graphical representation (increment)

DFA corresponding to the stringA B A B A C

halt state

If in state j reading char c:
halt if jis 6
else move to state dfa[c] [J]

21



KMP substring search: trace

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 1
read thischar— B C B C AA B A B A C A A~ txt.charAt(i)
inthisstate —0 0 0 0 1 2 3 01 12 3 456 <]
go to this state A /
found
A returni - M =9
A
A J o 1 2 3 4 5
B pat.charAt(j) A B A B A C
B A1l 1 3 1 5 1
A dfaf][j1|]B 0 2 O 4 0 4
c 0 0 O O O =6
match: B
set j to dfa[txt.charAt(i)]1[j] A
= dfa[pat.charAt(j)1[j]
= j+1 B
B
A
mismatch: B
set j todfal[txt.charAt(i)][j] A
implies pattern shift to align
pat.charAt(j) with C
txt.charAt(i+1) A B A B A C

Trace of KMP substring search (DFA simulation) forA B A B A C

22



KMP search: Java implementation

KMP implementation. Build machine for pattern, simulate it on text.

Key differences from brute-force implementation.
e Text pointer i never decrements.

* Need to precompute dfa[][] table from pattern.

public int search(String txt)
{
int i, j, N = txt.length();
for (1 =0, j=0; 1 <N && j < M; i++)
j = dfa[txt.charAt(i)][]j]:;
if (j == M) return i - M;
else return N;

Running time.
e Simulate DFA: at most N character accesses.

e Build DFA: at most M2R character accesses (stay tuned for better method).



KMP search: Java implementation

Key differences from brute-force implementation.
e Text pointer i never decrements.

* Need fo precompute dfa[][] table from pattern.
 Could use input stream.

public int search(In in)
{
int i, j;
for (i =0, j = 0; 'in.isEmpty() && j < M; i++)
j = dfa[in.readChar()][]j]-
if (j == M) return i - M;
else return i;

24



Efficiently constructing the DFA for KMP substring search

Q. What state X would the DFA be in if it were restarted fo correspond to

shifting the pattern one position fo the right?

matched chars next char

> |

ABABA
A BABAC

A. Use the (partially constructed) DFA to find X!

j 0 1 2 3 4 5
BABA pat.charAt(j) A B A B A C
00123 A1 1 31 5 2
'\ dfa[l[j1/B 0 2 0 4 0 2
X C0O0O00O0 ?
Consequence.
» We want the same transitions as X for the next state on mismatch.
copy dfa[][X] to dfa[][]j] j 01 2 3 4 5
. - . .charAt(j A B A B A C
« But a different transition (to j+1) on match. P G L Em . m
set dfa[pat.charAt(j)1[j]1 1o j+1 dfaf][jl1|B 0 2 0 4 0 4
C 0 0 0 0 06

25



Efficiently constructing the DFA for KMP substring search

Build table by finding answer to Q for each pattern position.

/ J-

0 1 2 3 4 5
Q. What state X would the DFA be in if it were restarted to pat.charAt(]) A i E '_:,‘ E ? g
correspond to shifting the pattern one position to the right? dfa[l[jllB 0 2 0 4 0 4
c 0 0 O O 0 6
Observation. No need to restart DFA.
* Remember last restart state in X. 1 A
0
restart
* Use DFA to update X. ) . tar
¢ X = dfa[pat.charAt(j)] [X] 0 0
3 B A fa['A'][0]
0O 0 1
4 B A B dfa['B'][1]
0O 0 1
dfa['A'] [2]
5 B A B A e
o o0 1 2 3
DFA simulations to compute
restart statesforA B AB A C

26



j
pat.charAt(j)
A
B

C

dfal][j]

j
pat.charAt(j)
A
B

C

dfal][j]

j
pat.charAt(j)
A
B

C

dfal][j]

]
pat.charAt(j)
A
B
C

dfal][j]

Constructing the DFA for KMP substring search: example

0 Bc ]
: NoANE
1
0
0
X
l j dfa[1[X] todfa[][j]
0 1 B,C A ] copy dfa todfal[][j
AB (@-A_g@_/s_»@ dfalpat.charAt(3)1[3] = j+1;
é ; xS X = dfalpat.charAt()1[X]];
0 0
X
| <‘B,c (A /J'
0 1 2 @_A_.Q’)_B_.@_A_,@
A B A X" R_/B’C
1 1 3
0 2 0
0 0 0
X
|
0 1 2 3 3 (A/\A ]
R S0f
R Ol — = —C
0 2 0 4
0 0 0 O

Constructing the DFA for KMP substring searchforA B A B A C
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Constructing the DFA for KMP substring search: example

X
}
i 0 1 2 3 5, A/_\A j
pat.charAt(j) A B A B C@_A <®_B @—A \(;35-/3 @
Al 1 3 1 N c
dfafifil|B 0 2 0 4
c 0 0 0 O
X
}
i 0 1 2 3 4 O (AA j
: A e
pat.charAt(j) A B A B A A @.B A B A—>
A1 1 3 1 5 @S\KC/BCQ)_ c\@_ Bg} ©
dfafifjl|B 0 2 0 4 0
c 0 0 0 0 O
X
| . .
i 0 1 2 3 4 5 (ic A/_\A N
pat.charAt(j) A B A B A C C@_A <®_B @—A @‘_/B Q}A/‘B%D-‘/c 6
A 1 1 3 1 5 1 ‘\KC/B,C C B,C
dfa[J[j1|B 0 2 0 4 0 4 ’
c 0 0 0O O 0 6

Constructing the DFA for KMP substring searchforA B A B A C

28



Constructing the DFA for KMP substring search: Java implementation

For each j:

» Copy dfa[][x] to dfa[]1[3j] for mismatch case.
 Set dfa[pat.charAt(j)]1[j]1 to j+1 for match case.
» Update x.

public KMP (String pat)
{
this.pat = pat;
M = pat.length() ;
dfa = new int[R] [M];
dfa[pat.charAt(0)][0] = 1;
for (int X =0, j=1; j < M; j++)
{
for (int ¢ = 0; ¢ < R; c++)

dfa[c] [j] = dfa[c] [X]; <«<——F— copy mismatch cases
dfa[pat.charAt(j)]1[j] = J+1; <«———— set match case
X = dfa[pat.charAt(j)][X]; <——+— update restart state

Running time. M character accesses.



KMP substring search analysis

Proposition. KMP substring search accesses no more than M + N chars
to search for a pattern of length M in a text of length N.

Pf. We access each pattern char once when constructing the DFA,
and each text char once (in the worst case) when simulating the DFA.

Remark. Takes time and space proportional to R M to construct dfa[][],
but with cleverness, can reduce time and space to M.

30



Knuth-Morris-Pratt: brief history

Brief history.

 Inspired by esoteric theorem of Cook.

» Discovered in 1976 independently by two theoreticians and a hacker.
- Knuth: discovered linear-time algorithm
- Pratt: made running time independent of alphabet
- Morris: trying to build a text editor

* Theory meets practice.

5, -
f=e

‘i
"

AN
Stephen Cook  Don Knuth

»

]

i T
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Robert Boyer J. Strother Moore
32



Boyer-Moore: mismatched character heuristic

Intuition.
* Scan characters in pattern from right to left.
 Can skip M text chars when finding one not in the pattern.

i J O 1 2 3 4 5 6 7 8 91011 12 13 14 15 16

text—H A Y S T A C K N E E D L E

0 5 E <— pattern

6 5 E

8 5 N E E D L E
8 0

N

returni = 8

33



Boyer-Moore: mismatched character heuristic

Intuition.

* Scan characters in pattern from right to left.
 Can skip M text chars when finding one not in the pattern.

not in pattern

txt[]
4 \5 8 910 11 12 13 14 15 16 17

i § 0 1 2 3 6 7
A AABGBAAGBAGBAAATGBTGBATG.Y
5 6 Y
11 6 Y
15 3 Y G Y
AN

returni = 18 (no match)




Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Compute right[c] = rightmost occurrence of character c in pat[].

right = new int[R];

for (int ¢ = 0; c < R; c++)
right[c] = -1;

for (int j = 0; j < M; j++)
right[pat.charAt(j)] = j;

Boyer-Moore skip table computation

right[c]

35



Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Compute right[c] = rightmost occurrence of character c in pat[].

-

basic idea

incrementi by j - right[’N’]
to line up text with N in pattern

_i

could do better with

/ KMP-like table

reset j to M-1 T
J

36



Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat[].

—
—

N = A Ry
|
m rm

; could do better with
KMP-like tabl
increment i by j+1 / e tanie

reset j to M-1 T
j

Mismatched character heuristic (mismatch not in pattern)

Easy fix. Set right[e] to -1 for characters not in pattern.

37



Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat[].

heuristic is no help

i i+]

\

E L E

D L E

}

J

lining up text with rightmost E
would shift pattern left
could do better with
i KMP-like tabl

so increment i by 1 1 / e

reset j to M-1 T
j




Boyer-Moore: Java implementation

skip = 0;
for (int j = M-1; j >= 0; j--)

if (pat.charAt(j) !'= txt.charAt(i+j))
{

skip = Math.max (1, j - right[txt.charAt(i+j)]);
break;

compute skip value

match

39



Boyer-Moore: analysis
Property. Substring search with the Boyer-Moore mismatched character
heuristic takes about ~ N/M character compares to search for a pattern of

length M in a text of length YN\ sublinear

Worst-case. Can be as bad as ~ M N.

i skip 0 1 2 3 45 6 7 8 9
txt—B B B B B B B B B B

0 0 A B B B B <—pat

1 1 A B B B B

2 1 A B B B B

31 A B B B B

4 1 A B B B B

5 1 A B B B B

Boyer-Moore variant. Can improve worst case to ~ 3 N by adding a
KMP-like rule to guard against repetitive patterns.

40



» Rabin-Karp

WA
S

Michael Rabin, Turing Award '76
and Dick Karp, Turing Award '85

41



Rabin-Karp fingerprint search

Basic idea.

e Compute a hash of pattern characters O to M-1.

* For each i, compute a hash of text characters i fo M+i-1.
» If pattern hash = text substring hash, check for a match.

pat.charAt(i)
i 0O 1 2 3 4

2 6 5 3 5 %997 =613

txt.charAt(i)
5 6 7 8 910 11 12 13 14 15
9 2 6 5 3 5 8 9 7 9 3

% 997 = 508

9 % 997 = 201

2 % 997 = 715

6 % 997 = 971

6 5 % 997 = 442

6 5 3 % 997 = 929 /
6 5 3 5 % 997 =613

o U A W KN R O

w
e e
I N N N TN
L = W = S SO VY
vi ol U1 U1 U1 U | D

© v vV ©
N NN NN

-~ returni = 6

Basis for Rabin-Karp substring search




Efficiently computing the hash function

Modular hash function. Using the notation i for txt.charat(i),

we wish to compute

Xi=t RMU + ¢, RM2+ | + tiyp1 RO (mod Q)

Intuition. M-digit, base-R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree-M polynomial.

pat.charAt(i)

i 01 2 3 4

2 6 5 3 5

9 _ R Q

0 2 %997 =2 J/ /
1 2 6 %997 = (2%10 + 6) % 997 = 26
2 2 6 5 %997 = (26%¥10 + 5) % 997 = 265
3 2 6 5 3 %997 = (265*10 + 3) % 997 = 659
4 2 6 5 3 5 %997 = (651*%10 + 5) % 997 = 613

Computing the hash value for the pattern with Horner’s method

// Compute hash for M-digit key
private int hash(String key)

{
int h = 0;
for (int i = 0; i < M; i++)
h = (R * h + key.charAt(j)) % Q;
return h;
}

43



Efficiently computing the hash function

Challenge. How to efficiently compute xi.1 given that we know xi.

Xi=tiRM1 + ;i RM2 + .+ tiyp1 RO

Xi+1 = tist RM 1V + tio RM2 + |+ tixm RO

Key property. Can do it in constant time!

Xi+1 = (i "t RM) R + tivm

i ... 2 3 4 5 6 7
current value 4 9 2?2
text
new value 1 9 2 6 = tex
4 1 5 9 2 currentvalue
- 4 0 0 0
1 5 9 2 subtractleading digit
1 0 multiply by radix
1 5 9 2 0
+ 6 addnew trailing digit
1 5 9 2 6 newvalue
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Rabin-Karp: Java implementation

public class RabinKarp {

private String pat; // the pattern
private int patHash; // pattern hash value
private int M; // pattern length
private int Q = 8355967; // modulus

private int R; // radix

private int RM; // R*(M-1) % Q

public RabinKarp(String pat) {
this.R = 256;
this.pat = pat;
this.M = pat.length;

RM = 1;

for (int i = 1; i <= M-1; i++)
RM = (R * RM) % Q;

patHash = hash(pat) ;

private int hash(String key)

{ /* as before */ }

public int search(String txt)
{ /* see next slide */ }

A

a large prime, but small enough
to avoid 32-bit integer overflow

—— precompute R"! (mod Q)
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Rabin-Karp: Java implementation (continued)

public int search(String txt)
{
int N = txt.length();
if (N < M) return N;
int offset = hashSearch (txt) ;
if (offset == N) return N;

for (int i = 0; i < M; i++)
if (pat.charAt(i) !'= txt.charAt(offset + i))
return N;
return offset;

private int hashSearch (String txt)
{
int N = txt.length();
int txtHash = hash (txt) ;
if (patHash == txtHash) return O;
for (int i = M; i < N; i++)
{

txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;

txtHash = (txtHash*R + txt.charAt(i)) % Q;
if (patHash == txtHash) return i - M + 1;
}

return N;

<

check if hash collision
corresponds to a match

L check for hash collision

using rolling hash function
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Rabin-Karp substring search example

i 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15
314 159 26535829 7 9 3

0 3 %997 = 3 /ﬂ

1 3 1 %997 = (3¥10 + 1) % 997 = 31

2 3 1 4 %997 = (31%10 + 4) % 997 = 314

3 3 1 4 1 %997 = (314%10 + 1) % 997 = 150

4 3 1 4 1 5 %997 = (150%10 + 5) % 997 = 508 RM R

5 1 4 1 5 9 %997 = ((508 + 3%(997 - 30))*10 + 9) % 997 = 201

6 4 1 5 9 2 %997 = ((201 + 1%¥(997 - 30))*10 + 2) % 997 = 715

7 1 5 9 2 6 %997 = ((715 + 4%(997 - 30))*10 + 6) % 997 = 971

8 5 9 2 6 5 %997 = ((971 + 1¥(997 - 30))*10 + 5) % 997 = 442 .
9 9 2 6 5 3 %997 = ((442 + 5%(997 - 30))*10 + 3) % 997 = 929 l
10 ~— return i-wl = 6 2 6 5 3 5 %997 = ((929 + 9%(997 - 30))*10 + 5) % 997 = 613

Rabin-Karp substring search example
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Rabin-Karp analysis

Proposition. Rabin-Karp substring search is extremely likely to be linear-time.

Worst-case. Takes time proportional to MN.
* In worst case, all substrings hash to same value.
* Then, need to check for match at each text position.

Theory. If Qis a sufficiently large random prime (about MN?), then

probability of a false collision is about 1/N = expected running time is linear.

Practice. Choose Q to avoid integer overflow. Under reasonable assumptions,
probability of a collision is about 1/Q = linear in practice.
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Rabin-Karp fingerprint search

Advantages.
» Extends to 2D patterns.
» Extends to finding multiple patterns.

Disadvantages.

* Arithmetic ops slower than char compares.
* Poor worst-case guarantee.

 Requires backup.

Q. How would you extend Rabin-Karp to efficiently search for any one of P
possible patterns in a text of length N?
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Substring search cost summary

Cost of searching for an M-character pattern in an N-character text.

algorithm operation count backup ;Fr):vcvi
(data structure) guarantee typical in input? with
brute force MN 1.1N yes 1
Knuth-Morris-Pratt
( full DFA ) 2N 1.1N no MR
K -Morris-P
. nuth orris- ratt 3N 1N o M
( mismatch transitions only )
Boyer-Moore 3N N/ M yes R
Boyer-Moore
(mismatched character heuristic only ) MN N/M res R
Rabin-Karp? 7NT 7N no 1

1 probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations
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5.4 Pattern Matching
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Pattern matching

Substring search. Find a single string in text.
Pattern matching. Find one of a specified set of strings in text.

Ex. [genomics]

 Fragile X syndrome is a common cause of mental retardation.

* Human genome contains triplet repeats of cGG or acg,
bracketed by Gce at the beginning and cte at the end.

* Number of repeats is variable, and correlated with syndrome.

pattern GCG (CGG | AGG) *CTG

text GCGGCGTGTGTGCGAGAGAGTGGGTTTAAAGCTGGCGCGGAGGCGGCTGGCGCGGAGGCTG



Pattern matching: applications

Test if a string matches some pattern.
* Process natural language.
» Scan for virus signatures.

Access information in digital libraries.

Filter text (spam, NetNanny, Carnivore, malware).
Validate data-entry fields (dates, email, URL, credit card).
Search for markers in human genome using PROSITE patterns.

Parse text files.

e Compile a Java program.

e Crawl and index the Web.

* Read in data stored in ad hoc input file format.

» Automatically create Java documentation from Javadoc comments.



Regular expressions

A regular expression is a notation to specify a (possibly infinite) set of strings.

I

a “language”

example RE matches does not match
concatenation every other string
AA | BAAB AR i
or I BAAB every other string
AA AB
*
closure AB*A ABBBBBBBBA ABABA
AAAAB ,
A(A|B)AAB ABAAR every other string
parentheses
A AA
*
(AB) *A ABABABABABA ABBA




Regular expression shortcuts
Additional operations are often added for convenience.

Ex. [a-E1+ is shorthand for (a|B|C|D|E) (A|B|C|D|E) *

CUMULUS SUCCUBUS
wildcard I JUGULUM TUMULTUOUS
at least 1 A (BC) +DE Agggggg ;CJ:DDEE

character classes [A-Za-z] [a-z]* Capiwt?a];.cfi.zed célain;.elzlhecgaasle
exactlyk  [0-91(5}-[0-91(4} 100707 3% l66.54-111
complement [*AEIOU] {6} RHYTHM DECADE




Regular expression examples

Notation is surprisingly expressive

regular expression matches does not match

.*SPB.*

(contains the trigraph spb)

[0-91{3}-[0-9]1{2}-[0-9]{4}

(Social Security numbers)

[a-z]+Q@ ([a-z]+\.)+ (edu|com)

(valid email addresses)

[$_A-Za-z] [$_A-Za-z0-9]*
(valid Java identifiers)

RASPBERRY SUBSPACE
CRISPBREAD SUBSPECIES
166-11-4433 11-55555555
166-45-1111 8675309
wayne@grlnceton.edu spam@nowhere
rs@princeton.edu
ident3 3a
PatternMatcher ident#3

and plays a well-understood role in the theory of computation.




Regular expressions to the rescue

\WHENEVER T LEARN A
NEW SKILL I ConNCoCT
ELABORATE FANTASY
SCENARI0S WHERE (T
LETS ME SAVE THE DAY.

OH NO! THE KILLER || BUT TD FIND THEM WED HAVE TO SEARCH
MUST HAVE ROLLOWED| | THROUGH 200 MB (F EMAILS LOOKING FOR
HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!

i
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e
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Can the average web surfer learn to use REs?

Google. Supports * for full word wildcard and | for union.

B Google Search: " the = of seville" - Mozilla

. File Edt View Go Bookmarks Tools Window Help
|

eyl
Web Images Groups News Froogle™®™ more »

>
k n TP Advanced Search
G 0 L)Sle I the * of seville Search Preferences

I»

Web Results 1 - 10 of about 60,100 for * the * of seville™. {0.31 seconds) |_

MNews results for ' the ™ of seville" - view all the latest headlines
&) Opera: Barber of Seville/ Marriage of Figaro - Financial Times - 3 hours ago

Information about the City of Sevilla (Seville), Andalucia ...
... Post a request on our Notice Board. Promote your business on this website;
email sales@andalucia.com. Information about the City of Seville. ...

wanew. andalucia.com/cities/sevilla htm - 22k - Cached - Similar pages

Universidad de Sevilla - [ Translate this page ]
INICIO | ESTUDIANTES | PROFESORES | PAS | INDICES | BUSCADOR | COMENTARIOS,
Complemento Autondmico, Estatuto, Espacio Europeo de Educacion ...

CATHOLIC ENCYCLOPEDIA: St. Isidore of Seville
... On the death of Leander, Isidore succeeded to the See of Seville. His long incumbency
to this office was spent in a period of disintegration and transition. ...

www. newadvent. org/cathen/08186a.htm - 32k - Cached - Similar pages

The Trickster of Seville and the Stone Guest

Commentary and analysis of Tirso de Maolina's "The Trickster of Seville", one of the seventeenth century's...

Similar pages

m=EEEEkz) {




Can the average programmer learn to use REs?

Perl RE for valid RFCS822 email addresses

(2:(2:\r\n) 2[ \£])*(?:(2: (2: [*()<>@, 7 :\\".\[\] \000-\031]+(?: (?: (2:\r\n)?[ \tD)+I\Z| (>=[\[" O<>@,; :\\".NINI1)) 1" (2 [A\"\e\NTINNL | (22 (2:\e\n) 2[ \t])) *" (2: (2:
Ar\n) 2[ \t])*) (2:\. (2: (2:\r\n) 2[ \t])*(2: [~ ()<>@,; :\\".\[\] \000-\031]+(?:(?: (?:\r\n)2[ \t])+I\Z| (?=[\[" O<>@,; :\\".\NI\I1)) 1" (2: [*\"\e\\TI\\. | (?: (2:\r\n) ?[

\EI))*"(2:(2:\r\n) 2 [ \t])*))*@(?: (2:\x\n) ?[ \t])*(2: [*()<>Q,; :\\".\[\] \000-\031]+(?: (?:(2:\x\n)?2[ \tD)+I\Z] (>=[\[" O<>@,; :\\".NI\ID)) INDCIANININE\NT NN L) *\
1(2:(2:\r\n) 2[ \e])*) (2:\. (2: (2:\r\n) 2[ \t£])*(2: [~ (O)<>@,; :\\".\[\] \000-\031]+(?:(?:(?:\r\n) ?[ \tD)+I\Z| (>=[\[" ()<>@, ; :\\".NINI1)) INDCIANININZNNT 1NN L) *\] (2
(2:\r\n) 2[ \t])*))* [ (2: [~ ()<>@, ; :\\".\N[\] \000-\031]+(?: (?: (2:\r\n)2[ \tD)+I\Z| (>=[\[" ()<>C, ; :\\".\NINTI)) 1" (2: IA\N"\e\NTIANL | (22 (2:\e\n) 2 [ \t]))*" (?: (?:\r\n)
20 \ED) *)*\<(2: (2:\r\n) 2[ \t]) *(2:@ (2: [~ ()<>@, ;7 :\\".\[\] \000-\031]+(?: (?: (?2:\r\n) 2[ \t])+I\Z| (>=[\[" ()<>@,;:\\".NI\I1)) INDCIANININENNT NN L) *\T (21 (2:\r\n) ?[
\E1)*) (2:\. (2:(2:\r\n) 2[ \t]) *(2: [* ()<>@, 7 :\\".\[\] \000-\0311+(?: (?: (2:\x\n)2[ \tD)+I\Z] (>=[\[" O<>C,; :\\".NINI1)) INDCIANININENNT INNL) *\T (2 (?:\r\n) ?[ \t]
)*))*(2:,@(2: (2:\r\n) 2 [ \t])*(2: [~ ()<>€, ; :\\".\[\]1 \000-\031]+(?: (?: (2:\r\n) 2[ \t])+I\Z| (>=[\[" O<>@, 7 :\\" . NINID)) INDCIANININENNT 1NN ) *\T (2 (2:\r\n) 2 [ \t])*
) (2:\L (20 (2:\e\n) 2 [ \£]) *(2: [* ()<>@, 7 :\\".\[\] \000-\0311+(?: (?: (2:\x\n) 2[ \t])+I\Z| (>=[\[" ()<>C, ; :\\".NINTI)) INDCIANININENNT INNL) *\] (20 (2:\r\n) 2 [ \t]) *))*)
*:(2:(2:\r\n) 2[ \t])*)2(2: [*()<>@, ; :\\".\[\] \000-\0311+(?: (?: (2:\r\n) 2[ \t])+I\Z| (>=[\[" (O<>C, ; :\\".NINID)) 1" (2 IA\"\e\NT AN [ (22 (2:\e\n) 2 [ \£])) *" (?: (2:\r
An) 2[ \t])*) (2:\. (2: (2:\r\n) 2[ \t])* (2: [* ()<>@, ; :\\".\[\] \000-\0311+(?: (?: (2:\r\n)2[ \tD)+I\Z] (>=[\[" ()<>C,; :\\".NI\11)) 1" (2: [A\"\e\\T I\ | (22 (2:\r\n) 2 [ \t
1) *"(2:(2:\x\n) 2[ \t]1)*))*@(?: (?:\r\n) 2[ \t])*(2: [~ ()<>@, ; :\\".\[\] \000-\031]+(?:(?: (?:\r\n) 2[ \t])+I\Z| (?=[\[" ()<>@, ; :\\".\NI\I1)) INDCIANININENNT 1\NL) %\ (
2:(2:\e\n) 2[ \t£]1)*) (2:\. (2: (2:\x\n) 2 [ \£])*(2: [*()<>@,; :\\".\[\] \000-\031]+(?: (?: (?2:\r\n)?2[ \t])+|\Z| (>=[\[" O<>@,;:\\".\INT1)) INDCIANININENNTINN L) *\] (2 (2
Ar\n) 2[ \t]) *)) *\>(2: (2:\r\n) 2 [ \t])*) | (2: [ ()<>@, ;7 :\\".\[\] \000-\031]+(?: (?: (?:\r\n) ?2[ \tD)+I\Z| (>=[\[" (<>, ;:\\".NI\ITD)) 1" (2: [*\"\e\\T [\\. | (?: (?:\r\n)?
[ANED)*"(2:(2:\x\n) 2[ \t])*)*: (2: (2:\x\n) 2[ \t]) *(2: (?: (2: [ (O <>@, ; :\\".\[\] \000-\031]+(?:(2: (2:\r\n)2[ \t])+I\Z| (?>=[\[" O<>@,; :\\".NIN11)) " (2: [*\"\xr\\]|
AL T2 (2:\2\n) 2 \E]))*" (2: (2:\x\n) 2[ \t])*) (2:\. (2: (2:\r\n) 2[ \t])*(2: [~ O <>Q, ;7 :\\".\[\] \000-\031]+(?:(?:(?2:\x\n)?2[ \t])+I\z| (>=[\[" ()<>@,;:\\".\[\I]D))I"
(20N \E\NNT NN L L (20 (2:\e\n) 20 \€])) *" (2: (2:\x\n) 2 [ \t£]1)*))*@(?: (?2:\r\n) ?[ \t])*(2: [~ ()<>@,; :\\".\[\] \000-\031]1+(?: (?: (?2:\r\n) 2[ \t])+I\Z| (>=[\[" ()<>@,;:\\
"ONINTD) INDCIANININENNT NN *NT (20 (2:\e\n) 20 \€1)*) (2:\. (2: (2:\x\n) 2[ \£]) *(2: [~ ()<>@, ; : \\".\[\] \000-\0311+(?: (?: (?:\r\n)?[ \t])+I\Z]| (>=[\[" ()<>Q, ; :\\".\[
AT INDCIANININENNT INNL) *NT (20 (2:\e\n) 20 \E]) %)) * [ (2: [ ()<>@, 7 :\\".\[\] \000-\031]+(?: (?: (2:\r\n)2[ \tD)+I\Z| (>=[\[" ()<>@, ; :\\".\I\NT1)) 1" (2: [*\"\r\\TI\NL | (
2:(2:\r\n) 2[ \t]))*" (2: (2:\r\n) 2[ \t])*)*\<(?: (?:\r\n) ?2[ \t])*(?:@(?: [*()<>@,; :\\".\[\] \000-\0311+(?: (?:(2:\r\n)?2[ \t])+|\Z| (>=[\[" ()<>@,;:\\".\I\11)) INL(L[
ANININENNT NN *NT (22 (2:\2\n) 2[ \E1)*) (2:\. (2: (2:\x\n) ?2[ \t]) *(2: [ O<>@, ;:\\".\[\] \000-\031]+(?:(?:(2:\r\n)?2[ \tD)+|\2] (>=[\[" O<>@,;:\\".NI\1D)) INLC(IANIN
INENNT NN ANT (2 (2:\e\n) 21 \£]) %)) *(2:,@(2: (2:\r\n) 2 [ \t])*(2: [*()<>@, ; :\\".\[\] \000-\031]+(?: (?: (?:\r\n)?[ \t])+|\Z| (>=[\[" ()<>C,; :\\".\I\11)) IND(I*NINDN
\\TINNO)*NT (20 (2:\2\n) 20 \£1)*) (?:\. (2: (2:\x\n) 2[ \t])*(2: [*()<>@, ; :\\".\[\] \000-\031]+(?: (?: (?2:\x\n)2[ \t])+I\Z| (?=[\[" O<>@,; :\\".NINI1)) INDCIANININE\N]
INVO*NT (22 (2:\2\n) 20 \£]) %)) %) *: (2: (2:\x\n) 2[ \t])*) 2 (2: [~ ()<>@,; :\\".\[\] \000-\0311+(?: (2: (?:\xr\n)?2[ \tD)+I\Z| (>=[\[" O<>Q,;:\\".\NI\I1)) 1" (2: [*\"\x\\TI\\
2 (2:\2\n) 20 \E]))*" (2 (2:\r\n) 20 \t])*) (2:\. (2: (2:\r\n) 2 [ \t])*(?: [~ ()<>@, ;7 :\\".\[\] \000-\031]+(2:(?: (2:\r\n)2[ \t])+I\Z| (>=[\[" (<>, ;:\\".\[\1])) " (?
SEANNENNTIANL (22 (2:\2e\n) 2 \E])) *" (2: (2:\r\n) 2 [ \€])*))*@(?: (?:\r\n) ?[ \t])*(2: [*()<>@,; :\\".\[\] \000-\031]+(?: (?: (?:\r\n)?[ \t])+|\Z| (>=[\[" ()<>@,;:\\".
NINTDD) INDCIANININENNT NN NT (22 (2:\e\n) 2[ \£1) %) (2:\. (2: (2:\r\n) 2 [ \e]) *(2: [ () <>@,; :\\".\[\] \000-\031]+(?: (?: (?:\r\n)?2[ \t])+I\Z| (?=[\[" ()<>@,;:\\".\[\]
DD INDCIANININENNT NN ) *NT (22 (2:\2\n) 20 \£1) *) ) *\>(2: (2:\r\n) 2[ \t])*) (2:,\s*(2: (?: [*()<>@, ; : \\".\[\] \000-\0311+(?: (?: (2:\r\n)?[ \t])+I\Z| (?=[\[" ()<>@,;:\\
NIV 2 EANNENNT NN (20 (2:\e\n) 20 \£D1)) *" (2: (2:\r\n) 2[ \t1)*) (2:\. (2: (2:\r\n) 2 [ \t])*(2: [* () <>@,; :\\".\[\] \000-\031]+(?:(?:(?2:\r\n)?[ \t])+|\Z| (?=I[
A"O<>@, 7\ NINTD) I (2 AN \E\NNT INNL (20 (2:\e\n) 2 \E]))*" (2: (2:\r\n) 2 [ \t])*))*@(2: (2:\r\n) ?[ \t])*(?: [*()<>Q,; :\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t
D+INZ] (=I\[" O<>@,; \\".NINID ) INDCIANININENNT NN L) *NT (22 (2:\e\n) 21 \£])*) (2:\. (2: (2:\x\n) 2[ \t£]) *(?: [~ ()<>@, 7 : \\".\[\] \000-\0311+(?: (?:(?:\r\n)?[ \t])+]|
\ZL(2=INI" O <>@, 7 :\\". NINITD)) INDCIANININENNT NN ) *\T (22 (2:\e\n) 2 [ \£1) *) ) *| (2: [ O<>@, ; :\\".\[\]1 \000-\031]+(?: (?: (?:\r\n)?2[ \t])+|\Z| (?=[\[" ()<>@,;:\\".\[\
1) 1 IAN"\NENNT NN (22 (2:\2e\n) 20 \E]))*" (2: (2:\r\n) 2 [ \t]) *)*\<(2: (2:\x\n) 2[ \t])*(2:@(2: [~ ()<>@, ;7 :\\".\[\] \000-\031]+(?:(?: (?:\r\n)?2[ \t])+|\Z| (?=[\["
O<>@, 7 :\\"NINITD) INDCANININSNNT NN O *ANT (20 (2:\2\n) 2 [ \£1)*) (2:\. (2: (2:\r\n) 2 [ \t])*(2: [* ()<>@,; :\\".\[\] \000-\031]+(?: (?: (?:\r\n)?[ \t])+|\Z| (>=[\[" () <>
@, 7NN NINID)) INDCIANININENNT NN ) *NT (2 (2:\e\n) 2[ \£]1) *) ) *(?:,@(?: (2:\r\n) 2[ \t])*(?: [* ()<>@,; :\\".\[\] \000-\031]+(?: (?:(?:\r\n)?[ \t])+|\Z| (>=[\[" ()<>€,
FONNVNINTT)) INDCIANININENNT NN *NT (20 (2:\2\n) 20 \e1)*) (2:\. (2: (2:\x\n) 2[ \£])*(2: [~ ()<>@, ; : \\".\[\] \000-\031]+(?:(?: (?:\r\n)?2[ \t])+|\Z| (?=[\[" ()<>@,;:\\
"ONINTT)) INDCEANININENNT INNL) *NT (22 (2:\2\n) 20 \E]) %)) *) *: (2: (2:\r\n) 2[ \t])*) 2 (2: [ ()<>@,; :\\".\[\] \000-\031]+(?: (?: (?2:\r\n)?2[ \t])+I\Z| (?=[\[" ()<>@,;:\\".
NINTID "2 A" NE\NNT NN (20 (2:\e\n) 20 \£]1)) *" (2: (2:\r\n) 2[ \t])*) (2:\. (2: (2:\x\n) 2[ \t])*(2: [* ()<>@, ; :\\".\[\] \000-\031]+(?: (?:(?2:\r\n)?[ \t])+I\Z| (?=[\[
"<, \NNTNINTD) 12 IANNE\NT NN (20 (2:\2\n) 21 \£1))*" (2: (2:\r\n) 2[ \t])*)) *@(?: (?:\r\n)?2[ \tD)*(?2: [*()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[ \t])
HINZ] (=[N O<>@, 7 :\\".NINTD)) INDCIANININENNT NN *NT (20 (2:\e\n) 20 \t£]) *) (2:\. (2: (2:\x\n) 2 [ \£])*(?2: [~ ()<>@, 7 :\\".\[\] \000-\031]+(?:(?: (?:\r\n)?[ \t])+|\Z
FC=INI"O<>@, 7 A\ NINTD ) INDCEANININENNT NN ) *NT (2 (2:\2\n) 21 \£]) %)) *\>(2: (2:\r\n) 2[ \t])*))*)?;\s*)

http http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html
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Regular expression caveat

Writing a RE is like writing a program.

* Need to understand programming model.
* Can be easier to write than read.

 Can be difficult to debug.

“Some people, when confronted with a problem, think

'l know I'll use regular expressions." Now they have
two problems. ”

— Jamie Zawinski (flame war on alt.religion.emacs)

Bottom line. REs are amazingly powerful and expressive,

but using them in applications can be amazingly complex and error-prone.

1



12



Pattern matching implementation: basic plan (first attempt)

Overview is the same as for KMP!
e No backup in text input stream.

e Linear-time guarantee.

Ken Thompson

Underlying abstraction. Deterministic finite state automata (DFA).

Basic plan.
* Build DFA from RE.
e Simulate DFA with text as input.

pattern

x
text y matches text

DFA for pattern

(A*B|AC)D %‘
pattern does not

match text

AAAABD '

Bad news. Basic plan is infeasible (DFA may have exponential number of states).

13



Pattern matching implementation: basic plan (revised)

Overview is similar to KMP.
e No backup in text input stream.
* Quadratic-time guarantee (linear-time typical).

Ken Thompson

Underlying abstraction. Nondeterministic finite state automata (NFA).

Basic plan.

 Build NFA from RE.
e Simulate NFA with text as input.

pattern

x
text y matches text

NFA for pattern
AAAABD'

r

(A*B|AC)D ejecy
\ pattern does not

match text

14



Nondeterministic finite-state automata

Pattern matching NFA.

 Pattern enclosed in parentheses.

One state per pattern character (start = O, accept = M).
Red ¢-transition (change state, but don't scan input).

Black match transition (change state and scan to next char).
Accept if any sequence of transitions ends in accept state.

Nondeterminism.

* One view: machine can guess the proper sequence of state transitions.

e Another view: sequence is a proof that the machine accepts the text.

accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

15



Nondeterministic finite-state automata

Ex. Is aaaaBD matched by NFA?

A A A

0—1—>2—>3—>2—>3->4 ~~_ 1o way out
of state 4

wrong guess if input is

A A A A B D

A

0—1—>6—>7 ~~_ 10 way out
of state 7

accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

16



Nondeterministic finite-state automata

Ex. Is aaaaBD matched by NFA?

A A A A B D
0—>1—>2>3—>2—>3—>2—>3—>2—>3>4—>5—>8—>9—->10—11

/

match transition: e-transition:
scan to next input character change state accept state reached:
and change state with no match pattern found

Note: any sequence of legal transitions that ends in state 11 is a proof.

TN

CECE oS B S

accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

yes!

17



Nondeterministic finite-state automata

Ex. Is aaaac matched by NFA?

A A A A C

0—>1—>2—>3—>2—>3—>2—>3—>2—>3—>4 ~__no way out
of state 4

no

Note: this is not a complete proof!
(need to mention the infinite number of sequences involving €-transitions between 2 and 3)

accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

18



Nondeterminism

Q. How to determine whether a string is recognized by an automaton?

DFA. Deterministic = exactly one applicable transition.

NFA. Nondeterministic = can be several applicable transitions;
need to select the right onel

- e Ly

1
/ ! accept state
1
9

0

NFA corresponding to the pattern ( ( A * B | AC) D)

Q. How to simulate NFA?
A. Systematically consider all possible transition sequences.

19



Pattern matching implementation: basic plan (revised)

Overview is similar to KMP.
e No backup in text input stream.
* Quadratic-time guarantee (linear-time typical).

Ken Thompson

Underlying abstraction. Nondeterministic finite state automata (NFA).

Basic plan.

 Build NFA from RE.
e Simulate NFA with text as input.

pattern

x
text y matches text

NFA for pattern
AAAABD'

r

(A*B|AC)D ejecy
\ pattern does not

match text

20



» NFA simulation

21



NFA representation
State names. Integers from o to M.

Match-transitions. Keep regular expression in array re[].

e-transitions. Store in a digraph G.

e 0—1,1—2,1—6, 2—3, 3—2, 3—4, 5—8, 8—9, 10—11

O~o a5~ O oMONO e oM NS,
accept state

NFA corresponding to thepattern ( ( A * B | AC) D)

22



NFA simulation

Q. How to efficiently simulate an NFA?
A. Maintain set of all possible states that NFA could be in
after reading in the first i text characters.

\ .
. . .\.// Wp/

. | J e '\. &’ ¢ .. « ®
o | VV

all states reachable possible transitions on possible null transitions all states reachable
after reading i symbols reading (i+1)st symbolc  before reading next symbol  after reading i+1 symbols

One step in simulating an NFA

Q. How to perform reachability?

23



Digraph reachability

Find all vertices reachable from a given set of vertices.

public class DFS

{
private SET<Integer> marked;
private Digraph G;

public DFS (Digraph G)
{ this.G = G; }

private void search(int v)
{
marked.add (v) ;
for (int w : G.adj(v))
if ('marked.contains(w)) search (w) ;

public SET<Integer> reachable (SET<Integer> s)
{

marked = new SET<Integer>() ;

for (int v : s) search(v);

return marked;




NFA simulation example

0 1 2 3 4 6 : setof states reachable via e-transitions from start
0

@~8@~@~&5’>~&5

3 7 : set of states reachable after matching A /\

0 1

@~®~©~8@~@~5>~6

2 3 4 7 : setof states reachable via e-transitions aﬁ%
0 1 2 3 4 5 6 7 8 9 10 11
O—QC=O—O—U_O—0—0—0—0—0O

3 : set of states reachable after matching A A

oo b0 o-S-0-5-

2 3 4 : set of states reachable via e-transitions after matching A A
/\ 10 11
0)
N\

O~~~ O—0=0—®

Simulationof ( C A * B | A C) D ) NFA forinput AABD




NFA simulation example

234

589

10

10 11

: set of states reachable via e-transitions after matching A A
0 1 2

O~~~ O—~0=0—O—~0—0

: set of states reachable after matching A A B

0 1

o~ h-o-5 b0 0-b-8-0

: set of states reachable via e-transitions after matching A A B

6 7

&@\/ A—O—=O—O——O

: set of states reachable after matchingA A B D

o~ -0 o= oMoRogICEE oM S ote

: set of states reachable via e-transitions after matching A A B D
/R 8 9 10 1
(O )—(0)

&D—’@@u@u@—’/o

Simulationof ( C A * B | A C) D ) NFA forinput AABD
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NFA simulation: Java implementation

public boolean recognizes (String txt)

{
DFS dfs = new DFS(G) ;

SET<Integer> pc = new dfs.reachable (0) ;

for (int i = 0; i < txt.length(); i++)
{

SET<Integer> match = new SET<Integer>() ;

for (int v : pc) {
if (v == M) continue;
if ((re[v] == txt.charAt(i)) ||
match.add (v+1) ;

pc = dfs.reachable (match) ;

return pc.contains (M) ;

states reachable from
start by e-transitions

all possible states

after scanning past
txt.charAt (i)

follow e-transitions

accept if you can
end in state M



NFA simulation: analysis

Proposition 1. Determining whether an N-character text string is recognized

by the NFA corresponding to an M-character pattern takes time proportional
to NM in the worst case.

Pf. For each of the N text characters, we iterate through a set of states of
size no more than M and run DFS on the graph of e-transitions.
(The construction we consider ensures the number of edges is at most M.)

o~ aEh-o-0 o= oMoRogCIEE oMoy
accept state

NFA corresponding to thepattern ( ( A * B | AC ) D )
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» NFA construction
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Building an NFA corresponding to an RE

States. Include a state for each symbol in the RE, plus an accept state.

0 1 2 3 4 5 6 7 8 9 10 11

OO OO O OO CR OB OR O

accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

30



Building an NFA corresponding to an RE

Concatenation. Add match-transition edge from state corresponding
to letters in the alphabet to next state.

Alphabet. A B ¢ D
Metacharacters. () . * |

O b o0 -0 -0 -0/
accept state

NFA corresponding to thepattern ( ( A * B | AC ) D )

31



Building an NFA corresponding to an RE

Parentheses. Add e-transition edge from parentheses to next state.

o0 =0 Bl
accept state

NFA corresponding to thepattern ( ( A * B | AC ) D )
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Building an NFA corresponding to an RE

Closure. Add three e-fransition edges for each * operator.

single-character closure closure expression

G.addEdge(i, i+1);

G.addEdge(i+1, 1); G.addEdge(lp, i+1);

G.addEdge(i+1, 1p);

O EED— -0 b
accept state

NFA corresponding to thepattern ( ( A * B | AC ) D )
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Building an NFA corresponding to an RE

Or. Add two e-transition edges for each | operator.

or expression

G.addEdge(1p, or+1l);
G.addEdge(or, 1);

accept state

NFA corresponding to thepattern ( ( A * B | AC ) D )
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NFA construction: implementation
Goal. Write a program to build the e-transition digraph.

Challenge. Need to remember left parentheses to implement closure and or;
need to remember | to implement or.

Solution. Maintain a stack.

 Left parenthesis: push onto stack.

| symbol: push onto stack.

* Right parenthesis: add edges for closure and or.

o~ aEh-o-0 o= oMoRogCIEE oMoy
accept state

NFA corresponding to thepattern ( ( A * B | AC ) D )
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NFA construction: example

stack for
indices of 0
(sand |s ®—>
(ops[1) N\
0] @_}
1 i
o ~
1
0 2 3
1
9] 4
1
0] 5
: O,
1
0] 6

Building the NFA correspondingto ( ( A * B | AC) D)
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NFA construction: example

|OI—‘U'I

|Ol—‘U'l

L 10

O)—

&o~@~o~o

Building the NFA correspondingto ( ( A * B | AC) D)
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NFA construction: Java implementation

public NFA (String regexp) {
Stack<Integer> ops = new Stack<Integer>() ;
this.re = re.toCharArray () ;
M = re.length;
G = new Digraph (M+1) ;
for (int 1 = 0; i < M; i++) {

int 1p = i;
if (re[i] == '"(' || re[i] == '|') ops.push(i);
else if (re[i] == ")') {

int or = ops.pop():;

if (ref[or] == "|"') {

lp = ops.pop() ;
G.addEdge (1p, or+l);
G.addEdge (or, 1i);

}

else 1lp = or;

if (i < M-1 && rel[i+l] == '*') {
G.addEdge (1p, i+l1);
G.addEdge (i+1, 1p);

if (re[i] == '"(' || re[i] == '"*' || re[i] == ")")

G.addEdge (1, i+1);

left parentheses and |

or

closure
(needs lookahead)

metasymbols
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NFA construction: analysis

Proposition 2. Building the NFA corresponding o an M-character pattern
takes time and space proportional fo M in the worst case.

Pf. For each of the M characters in the pattern, we add one or

two e-transitions and perhaps execute one or two stack operations.

* m
A= 08 O &O—00—0—0—0 P
acceptstate

NFA corresponding to thepattern ( (A * B | AC) D)
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» applications
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Generalized regular expression print

Grep. Takes a pattern as a command-line argument and prints the lines from

standard input having some substring that is matched by the pattern.

public class GREP

{
public static void main(String[] args)

{

String regexp = " (.*" + args[0] + ".*)";

while (!StdIn.isEmpty())
{
String line = StdIn.readLine()
NFA nfa = new NFA (regexp) ;
if (nfa.recognizes(line))
StdOut.println(line) ;

<

find lines containing
RE as a substring

Bottom line. Worst-case for grep (proportional to MN) is the same as for

elementary exact substring match.

41



Typical grep application
Crossword puzzle

dictionary
(standard in UNIX)

1 z 3 7 B G 7 B g 0 il 1z GISO on booksl-re
M Y S T
13 1 15 18 |
(o]
17 18 19 |
2 z
28 yal
E S S
2 % 30 31
N | T E
3 3 35
T
7 B 3
2
a7 _.5
54 %
57 58
&1 3 &
@

U
5 5 , % more words. txt
-
24 5 | a
5 abacus
abalone
abandon

[o]

% grep s..ict.. words.txt
constrictor

stricter

stricture

RN “EEE

84

70

40
58




Industrial-strength grep implementation

To complete the implementation:
e Add character classes.

Handling metacharacters.

Add capturing capabilities.

Extend the closure operator.

Error checking and recovery.

Greedy vs. reluctant matching.

Ex. Which substring(s) should be matched by the RE <blink>.*</blink> ?

reluctant reluctant

< » o .
< » < »

<blink>text</blink>some text<blink>more text</blink>

a [
< »

greedy
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Regular expressions in other languages

Broadly applicable programmer’s tool.

* Originated in Unix in the 1970s

* Many languages support extended reqular expressions.
 Built into grep, awk, emacs, Perl, PHP, Python, JavaScript.

% grep NEWLINE */*.java Prm’r all' |me§ containing NI which occurs
in any file with a . java extension

% egrep '“~[qwertyuiop]*[zxcvbnm]*$' dict.txt | egrep ' !

PERL. Practical Extraction and Report Language.

replace all occurrences of from

% perl -p -i -e 's|from|to|g' input.txt «—— ) . .
P p -1 | Itolg’ inpu ® with to in the file input. txt

$ perl -n -e 'print if /~[A-Za-z][a-z]*$/' dict.txt «——— printall uppercase words

1

do for each line
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Regular expressions in Java

Validity checking. Does the input match the regexp?

Java s‘rr'ing Iibr'ar'y. Use input.matches (regexp) for basic RE ma’rching.

public class Validate
{
public static void main(String[] args)
{
String regexp = args[O0];
String input = args[1l];

StdOut.println (input.matches (regexp)) ;

% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" identl23
true

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" rs@cs.princeton.edu

true

% java Validate "[0-9]{3}-[0-9]1{2}-[0-9]{4}" 166-11-4433
true

A

A

A

legal Java identifier

valid email address
(simplified)

Social Security number
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Harvesting information

Goal. Print all substrings of input that match a RE.

% java Harvester '"gcg(cggl|agg) *ctg" chromosomeX. txt

gcgcggcggcggcggcggcetyg
gcgctg T
gcgctg harvest patterns from DNA

gcgcggcggcggaggcggaggcggcetyg

harvest links from website

|

% java Harvester "http://(\\w+\\.)* (\\w+)" http://www.cs.princeton.edu
http://www.princeton.edu

http://www.google.com

http://www.cs.princeton.edu/news
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Harvesting information

RE pattern matching is implemented in Java's pattern and Matcher classes.

import java.util.regex.Pattern;

import java.util.regex.Matcher;

public class Harvester

{

public static void

{
String regexp
In in
String input
Pattern pattern
Matcher matcher

while (matcher.find())

main (String[] args)

args|[O0];

new In(args[1l]);
in.readall () ;
Pattern.compile(r P) ;
pattern.matcher (input) ;

StdOut.println (matcher.group()) ;

\\\\\\\\\\\-

1

compile() creates a
Pattern (NFA) from RE

matcher () creates a
Matcher (NFA simulator)
from NFA and text

£ind () looks for
the next match

group () returns
the substring most
recently found by find()
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Algorithmic complexity attacks

Warning. Typical implementations do not guarantee performancel!

java
java
java
java
java

o® o0 d° d° od° o°

java

Validate
Validate
Validate
Validate
Validate
Validate

"(alaa)*b"
"(alaa) *b"
"(alaa)*b"
"(alaa) *b"
"(alaa)*b"
"(alaa) *b"

N

Unix grep, Java, Perl

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 1.6 seconds
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 3.7 seconds
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 9.7 seconds
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 23.2 seconds
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 62.2 seconds
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 161.6 seconds

SpamAssassin regular expression.

% java RE "[a-z]+Q@[a-z]+([a-z\.]+\.)+[a-z]+" spammer@x............couvvuunn..

» Takes exponential time on pathological email addresses.

e Troublemaker can use such addresses to DOS a mail server.
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Not-so-regular expressions

Back-references.

* \1 notation matches sub-expression that was matched earlier.
» Supported by typical RE implementations.

% java Harvester "\b(.+)\1l\b" dictionary.txt
beriberi

couscous word boundary

Some non-regular languages.

» Set of strings of the form ww for some string w: beriberi.

» Set of bitstrings with an equal number of 0s and 1s: o1110100.
e Set of Watson-Crick complemented palindromes: atttcggaaat.

Remark. Pattern matching with back-references is intractable.

49



Context

Abstract machines, languages, and nondeterminism.
* basis of the theory of computation

* infensively studied since the 1930s

* basis of programming languages

Compiler. A program that translates a program to machine code.

« KMP string = DFA.
®* grep RE = NFA.

* javac Java language = Java byte code.

pattern string RE

unnecessary check if legal
compiler output DFA NFA

simulator DFA simulator NFA simulator

program
check if legal
byte code

JVM

50



Summary of pattern-matching algorithms

Programmer.

* Implement exact pattern matching via DFA simulation.

* Implement RE pattern matching via NFA simulation.

Theoretician.
» RE is a compact description of a set of strings.

* NFA is an abstract machine equivalent in power to RE.
e DFAs and REs have limitations.

You. Practical application of core CS principles.

Example of essential paradigm in computer science.
 Build intermediate abstractions.

* Pick the right ones!

* Solve important practical problems.
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5.5 Data Compression
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Data compression

Compression reduces the size of a file:
* To save space when storing it.

* To save time when transmitting it.

* Most files have lots of redundancy.

Who needs compression?

* Moore's law: # transistors on a chip doubles every 18-24 months.
* Parkinson's law: data expands to fill space available.

» Text, images, sound, video, ..

“ All of the books in the world contain no more information than is

broadcast as video in a single large American city in a single

vear. Not all bits have equal value. ” — Carl Sagan

Basic concepts ancient (1950s), best technology recently developed.



Applications

Generic file compression.
* Files: GZIP, BZIP, BOA.
* Archivers: PKZIP.

* File systems: NTFS.

Multimedia.
e Images: GIF, JPEG.
e Sound: MP3.

e Video: MPEG, DivX™, HDTV.

Communication.
e« ITU-T T4 Group 3 Fax.
e V.42bis modem.

Databases. Google.




Lossless compression and expansion

. uses fewer bits (you hope)
Message. Binary data B we want to compress.

Compress. Generates a "compressed" representation C(B).
Expand. Reconstructs original bitstream B.

Compress Expand

bitstream B compressed version C(B)

— — — —

original bitstream B

Basic model for data compression

Compression ratio. Bitsin C(B) / bits in B.

Ex. 50-75% or better compression ratio for natural language.



Food for thought

Data compression has been omnipresent since antiquity:
* Number systems.

e Natural languages.

* Mathematical notation.

has played a central role in communications technology,
* Braille.

* Morse code.

» Telephone system.

and is part of modern life.
* MP3.
* MPEG.

Q. What role will it play in the future?



» binary 1/0




Reading and writing binary data

Binary standard input and standard output. Libraries to read and write bits
from standard input and to standard output.

public class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value
char readChar() read 8 bits of data and return as a char value
char readChar(int r)  read r bits of data and return as a char value
[similar methods for byte (8 bits); short (16 bits); int (32 bits); Tong and double (64 bits)]
boolean 1isEmpty() is the bitstream empty?

void close() close the bitstream

public class BinaryStdOut

void write(boolean b) write the specified bit
void write(char c) write the specified 8-bit char
void write(char c, int r) write the r least significant bits of the specified char

[similar methods for byte (8 bits); short (16 bits); int (32 bits); Tong and double (64 bits)]

void close() close the bitstream




Writing binary data

Date representation. Different ways to represent 12/31/1999.

A character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

|00110001001100100010111100110111001100010010111100110001001110010011100100111001
1 2 / 3 1 / 1 9 9 9

80 bits
Three ints (BinaryStdOut)

BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

|000000000000000000000000000011000000000000000000000000000001111100000000000000000000011111001111

12 31 1999

96 bits
Two chars and a short (BinaryStdOut) A 4-bit field, a 5-bit field, and a 12-bit field (BinaryStdOut)
BinaryStdOut.write((char) month); BinaryStdOut.write(month, 4);
BinaryStdOut.write((char) day); BinaryStdOut.write(day, 5);
BinaryStdOut.write((short) year); BinaryStdOut.write(year, 12);
|00001100000111110000011111001111 |110011111011111001111
12 31 1999 ™~ 32 bits 1z 31 1999 21 bits ( + 3 bits for byte alignment at close)

Four ways to put a date onto standard output




Binary dumps

Q. How to examine the contents of a bitstream?

Standard character stream

% more abra.txt
ABRACADABRA!

Bitstream represented as 0 and 1 characters

% java BinaryDump 16 < abra.txt
0100000101000010
0101001001000001
0100001101000001
0100010001000001
0100001001010010
0100000100100001

96 bits

01 2

Bitstream represented with hex digits

% java HexDump 4 < abra.txt
41 42 52 41

43 41 44 41

42 52 41 21

96 bits

Bitstream represented as pixels in a Picture

% java PictureDump 16 < abra.txt

u __ 16-by-6 pixel
window, magnified

96 bits

8 9 AB CDEF

NUL

LF CR

SP

>|Z|V |-
o

Q| =0

sl =<|H|O|w

<
L
\
7

=
o |l

N o v w N RO
o

o
o | OB |—
S| TR @N

0w ilinluninN|lwlHxk

Al |H|O|H |

< || <|T|o |

X |T|X|ZT|o|—
N | [N e |-
AR R
[ S |=0

y |

Hexadecimal to ASCII conversion table
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Universal data compression

US Patent 5,533,051 on "Methods for Data Compression”, which is capable of
compression all files.

Slashdot reports of the Zero Space Tuner™ and BinaryAccelerator™.

“ZeoSync has announced a breakthrough in data compression
that allows for 100:1 lossless compression of random data. If

this is true, our bandwidth problems just got a lot smaller.... ”

1



Universal data compression
Proposition. No algorithm can compress every bitstring.
Pf 1. [by contradiction]

» Suppose you have a universal data compression algorithm U
that can compress every bitstream.

Given bintstring Bo, compress it to get smaller bitstring Bi.

Compress B: to get a smaller bitstring Bo.

Continue until reaching bitstring of size O.

Implication: all bitstrings can be compressed with O bits!

Pf 2. [by counting]

» Suppose your algorithm that can compress all 1,000-bit strings.

o 21990 possible bitstrings with 1000 bits.

e Only1+2+4+ . +298+2%9 can be encoded with < 999 bits.

e Similarly, only 1 in 2%%7 bitstrings can be encoded with < 500 bits!

e
S
o
i
ﬁ?
|

Universal
data compression?

12



Perpetual motion machines

Universal data compression is the analog of perpetual motion.

Closed-cycle mill by Robert Fludd, 1618 Gravity engine by Bob Schadewald

Reference: Museum of Unworkable Devices by Donald E. Simanek
http://www.lhup.edu/~dsimanek/museum/unwork.htm
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Undecidability

A difficult file to compress: one million (pseudo-) random bits

public class RandomBits

{

public static void main(String[] args)

{

int x = 11111;
for (int i = 0; i < 1000000; i++)
{
X = x * 314159 + 218281;
BinaryStdOut.write(x > 0);
}
BinaryStdOut.close() ;

14



Rdenudcany in Enlgsih Inagugae

Q. How much redundancy is in the English language?

“ ... randomising letters in the middle of words [has] little or no
effect on the ability of skilled readers to understand the text. This is
easy to denmtrasote. In a pubiltacion of New Scnieitst you could
ramdinose all the letetrs, keipeng the first two and last two the
same, and reibadailty would hadrly be aftcfeed. My ansaylis did not
come to much beucase the thoery at the time was for shape and
sengeuce retigcionon. Saberi's work sugsegts we may have some
pofrweul palrlael prsooscers at work. The resaon for this is suerly
that idnetiyfing coentnt by paarllel prseocsing speeds up
regnicoiton. We only need the first and last two letetrs to spot

chganes in meniang.” — Graham Rawlinson

A. Quite a bit.



» genomic encoding
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Genomic code
Genome. String over the alphabet { A,C, T,G }.

Goal. Encode an N-character genome: ATAGATGCATAG...

Standard ASCIT encoding. Two-bit encoding encoding.
* 8 bits per char. * 2 bits per char.
e 8N bits. e 2N bits.
o ey
01000001 A 00
C 43 01000011 Cc 01
T 54 01010100 T 10
G 47 01000111 G 11

Amazing but true. Initial genomic databases in 1990s did not use such a codel!
Fixed-length code. k-bit code supports alphabet of size 2.

17



Genomic code

public class Genome { Alphabet data type converts

E— between symbols { A,C, T, G }
public static void compress() { / and integers 0—3.
Alphabet DNA = new Alphabet ("ACTG") ;

String s = BinaryStdIn.readString() ;
int N = s.length();
BinaryStdOut.write (N) ; NI
for (int i = 0; i < N; i++) {
int d = DNA.toIndex(s.charAt(i));
BinaryStdOut.write(d, 2);

read genomic string from stdin;
write to stdout using 2-bit code

}
BinaryStdOut.close() ;

public static void expand() ({
Alphabet DNA = new Alphabet ("ACTG") ;
int N = BinaryStdIn.readInt();
for (int i = 0; i < N; i++) { DT
char c¢c = BinaryStdIn.readChar(2) ;
BinaryStdOut.write (DNA. toChar(c)) ;

read 2-bit code from stdin;
write genomic string to stdout

}
BinaryStdOut.close() ;




Genomic code: test client and sample execution

public static void main(String[] args)

{
if (args[0] .equals("-")) compress() ;
if (args[0] .equals("+")) expand() ;

Tiny test case (264 bits)

% more genomeTiny.txt
ATAGATGCATAGCGCATAGCTAGATGTGCTAGC

java BitsDump 64 < genomeTiny.txt
0100000101010100010000010100011101000001010101000100011101000011
0100000101010100010000010100011101000011010001110100001101000001
0101010001000001010001110100001101010100010000010100011101000001
0101010001000111010101000100011101000011010101000100000101000111
01000011

264 bits

% java Genome - < genomeTiny.txt
?? <—— cannot see bitstream on standard output

% java Genome - < genomeTiny.txt | java BinaryDump 64
0000000000000000000000000010000100100011001011010010001101110100
1000110110001100101110110110001101000000

104 bits

% java Genome - < genomeTiny.txt | java HexDump 8
00 00 00 21 23 2d 23 74

8d 8c bb 63 40

104 bits

% java Genome - < genomeTiny.txt | java Genome +
ATAGATGCATAGCGCATAGCTAGATGTGCTAGC compress-expand cycle

produces original input
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» run-length encoding
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Run-length encoding

Simple type of redundancy in a bitstream. Long runs of repeated bits.

00o0ooo00000000001111111000000011111111111

Representation. Use 4-bit counts to represent alternating runs of Os and 1s:
15 Os, then 7 1s, then 7 Os, then 11 1s.

1111011101111011 <«— 16 bits(instead of 40)

15 7 7 11

Q. How many bits to store the counts?
A. We'll use 8.

Q. What to do when run length exceeds max count?
A. If longer than 255, intersperse runs of length O.

Applications. JPEG, ITU-T T4 Group 3 Fax, ...
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Run-length encoding: Java implementation

public class RunLength
{

private final static int R = 256;

public static void compress ()
{ /* see textbook */ }

public static void expand()

{

boolean b = false;
while (!'BinaryStdIn.isEmpty())

{

char run = BinaryStdIn.readChar () ; «—

for (int i = 0; i < run; i++)
BinaryStdOut.write (b) ; «—
b = 'b;
}
BinaryStdOut.close() ;

read 8-bit count from standard input

write 1 bit o standard output

22



An application: compress a bitmap

Typical black-and-white-scanned image.
300 pixels/inch.

e 8.5-by-11 inches.

e 300 x 8.5 x 300 x 11 = 8.415 million bits.

Observation. Bits are mostly white.

Typical amount of text on a page.
40 lines x 75 chars per line = 3,000 chars.

00000000000000011111110000000000
00000000000011111111111111100000
00000000001111000011111111100000
00000000111100000000011111100000
00000001110000000000001111100000
00000011110000000000001111100000
00000111100000000000001111100000
00001111000000000000001111100000
00001111000000000000001111100000
00011110000000000000001111100000
00011110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111111000000000000001111100000
00111111000000000000001111100000
00011111100000000000001111100000
00011111100000000000001111100000
00001111110000000000001111100000
00001111111000000000001111100000
00000111111100000000001111100000
00000011111111000000011111100000
00000001111111111111111111100000
00000000011111111111001111100000
00000000000011111000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000011111110000
00000000000000000011111111111100
00000000000000000311111111111110

00000000000000000000000000000000
1536 bits

A typical bitmap, with run lengths for each row
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» Huffman compression
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Variable-length codes

Use different number of bits to encode different chars.

Ex. Morsecode: eee _ — _e e

separate codewords.

Letters

A *—

B —e e

(& —_——e

. . D — e
Issue. Ambiguity. E .

SOS ? (F} —
IAMIE ? i—l seee
EEWNI °? T e
V7 2 oo

M & —

N —

(o) -

P [ Y

In practice. Use a medium gap to Q ——e—

R [yp—

S

T

U

Vv

w

X

Y

Z

codeword for S is a prefix
of codeword for V

25



Variable-length codes

Q. How do we avoid ambiguity?

A. Ensure that no codeword is a prefix of another.

Ex 1. Fixed-length code.

Ex 2. Append special stop char to each codeword.

Ex 3. General prefix-free code.

Codeword table
value
101
0
1111
110
100
1110

0N ®> -7

Compressed bitstring

011111110011001000111111100101 <—30 bits

Codeword table
key value
! 101
11
00
010
100
011

~ O N W >

Compressed bitstring

11000111101011100110001111101 <—29 bits

AB RA CA DAB RA !
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Prefix-free codes: trie representation

Q. How to represent the prefix-free code?

A. A binary friel
e Chars in leaves.

» Codeword is path from root to leaf.

Codeword table Trie representation

key value

! 101 0

A 0

B 1111

C 110

D 100 0/1

R

1110 . 1

Compressed bitstring

011111110011001000111111100101 <—30 bits

Codeword table Trie representation
key value
! 101
A 11
B 00
C o010
D 100
R 011

Compressed bitstring

11000111101011100110001111

AB RA CA DAB RA

101 <—29 bits

27



Prefix-free codes: compression and expansion

Compression.

e Method 1: start at leaf; follow path up to the root; print bits in reverse.
* Method 2: create ST of key-value pairs.

Expansion.

e Start at root.

* Go left if bit is O; go right if 1.

* If leaf node, print char and return to root.

Codeword table Trie representation
Codeword table Trie representation

key value key value

! 101 ! 101

AO A 11

B 1111 B 00

C 110 @] C 010

D 100 D 100

R 1110 @) R 011
Compressed bitstring Compressed bitstring .
011111110011001000111111100101 <— 30 bits 11000111101011100110001111101 ~—29 bits
A B RA CA DA B RA | AB RA CA DAB RA !




Huffman trie node data type

private static class Node implements Comparable<Node>
{
private char ch; // Unused for internal nodes.
private int freq; // Unused for expand.
private final Node left, right;

public Node (char ch, int freq, Node left, Node right)
{

this.ch = ch;

this. freq freqg;

this.left = left;

this.right = right;

public boolean isLeaf ()
{ return left == null && right == null; }

public int compareTo (Node that)
{ return this.freq - that.freq; }

29



Prefix-free codes: expansion

public void expand()
{
Node root = readTrie() ;
int N = BinaryStdIn.readInt();

for (int i = 0; i < N; i++)
{

Node x = root;

while (!'x.isLeaf())

{
if (BinaryStdIn.readBoolean())

x = x.left;
else
X = x.right;

}
BinaryStdOut.write(x.ch) ;
}
BinaryStdOut.close() ;

-« read in encoding frie
« read in number of chars
(—

expand codeword for i char

Running time. Linear in input size (constant amount of work per bit read).
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Prefix-free codes: how to transmit

Q. How to write the trie?

A. Write preorder traversal of trie; mark leaf and internal nodes with a bift.

preorder
traversal / °

leaves
| A v D L { R | B
010100000100101000lOOOlOOOOlOlOlOlOOOOll(T)101010010101000010

5 < internal nodes

1 23 4
Using preorder traversal to encode a trie as a bitstream

private static void writeTrie (Node x)

{
if (x.isLeaf())

{
BinaryStdOut.write (true) ;

BinaryStdOut.write (x.ch) ;

return;

}
BinaryStdOut.write (false) ;

writeTrie(x.left) ;
writeTrie (x.right) ;

Note. If message is long, overhead of transmitting trie is small.



Prefix-free codes: how to transmit

Q. How to read in the trie?

A. Reconstruct from preorder traversal of trie.

preorder
traversal / °

leaves
| A v D L { R | B
010100000100101000lOOOlOOOOlOlOlOlOOOOll(T)101010010101000010

5 < internal nodes

1 23 4
Using preorder traversal to encode a trie as a bitstream

private static Node readTrie ()

{
if (BinaryStdIn.readBoolean ())

{
= BinaryStdIn.readChar() ;

char c =
return new Node(c, 0, null, null);

}

Node x = readTrie() ;

Node y = readTrie();

return new Node('\0', 0, x, y);
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Huffman codes

Q. How to find best prefix-free code?
A. Huffman algorithm.

David Huffman

Huffman algorithm (o compute optimal prefix-free code):
e Count frequency freq[i] for each char i in input.
e Start with one node corresponding to each char i (with weight freq[i]).
* Repeat until single trie formed:
- select two tries with min weight freq[i] and freq[j]
- merge into single trie with weight freq[i] + freqlj]

Applications. JPEG, MP3, MPEG, PKZIP, GZIP, ..
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Constructing a Huffman encoding trie

A

B

5

2

1

0

111

1011

100

110

1010

7
A
3 0 1 4
0 1 0 1
2
/ 0 1
frequencies
1 1

Huffman code construction for ABRACADABRA!
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Constructing a Huffman encoding trie: Java implementation

private static Node buildTrie (int[] freq)
{
MinPQ<Node> pq = new MinPQ<Node>() ;
for (char i = 0; i < R; i++)
if (freq[i] > 0)
pg.insert (new Node (i, freq[i], null, null));

while (pg.size() > 1)
{
Node x = pqg.delMin() ;
Node y = pg.delMin() ;
Node parent = new Node('\0', x.freq + y.freq, x, y);
pPg.insert (parent) ;

return pq.delMin(); not used total frequency two subtries

initialize PQ with
singleton tries

merge two
smallest tries
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Huffman encoding summary

Proposition. [Huffman 1950s] Huffman algorithm produces an optimal
prefix-free code. T

Pf. See textbook.

no prefix-free code uses fewer bits

Implementation.

* Pass 1: tabulate char frequencies and build trie.
» Pass 2: encode file by traversing trie or lookup table.

Running time. Using a binary heap = O(N + R log R).

[

input alphabet
size size

Q. Can we do better? [stay tuned]
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» LZW compression

Abraham Lempel Jacob Ziv
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Statistical methods

Static model. Same model for all texts.

* Fast.

* Not optimal: different texts have different statistical properties.
e Ex: ASCII, Morse code.

Dynamic model. Generate model based on text.
* Preliminary pass needed to generate model.

e Must transmit the model.

e Ex: Huffman code.

Adaptive model. Progressively learn and update model as you read text.
* More accurate modeling produces better compression.

* Decoding must start from beginning.

« Ex: LZW.
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Lempel-Ziv-Welch compression example

input
matches

value

41

42 52

41

43 41

44

81

83

82

88

41

LZW compression for ABRACADABRABRABRA

AB 81 DA

A

B

41

42

43

44

BR

RA

AC

CA

AD

82

83

84

85

86

codeword table

ABR

RAB

BRA

ABRA

87

88

89

8A

8B
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Lempel-Ziv-Welch compression

LZW compression.
* Create ST associating W-bit codewords with string keys.

Initialize ST with codewords for single-char keys.

Write the W-bit codeword associated with s.
Add s + c to ST, where c is next char in the input.

input A B R A C A D A B R A B R A B

matches

output 41 42 52 41 43 41 44 81 83 82 88
AB 81
f BR 82
input RA 83
substring AC 84
LZW CA 85
codeword f AD 86
lookahead DA 87
character ABR 88
RAB 89
BRA 8A

ABRA 8B
LZW compression for ABRACADABRABRABRA

Find longest string s in ST that is a prefix of unscanned part of inpuft.

A EOF
|
41 80
codeword table
key value
AB 81
BR 82
RA 83
AC 84
CA 85
AD 86
DA 87
ABR 88
RAB 89
BRA 8A
ABRA 8B

40



Representation of LZW code table

Q. How to represent LZW code table?
A. A trie: supports efficient longest prefix match.

BCDR

5 POV
Sdobbdd
&> & &

Trie representation of LZW code table

Remark. Every prefix of a key in encoding table is also in encoding table.

41



LZW compression: Java implementation

public static void compress ()

{

String input = BinaryStdIn.readString() ;

TST<Integer> st = new TST<Integer>() ;
for (int i = 0; i < R; i++)

st.put("" + (char) i, 1i);
int code = R+1;

while (input.length() > 0)
{
String s = st.longestPrefixOf (input) ;
BinaryStdOut.write(st.get(s), W)
int t = s.length();
if (t < input.length() && code < L)
st.put (input.substring (0, t+1l), code++) ;
input = input.substring(t)

BinaryStdOut.write (R, W)
BinaryStdOut.close() ;

read in input as a string

codewords for single-
char, radix R keys

find longest prefix match s

write W-bit codeword for s

add new codeword

scan past s in input

write last codeword
and close input stream

42



LZW expansion

LZW expansion.

Initialize ST to contain with single-char values.
Read a W-bit key.
Find associated string value in ST and write it out.

e Update ST.
mnput 41 42 52 41 43 41 44 81 83 82
output A B R A C A D AB RA B R
81 AB
82 BR
83 RA
84 AC
85 CA
86 AD
87 DA
88 ABR
zw 89 RAB
codeword input 8A BRA
substring

Create ST associating string values with W-bit keys.

88
ABR

8B ABRA

LZW expansion for 41 42 52 41 43 41 44 81 83 82 88 41 80

41 80
A

inverse codeword table
key value

81 AB
82 BR
83 RA
84 AC
85 CA
86 AD
87 DA
88 ABR
89 RAB
8A BRA
8B ABRA
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LZW expansion: tricky situation

Q. What to do when next codeword is not yet in ST when needed?

compression
input A B A B A B A

matches A B A B ABA
output 41 42 81 83 80
codeword table
key value
AB 81 . N
BR 82
ABA 83 ABA 83
expansion
input 41 42 81 83 80
output A B A B ? <~ must be ABA
(see below)
SLAB d lookahead ch
82 BA need lookahead character

83 AB? «—— tocomplete entry

next character in output—the lookahead character!
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LZW implementation details

How big to make ST?

* How long is message?

* Whole message similar model?

e [many variations have been developed]

What to do when ST fills up?

e Throw away and start over. [GIF]

* Throw away when not effective. [Unix compress]
e [many other variations]

Why not put longer substrings in ST?

 [many variations have been developed]
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LZW in the real world

Lempel-Ziv and friends.

[

LZ77. LZ77 not patented = widely used in open source
e LZ78. LZW patent #4,558,302 expired in US on June 20, 2003
e LZW. some versions copyrighted

e Deflate = LZ77 variant + Huffman.

PNG: LZ77.

Winzip, gzip, jar: deflate.

Unix compress: LZW.

Pkzip: LZW + Shannon-Fano.

GIF, TIFF, V.42bis modem: LZW.
Google: zlib which is based on deflate.

AN

never expands a file
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Lossless data compression benchmarks

scheme bits / char

Burrows-Wheeler ’ 2.29

data compression using Calgary corpus

next programming assignment
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Data compression summary

Lossless compression.

» Represent fixed-length symbols with variable-length codes. [Huffman]
» Represent variable-length symbols with fixed-length codes. [LZW]

Lossy compression. [not covered in this course]

« JPEG, MPEG, MP3, ...
 FFT, wavelets, fractals, ...

Theoretical limits on compression. Shannon entropy.

Practical compression. Use extra knowledge whenever possible.
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6.1 Geometric Primitives
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Geometric algorithms

Applications.

e Data mining.

e VLSI design.

e Computer vision.

e Mathematical models.

o LAY 1

 Astronomical simulation. . . .
airflow around an aircraft wing

* Geographic information systems.

» Computer graphics (movies, games, virtual reality).

* Models of physical world (maps, architecture, medical imaging).

http://www.ics.uci.edu/~eppstein/geom.html

History.
» Ancient mathematical foundations.
» Most geometric algorithms less than 25 years old.



» primitive operations



Geometric primitives

Point: two numbers (x, y). any line not through origin
Line: two numbers a and b. [ax + by = 1]

Line segment: two points.

Polygon: sequence of points.

Primitive operations.
 Is a polygon simple?

Is a point inside a polygon?

Do two line segments intersect?

What is Euclidean distance between two points?

Given three points py, p,, p3, iS p;—p>—Pp; a counterclockwise turn?

Other geometric shapes.
e Triangle, rectangle, circle, sphere, cone, ...

* 3D and higher dimensions sometimes more complicated.



Geometric intuition

Warning: intuition may be misleading.

* Humans have spatial intuition in 2D and 3D.

e Computers do not.

* Neither has good intuition in higher dimensions!

Q. Is agiven polygon simple? «— no crossings

oo
[y
(o)}
(6}
o0}
<
N

EH
=

1 15 14 13 12 11 10 8 6 4 2

2 18 4 18 4 19 19 20 20 20
- 1 10 3 7 2 8 8 4
6 5 15 1 11 3 14 16

we think of this algorithm sees this



Polygon inside, outside

Jordan curve theorem. [Jordan 1887, Veblen 1905] Any continuous simple
closed curve cuts the plane in exactly two pieces: the inside and the outside.

Q. Isa point inside a simple polygon?

Application. Draw a filled polygon on the screen.



Fishy maze

Puzzle. Are A and B inside or outside the maze?

http://britton.disted.camosun.bc.ca/fishmaze.pdf



Polygon inside, outside

Jordan curve theorem. [Jordan 1887, Veblen 1905] Any continuous simple
closed curve cuts the plane in exactly two pieces: the inside and the outside.

Q. Isa point inside a simple polygon?

J

http://www.ics.uci.edu/~eppstein/geom.html

Application. Draw a filled polygon on the screen.



Polygon inside, outside: crossing humber

Q. Does line segment intersect ray?

1 - Vi
Yo = EAE (x0 - ;) + yi (X1, Yir1)
Xi+1 = Xi
Xi < X0 < Xi+1 //
(xi, yi)
®
(x0, yo)

public boolean contains(double x0, double yO0)
{
int crossings = 0;
for (int i = 0; i < N; i++)
{
double slope = (y[i+l1l] - yI[i]) / (x[i+1l] - x[i]):;
boolean condl = (x[i] <= x0) && (x0 < x[i+1]);
boolean cond2 = (x[i+l] <= x0) && (x0 < x[i]);
boolean above = (y0 < slope * (x0 - x[i]) + yI[il])
if ((condl || cond2) && above) crossings++;

}

return crossings % 2 !'= 0;




Implementing ccw

CCW. Given three point a, b, and ¢, is a-b-c a counterclockwise turn?

* Analog of compares in sorting.
e Idea: compare slopes.

©
© (®) ©
(=) © ® ®
@ ® @ ®
yes no Yes 22?
(co-slope) (collinear)

Lesson. Geometric primitives are tricky to implement.
* Dealing with degenerate cases.

» Coping with floating-point precision.

22?

(collinear)

2?2?

(collinear)

10



Implementing ccw

CCW. Given three point q, b, and ¢, is a—b—c a counterclockwise turn?
e Determinant gives twice signed area of triangle.

a, a, 1
2 x Area(a,b,c) = | b, by 1| = (bx—ax)(cy -a,) - (by —a,)(c, —a,)
c, ¢ 1

If area > O then a—b—c is counterclockwise.

If area< 0, then a—b—c is clockwise.

e If area = 0, then a—b—c are collinear.

(b, b)) (b, by)

o\ o\

(¢ €)) (ax. a) (a.. ay) (¢ )

1



Immutable point data type

public class Point

{

private final int x;
private final int y;

public Point(int x, int y)
{ this.x = x; this.y =y, }

public double distanceTo (Point that)
{
double dx = this.x - that.x;
double dy = this.y - that.y;

cast to 1ong to avoid
return Math.sqgrt (dx*dx + dy*dy) ;

overflowing an int

public static int ccw(Point a, Point b, Point c)
{

int area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);

if (area2 < 0) return -1;
else if (area2 > 0) return +1;
else return O;

public static boolean collinear (Point a, Point b, Point c)
{ return ccw(a, b, c) == 0; }

12



Sample ccw client: line intersection

Intersect. Given two line segments, do they intersect?

e Ideal: find intersection point using algebra and check.

e Idea 2: check if the endpoints of one line segment are on
different "sides" of the other line segment (4 calls to ccw).

11.p2 e

X RS S

12.p1 11.p1

not handled

public static boolean intersect(LineSegment 11, LineSegment 12)
{
int testl = Point.ccw(ll.pl, 1l1.p2, 12.pl) * Point.ccw(ll.pl, 11.p2, 12.p2);

int test2 = Point.ccw(l2.pl, 12.p2, 11.pl) * Point.ccw(l2.pl, 12.p2, 11.p2);
return (testl <= 0) && (test2 <= 0);

13



» convex hull
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Convex hull

A set of points is convex if for any two points p and q in the seft,
the line segment pq is completely in the seft.

Convex hull. Smallest convex set containing all the points.

p l p | ;o
.\y >&y .\\ e o .
Noe
\, . o |
convex not convex  TUTTTTee——o_ '
convex hull
Properties.

 "Simplest" shape that approximates set of points.
e Shortest perimeter fence surrounding the points.
* Smallest area convex polygon enclosing the points.

15



Mechanical solution

Mechanical convex hull algorithm. Hammer nails perpendicular to plane;
stretch elastic rubber band around points.

http://www.dfanning.com/math_ tips/convexhull 1.gif

16



An application: farthest pair

Farthest pair problem. Given N points in the plane, find a pair of points with
the largest Euclidean distance between them.

Fact. Farthest pair of points are on convex hull.

17



Brute-force algorithm

Observation 1.

Edges of convex hull of P connect pairs of points in P.

Observation 2.

p-q is on convex hull if all other points are counterclockwise of pq.

O(N3) algorithm. For all pairs of points p and g:
J Compu‘re cew(p, q, x) for all other pOiHTS X.
* p-q is on hull if all values are positive.

18



Package wrap (Jarvis march)

Package wrap.

» Start with point with smallest (or largest) y-coordinate.
» Rotate sweep line around current point in ccw direction.

* First point hit is on the hull.
* Repeat.

19



Package wrap (Jarvis march)

Implementation.

» Compute angle between current point and all remaining points.
 Pick smallest angle larger than current angle.
e O(N) per iteration.




Jarvis march: demo

Algorithm : JarvisMarch State : STEPPING  Events: 86
~ ~

"~
A
v

* N~

A

v

T Jal»

‘ .E?!%%' Jal»

( Init ) ( Run ) (Pause ) ( Step ) Speed: 8%

http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/JarvisMarch.html
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Jarvis march: demo

Algorithm : JarvisMarch State : STEPPING  Events: 143
&

I

NN |
vv <l

( Init ) ( Run ) ( Pause ) ( Step ) Speed: 28%

http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/JarvisMarch.html
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Jarvis march: demo

Algorithm : JarvisMarch State : RUNNING 86

[«

MMEITS

A
A A

e [ —_ )

('init ) ( Run ) ( Pause ) ( Step ) . Speed: 90%

http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/JarvisMarch.html
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How many points on the hull?

Parameters.
* N = number of points.
* h = number of points on the hull.

Package wrap running time. ©(N h).

How many points on hull?
* Worst case: h=N.

* Average case: difficult problems in stochastic geometry.
- uniformly at random in a disc: h = NY/3

- uniformly at random in a convex polygon with O(1) edges: h =log N

24



Graham scan

Graham scan.

* Choose point p with smallest (or largest) y-coordinate.
» Sort points by polar angle with p to get simple polygon.
 Consider points in order, and discard those that

would create a clockwise turn.

25



Graham scan: demo

Algorithm : GrahamScan State : STEPPING Events: 135
&

fal»

~ A
A A

T
(Cnit ) (Run ) ("Pause ) ( Step ) © Speed: 4%

http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/GrahamScan.html

MMEIES
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Graham scan: demo

Algorithm : GrahamScan State : STEPPING Events: 66
s
v
L 4

e

'_9

€ QEEEE’) <]

- (6 S

( Init ) ( Run ) ( Pause ) ( Step ) Speed: 6%

http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/GrahamScan.html
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Graham scan: implementation

Implementation.
e Input: p[1],pl2], .., pIN] are distinct points.
e Output: Mand rearrangement so that p[1], p[2], .., p[M] iS convex hull.

// preprocess so that p[l] has smallest y-coordinate
// sort by polar angle with respect to p[1l]

pP[0] = p[N]; // sentinel
int M = 2;
for (int i = 3; i <= N; i++)
{
while (Point.cew(p[M-1], p[M], pl[i]) <= 0)
M--;
M++;

) discard points that would
swap(p, M, i); «—— addifo putative hull

create clockwise turn

why?
A
Running time. O(N log N) for sort and O(N) for rest.

28



Quick elimination

Quick elimination.
* Choose a quadrilateral Q or rectangle R with 4 points as corners.
* Any point inside cannot be on hull.

Q
- 4 ccw tests for quadrilateral R |
- 4 compares for rectangle .o .
° ° R
Three-phase algorithm. \I°° . )
* Pass through all points to compute R. e \' ¢ .
* Eliminate points inside R. .

* Find convex hull of remaining points.

In practice. Eliminates almost all points in linear time.

these
points
eliminated

29



Convex hull algorithms costs summary

Asymptotic cost to find h-point hull in N-point set.

package wrap N h
Graham scan N log N
quickhull N log N
mergehull N log N
sweep line N log N

quick elimination NT
marriage-before-conquest N log h

t assumes "reasonable" point distribution

<«—— output sensitive

<«<—— output sensitive
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Convex hull: lower bound

Models of computation.
e Compare-based: compare coordinates.
(impossible to compute convex hull in this model of computation)

(a.x < b.x) || ((a.x == b.x) && (a.y < b.y))) |

e Quadratic decision tree model: compute any quadratic function
of the coordinates and compare against O.

(a.x*b.y - a.y*b.x + a.y*c.x - a.x*c.y + b.x*c.y - c.x*b.y) < 0

higher constant-degree polynomial tests
don't help either [Ben-Or, 1983]

/
Proposition. [Andy Yao, 1981] In quadratic decision tree model,

any convex hull algorithm requires Q(N log N) ops.

even if hull points are not required to be

output in counterclockwise order
31



» closest pair
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Closest pair

Closest pair problem. Given N points in the plane, find a pair of points with
the smallest Euclidean distance between them.

Fundamental geometric primitive.

* Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

e Special case of nearest neighbor, Euclidean MST, Voronoi.

N _

——
fast closest pair inspired fast algorithms for these problems

33



Closest pair

Closest pair problem. Given N points in the plane, find a pair of points with
the smallest Euclidean distance between them.

Brute force. Check all pairs with N? distance calculations.

1-D version. Easy N log N algorithm if points are on a line.

Degeneracies complicate solutions.

[assumption for lecture: no two points have same x-coordinate]

34



Divide-and-conquer algorithm

 Divide: draw vertical line L so that ~ 3N points on each side.
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Divide-and-conquer algorithm

 Divide: draw vertical line L so that ~ 3N points on each side.
e Conquer: find closest pair in each side recursively.

36



Divide-and-conquer algorithm

Divide: draw vertical line L so that ~ N points on each side.

Conquer: find closest pair in each side recursively.

Combine: find closest pair with one point in each side.

Return best of 3 solutions. seems like O(N?)

® L o . ®
® ® ®
® ° e °
®
: Sof? f 21
® ® ®
®
iz/o ® ° ® ® o
° ® e o
®




How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 6.

0 = min(12, 21)
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How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 9.

e Observation: only need to consider points within d of line L.

° 5 = min(12, 21)
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How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 9.

e Observation: only need to consider points within d of line L.
* Sort points in 28-strip by their y coordinate.

40



How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 9.
e Observation: only need to consider points within d of line L.

e Sort points in 28-strip by their y coordinate.

* Only check distances of those within 11 positions in sorted list!

eC/321

why 11?

° 5 = min(12, 21)
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How to find closest pair with one point in each side?

Def. Let s; be the point in the 25-strip, with

the ith smallest y-coordinate.

Claim. If |i- j| = 12, then the
distance between s; and s; is at least 3.
Pf.
* No two points lie in same 35-by-38 box.
e Two points at least 2 rows apart

have distance = 2(35). =

Fact. Claim remains true if we replace 12 with 7.

e —
(31
e |°
® | ©
(2¢)
25)
0 0

(N[ (N[

o

(N[

o
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Divide-and-conquer algorithm

Closest-Pair(pi, .., Pn)

{

Compute separation line L such that half the points
are on one side and half on the other side.

01 = Closest-Pair (left half)

02 = Closest-Pair(right half)

0 = min (01, 9d2)

Delete all points further than 0 from separation line L
Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these

distances is less than 0, update 0.

return 6.

A

O(N log N)

2T(N/ 2)

O(N)

O(N log N)

O(N)
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Divide-and-conquer algorithm: analysis
Running time recurrence. T(N) < 2T(N/2) + O(N log N).
Solution. T(N) = O(N (log N)?).

Remark. Can be improved to O(N log N).

\

sort by x- and y-coordinates once
(reuse later to avoid re-sorting)

(x1-x2) 2+ (1 -y2) 7

Lower bound. In quadratic decision tree model, any algorithm
for closest pair requires Q(N log N) steps.
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» voronoi diagram
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1854 cholera outbreak, Golden Square, London

Life-or-death question.
Given a new cholera patient p, which water pump is closest to p's home?

JUARE

== \
P
- ﬂ‘
’J‘ OUA DRA
n®
C('

http://content.answers.com/main/content/wp/en/c/c7/Snow-cholera-map.jpg




Voronoi diagram

Voronoi region. Set of all points closest to a given point.
Voronoi diagram. Planar subdivision delineating Voronoi regions.
Fact. Voronoi edges are perpendicular bisector segments.

Voronoi of 2 points

Voronoi of 3 points
(perpendicular bisector)

(passes through circumcenter)
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Voronoi diagram

Voronoi region. Set of all points closest o a given point.
Voronoi diagram. Planar subdivision delineating Voronoi regions.

48



Voronoi diagram: more applications

Anthropology. Identify influence of clans and chiefdoms on geographic regions.
Astronomy. Identify clusters of stars and clusters of galaxies.

Biology, Ecology, Forestry. Model and analyze plant competition.

Cartography. Piece together satellite photographs into large "mosaic" maps.
Crystallography. Study Wigner-Setiz regions of metallic sodium.

Data visualization. Nearest neighbor interpolation of 2D data.

Finite elements. Generating finite element meshes which avoid small angles.
Fluid dynamics. Vortex methods for inviscid incompressible 2D fluid flow.
Geology. Estimation of ore reserves in a deposit using info from bore holes.
Geo-scientific modeling. Reconstruct 3D geometric figures from points.
Marketing. Model market of US metro area at individual retail store level.
Metallurgy. Modeling "grain growth" in metal films.

Physiology. Analysis of capillary distribution in cross-sections of muscle tissue.
Robotics. Path planning for robot to minimize risk of collision.

Typography. Character recognition, beveled and carved lettering.

Zoology. Model and analyze the territories of animals.

http://voronoi.com http://www.ics.uci.edu/~eppstein/geom.html
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Scientific rediscoveries

1644

1850

1908

1909

1911

1927

1933

1958

1965

1966

1985

Descartes
Dirichlet
Voronoi
Boldyrev
Thiessen
Niggli
Wignher-Seitz
Frank-Casper
Brown
Mead

Hoofd et al.

astronomy
math
math
geology
meteorology
crystallography
physics
physics
ecology
ecology

anatomy

"Heavens"
Dirichlet tesselation
Voronoi diagram
area of influence polygons
Thiessen polygons
domains of action
Wigher-Seitz regions
atom domains
area of potentially available
plant polygons

capillary domains

Reference: Kenneth E. Hoff IIT
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Fortune's algorithm

Industrial-strength Voronoi implementation.

* Sweep-line algorithm.

* O(N log N) time.

* Properly handles degeneracies.

 Properly handles floating-point computations.

brute 1 N

Fortune N log N log N

Tr‘y it your'self! http://www.diku.dk/hjemmesider/studerende/duff/Fortune/

Remark. Beyond scope of this course.
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Fortune's algorithm in practice

»
»
» &
»
* » @
»
. » »
»
»
It »
»
* » »
»
»
»
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Delaunay triangulation

Def. Triangulation of N points such that no point is inside
circumcircle of any other triangle.

circumcircle of 3 points




Delaunay triangulation properties

Proposition 1. It exists and is unique (assuming no degeneracy).

Proposition 2. Dual of Voronoi (connect adjacent points in Voronoi diagram).
Proposition 3. No edges cross = O(N) edges.

Proposition 4. Maximizes the minimum angle for all friangular elements.
Proposition 5. Boundary of Delaunay triangulation is convex hull.
Proposition 6. Shortest Delaunay edge connects closest pair of points.

———  Delaunay

........................... vor\ono|
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Delaunay triangulation application: Euclidean MST

Euclidean MST. Given N points in the plane, find MST connecting them.
[distances between point pairs are Euclidean distances]

Brute force. Compute N2/ 2 distances and run Prim's algorithm.
Ingenuity.

e MST is subgraph of Delaunay triangulation.

 Delaunay has O(N) edges.

e Compute Delaunay, then use Prim (or Kruskal) fo get MST in O(N log N) !
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Geometric algorithms summary

Ingenious algorithms enable solution of large instances for numerous
fundamental geometric problems.

convex hull N? N log N
farthest pair N? N log N
closest pair N? N log N
Delaunay/Voronoi N* N log N
Euclidean MST N? Nlog N

asymptotic time to solve a 2D problem with N points

Note. 3D and higher dimensions test limits of our ingenuity.



6.3 Geometric Search
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Overview

Geometric objects. Points, lines, intervals, circles, rectangles, polygons, ...
This lecture. Intersection among N objects.

Example problems.

1D range search.

e 2D range search.

* Find all intersections among h-v line segments.
* Find all intersections among h-v rectangles.




» range search



1d range search

Extension of ordered symbol table.
» Insert key-value pair.

» Search for key k.

e Rank: how many keys less than k?

* Range search: find all keys between k; and ka.

Application. Database queries.

Geometric interpretation.
» Keys are point on a line.
* How many points in a given interval?

__________________

insert
insert
insert
insert
insert

insert

v 1 o H P O W

insert

B
B
A
A
A
A
A
count G to K 2
H

search G to K

o W W wWw W O

DI

DHI
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1d range search: implementations

Ordered array. Slow insert, binary search for 10 and ni to find range.
Hash table. No reasonable algorithm (key order lost in hash).

data structure range count range search

ordered array log N log N R+log N
hash table 1 N N N
BST log N log N log N R+log N
N = # keys

R = # keys that match

BST. All operations fast.



1d range search: BST implementation

Range search. Find all keys between 10 and hi?

* Recursively find all keys in left subtree (if any could fall in range).
* Check key in current node.

* Recursively find all keys in right subtree (if any could fall in range).

searching in therange [F. .T]

red keys are used in compares
but are not in the range

G Q black keys are

in the range

Range search in a BST

Worst-case running time. R +log N (assuming BST is balanced).



2d orthogonal range search

Extension of ordered symbol-table to 2d keys.

e Insert a 2d key.

» Search for a 2d key.

e Range search: find all keys that lie in a 2d range?

Applications. Networking, circuit design, databases.

Geometric interpretation.
» Keys are point in the plane.
* How many points in a given h-v rectangle.

T

rectangle is axis-aligned

___________




2d orthogonal range search: grid implementation

Grid implementation.
 Divide space info M-by-M grid of squares.

Create list of points contained in each square.

Use 2d array to directly index relevant square.

Insert: add (x, y) fo list for corresponding square.

Range search: examine only those squares that intersect 2d range query.




2d orthogonal range search: grid implementation costs

Space-time tradeoff.
» Space: M2+ N,
e Time: 1 + N/ M? per square examined, on average.

Choose grid square size to tune performance.
» Too small: wastes space.

e Too large: too many points per square.
* Rule of thumb: /N-by-/N grid.

Running time. [if points are evenly distributed]

° C RT

 Initialize: O(N). 1t
/ M ~ fN ° :— ————— ““T

o Insert: O(1). e . « | o ¢
 Range: O(1) per point in range. .| 8 '




Clustering

Grid implementation. Fast, simple solution for well-distributed points.
Problem. Clustering a well-known phenomenon in geometric data.

Lists are too long, even though average length is short.
Need data structure that gracefully adapts to data.
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Clustering

Grid implementation. Fast, simple solution for well-distributed points.
Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.

S 5 . .
.. * . ) .
PR ' . - o
: i N
e : s o
E Yuy - Sl
PO P
3 L .
el i R
":-- .
3,

13,000 points, 1000 grid squares

________ ...--llllllllllllll‘ |
1 1

half the squares are empty

half the points are
in 10% of the squares

1



» space partitioning trees
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Space-partitioning trees
Use a free to represent a recursive subdivision of 2D space.
Quadtree. Recursively divide space into four quadrants.

2d tree. Recursively divide space into two halfplanes.
BSP tree. Recursively divide space into two regions.

Grid Quadtree 2D tfree BSP tree

13



Space-partitioning trees: applications

Applications.

Ray tracing.

2d range search.

Flight simulators.

N-body simulation.

Collision detection.
Astronomical databases.
Nearest neighbor search.
Adaptive mesh generation.
Accelerate rendering in Doom.

Hidden surface removal and shadow casting.

Grid Quadtree

2D tree

BSP tree

14



Quadtree

Idea. Recursively divide space into 4 quadrants.

Implementation. 4-way tree (actually a trie).

*b

o d

public class QuadTree

{

private Quad quad;
private Value val;
private QuadTree NW, NE, SW, SE;

Benefit. Good performance in the presence of clustering.
Drawback. Arbitrary depth!

15



Quadtree: larger example

O 40 ee]
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http://en.wikipedia.org/wiki/Image:Point_quadtree.svg
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Quadtree: 2d range search

Range search. Find all keys in a given 2D range.

 Recursively find all keys in NE quad (if any could fall in range).

» Recursively find all keys in NW quad (if any could fall in range).

* Recursively find all keys in SE quad (if any could fall in range).

* Recursively find all keys in SW quad (if any could fall in range).

°b

®c

o d

_______________________

Typical running time. R + log N.
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N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force. F=

18



Subquadratic N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.
* Treat cluster of particles as a single aggregate particle.

» Compute force between particle and center of mass of aggregate particle.

19



Barnes-Hut algorithm for N-body simulation.

Barnes-Hut.

* Build quadtree with N particles as external nodes.

» Store center-of-mass of subtree in each internal node.

» To compute total force acting on a particle, traverse tree, but stop as soon
as distance from particle to quad is sufficiently large.

100 km 50 km 25 km
l ! —A -
b c "h'c ;tg‘c
d 774 km /‘d 774 km "d
55.7 km ] -
a COM a a

- L] -
e e e




Curse of dimensionality

Range search / nearest neighbor in k dimensions?
Main application. Multi-dimensional databases.

3d space. Octrees: recursively divide 3d space into 8 octants.
100d space. Centrees: recursively divide 100d space into 219 centrants???

Raytracing with octrees
http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.html
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2d tree

Recursively partition plane into fwo halfplanes.

22



2d tree

Implementation. BST, but alternate using x- and y-coordinates as key.

» Search gives rectangle containing point.

 Insert further subdivides the plane.

P A
[ 2 o]
points points
left of p rightofp |
even levels
. d
6 0 ot
9
3
°
—e— 10 )
5
°

10

points
below q

points
above g

,,,,,,,,,,,,,,,,,,,,,,

odd levels
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2d tree: 2d range search

Range search. Find all points in a query axis-aligned rectangle.

* Check if point in node lies in given rectangle.

 Recursively search left/top subdivision (if any could fall in rectangle).
 Recursively search right/bottom subdivision (if any could fall in rectangle).

Typical case. R +log N
Worst case (assuming tree is balanced). R + /N.
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2d tree: nearest neighbor search

Nearest neighbor search. Given a query point, find the closest point.

* Check distance from point in node to query point.

* Recursively search left/top subdivision (if it could contain a closer point).

* Recursively search right/bottom subdivision (if it could contain a closer point).
* Organize recursive method so that it begins by searching for query point.

Typical case. log N
Worst case (even if tree is balanced). N

)

25



Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

/P\

level = i (mod k)

points points
whose i whose i
coordinate coordinate
is less than p's is greater than p's

Efficient, simple data structure for processing k-dimensional data.
» Widely used.

 Discovered by an undergrad in an algorithms class!
* Adapts well to high-dimensional and clustered data.

26



» intersection search
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Search for intersections

Problem. Find all intersecting pairs among N geometric objects.
Applications. CAD, games, movies, virtual reality.

Simple version. 2D, all objects are horizontal or vertical line segments.

£ et
I ||,,I_I"q}||
|

D

Brute force. Test all ®(N?) pairs of line segments for intersection.

28



Orthogonal segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.
» x-coordinates define events.
» Left endpoint of h-segment: insert y-coordinate into ST.

®
®
1 @& g
®
[ ‘O
3 o—1—9
@ g
2 @ L J
r—e
®
1 @ ?0
| :

y-coordinates
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Orthogonal segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.

» x-coordinates define events.

 Left endpoint of h-segment: insert y-coordinate into ST.

* Right endpoint of h-segment: remove y-coordinate from ST.

[
®
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y-coordinates
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Orthogonal segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.

» x-coordinates define events.

 Left endpoint of h-segment: insert y-coordinate into ST.

» Right endpoint of h-segment: remove y-coordinate from ST.
» v-segment: range search for interval of y endpoints.

|
|

|

® 1

* I

—1—o :

1 @ ° )
|
|
6 T i ld range
¢ T° i / search
3 &——me 5 |/
|
[ °
VY
z e \ij * @

—— o :

I

|

|

1 @ ? . |.

1 - .

|

o —

y-coordinates 31



Orthogonal segment intersection search: sweep-line algorithm
Reduces 2D orthogonal segment intersection search to 1D range search!

Running time of sweep line algorithm.,

e Put x-coordinates on a PQ (or sort). O(N log N) N = # line segments
* Insert y-coordinate into ST. O(N log N) R =7 infersections
» Delete y-coordinate from ST. O(N log N)

e Range search. O(R + N log N)

Efficiency relies on judicious use of data structures.

Remark. Sweep-line solution extends to 3D and more general shapes.
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Immutable h-v segment data type

public SegmentHV(int x1, int yl, int x2, int y2)

{ ... 1}

public boolean isHorizontal ()

{ ... }
public boolean isVertical/()

{ ... 1}

public int compareTo (SegmentHV that)
{ ... 1}

T f

(x1, y) (x2, y)

horizontal segment

<« (xr Y2)

«— (x, yl)

vertical segment

constructor

is segment horizontal?
is segment vertical?

compare by x-coordinate;
break ties by y-coordinate

33



Sweep-line event subclass

public Event(int time, SegmentHV segment)
{

this.time = time;
this.segment segment;

public int compareTo (Event that)
{ return this.time - that.time; }

34



Sweep-line algorithm: initialize events

MinPQ<Event> pgqg = new MinPQ<Event> () ; initialize PQ

if (segments[i].isVertical())
{

Event e = new Event (segments[i] .x1, segments[i]) ; :z;;;::‘lt
pPg.insert(e) ;

else if (segments[i].isHorizontal())

{
Event el = new Event (segments[i] .x1, segments[i]) b
Event e2 = new Event (segments[i] .x2, segments[i]) segment

pgq.insert(el) ;
pPg.insert(e2) ;

35



Sweep-line algorithm: simulate the sweep line

if (segment.isVertical())
{
SegmentHV segl, seg2;
segl = new SegmentHV (-INF, segment.yl, -INF, segment.yl);
seg2 = new SegmentHV (+INF, segment.y2, +INF, segment.y2);
for (SegmentHV seg : set.range(segl, seg2))
StdOut.println(segment + " intersects " + seqg);

else if (sweep segment.xl) set.add(segment) ;
else if (sweep segment.x2) set.remove (segment) ;

36



General line segment intersection search

Extend sweep-line algorithm

* Maintain segments that intersect sweep line ordered by y-coordinate.

» Intersections can only occur between adjacent segments.

» Add/delete line segment = one new pair of adjacent segments.

e Intersection = swap adjacent segments.

A ‘\\\
B .\ \\>.<
/
c \
//.
D '/
A AB ABC ACB | ACBD ACD CAD

order of segments that intersect sweep line

\

ca

® [nsert segment
® delete segment

® Intersection
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Line segment intersection: implementation

Efficient implementation of sweep line algorithm.

* Maintain PQ of important x-coordinates: endpoints and intersections.

* Maintain set of segments intersecting sweep line, sorted by y.
* O(Rlog N+ N log N). 1

to support "next largest"
and "next smallest" queries

Implementation issues.
» Degeneracy.

* Floating point precision.

* Use PQ, not presort (intersection events are unknown ahead of time).
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Rectangle intersection search

Goal. Find all intersections among h-v rectangles.

Application. Design-rule checking in VLSTI circuits.

39



Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.
* Very Large Scale Integration (VLSI).
e Computer-Aided Design (CAD).

Design-rule checking.
e Certain wires cannot intersect.

* Certain spacing needed between different types of wires.
» Debugging = rectangle intersection search.

40



Algorithms and Moore's law

"Moore's law." Processing power doubles every 18 months.
e 197x: need to check N rectangles.

e 197(x+1.5): need to check 2N rectangles on a 2x-faster computer.
Bootstrapping. We get to use the faster computer for bigger circuits.

But bootstrapping is not enough if using a quadratic algorithm:
e 197x: takes M days.

e 197(x+1.5): takes (4M)/2 = 2M days. (1)

quadratic / \ 2x-faster

algorithm computer

Bottom line. Linearithmic CAD algorithm is necessary to sustain Moore's Law.

41



Rectangle intersection search

Sweep vertical line from left to right.
» x-coordinates of rectangles define events.
e Maintain set of y-intervals intersecting sweep line.

» Left endpoint: search set for y-interval; insert y-interval.
* Right endpoint: delete y-interval.

42



Interval search trees

: interval search best
operation :
tree in theory
insert interval 1 log N log N
delete interval N log N log N
find an interval that
intersects (lo, hi) N log N log N
find all intervals that
intersects (lo, hi) N RlogN R+logN
T N = # intervals
augmented red-black tree R = # intersections
(7, 10) (20, 22)
[ . J 0
(5, 11) (17, 19)
o— —® e

(4, 8) (15, 18)
L
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Rectangle intersection search: costs summary

Reduces 2D orthogonal rectangle intersection search to 1D interval search!

Running time of sweep line algorithm.,

e Put x-coordinates on a PQ (or sort). O(N log N) N = # rectangles

e Insert y-interval into ST. O(N log N) R =7 infersections
» Delete y-interval from ST. O(N log N)

e Interval search. O(R + N log N)

Efficiency relies on judicious use of data structures.
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Geometric search summary: algorithms of the day

1D range search e oo oooofle oo oooeo BST
kD range search N kD tree
1D interval

interval search tree

intersection search

2D orthogonal line
intersection search

sweep line reduces to
1D range search

2D orthogonal rectangle | ' sweep line reduces to
intersection search (RIMO] 1D interval intersection search
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7.5 Reductions

» designing algorithms
» establishing lower bounds
» intractability

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2009 - January 26, 2010 8:57:56 AM



Bird's-eye view

Desiderata. Classify problems according to computational requirements.

linear N min, max, median,
Burrows-Wheeler transform, ...
) . . sorting, convex hull,
linearithmic N log N 9 :
closest pair, farthest pair, ...
quadratic N? ???
exponential cN 2?2

Frustrating news. Huge number of problems have defied classification.



Bird's-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata’.

Suppose we could (couldn’t) solve problem X efficiently.
What else could (couldn't) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to

place it, and I shall move the world. ” — Archimedes




Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

—>  Algorithm ——
— for Y "

v

instance I — > solution to I

(of X)

Algorithm for X

Cost of solving X = total cost of solving ¥ + cost of reduction.

T I

perhaps many calls to Y preprocessing and postprocessing
on problems of different sizes



Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

instance I > AL — > solution to I
—> for Y —

(of X)

v

Algorithm for X

Ex 1. [element distinctness reduces to sorting]
To solve element distinctness on N integers:
e Sort N integers.

» Check adjacent pairs for equality.

cost of sorting

pd N cost of reduction
Cost of solving element distinctness. NlogN + N



Reduction

Def. Problem X reduces fo problem Y if you can use an algorithm that
solves Y to help solve X.

—>  Algorithm ——

> for Y —— solutionto I

v

instance I
(of X)

Algorithm for X

Ex 2. [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:
* For each point, sort other points by polar angle.
- check adjacent triples for collinearity
cost of sorting

/ / cost of reduction
Cost of solving 3-collinear. N2 log N + N2,



» designing algorithms



Reduction: design algorithms

Def. Problem X reduces fo problem Y if you can use an algorithm that
solves Y to help solve X.

Design algorithm. Given algorithm for Y, can also solve X.

Ex.
» Element distinctness reduces to sorting.

3-collinear reduces to sorting.

PERT reduces to topological sort. [see digraph lecture]

h-v line intersection reduces to 1D range searching. [see geometry lecture]

Burrows-Wheeler transform reduces to suffix sort. [see assignment 8]

Mentality. Since I know how to solve Y, can I use that algorithm to solve X?

f

programmer's version: I have code for Y. Can I use it for X?



Convex hull reduces to sorting
Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points
of the convex hull (in counter-clockwise order).

. 1251432
¢« o 7 2861534
, | 3988818
/e . i 4190745
* o | 13546464

e | 89885444
e ® | 43434213
------------- . 34435312

convex hull sorting

Proposition. Convex hull reduces to sorting.
Pf. Graham scan algorithm.

cost of sorting
/ cost of reduction

Cost of convex hull. NlogN + N.



Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to
directed shortest path.

e AN

15 10

A B N

s 5 3 12 6 12

t

10



Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to
directed shortest path.

pd S

s 5 3 12 6 12

Pf. Replace each undirected edge by two directed edges.

2 BN 2N

VA / t
\/

'
|
!
\



Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to

directed shortest path.

PN

15

12

S

AN

15

6

Cost of undirected shortest path. E log E + E.

\

cost of shortest

path in digraph

\

cost of reduction

10

AN

12

t

12



Shortest path with negative weights

Caveat. Reduction is invalid in networks with negative weights
(even if no negative cycles).

T Ty
T

reduction creates
negative cycles

Remark. Can still solve shortest path problem in undirected graphs
(if no negative cycles), but need more sophisticated techniques.

N

reduces to weighted
non-bipartite matching (1)

13



Some reductions involving familiar problems

furthest
pair 2d

N

convex hull

median
element .
o sorting
distinctness
closest Euclidean
pair 2d > MST 2d
\ \/

Delaunay
triangulation

undirected shortest paths
(nonnegative)

!

directed shortest paths
(nonnegative)

™~

shortest paths
(no neg cycles)

bipartite
matching

\

maximum flow

arbitrage

\/
linear
programming

14



» linear programming
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Linear Programming

What is it? [see ORF 307]
* Quintessential tool for optimal allocation of scarce resources
» Powerful and general problem-solving method

Why is it significant?

+ Widely applicable. B bl
Dominates world of industry. /

Fast commercial solvers available: CPLEX, OSL.

Powerful modeling languages available: AMPL, GAMS.

Ranked among most important scientific advances of 20™ century.

Present context. Many important problems reduce to LP.

16



Applications

Agriculture. Diet problem.

Computer science. Compiler register allocation, data mining.
Electrical engineering. VLST design, optimal clocking.

Energy. Blending petroleum products.

Economics. Equilibrium theory, two-person zero-sum games.
Environment. Water quality management.

Finance. Portfolio optimization.

Logistics. Supply-chain management.

Management. Hotel yield management.

Marketing. Direct mail advertising.

Manufacturing. Production line balancing, cutting stock.
Medicine. Radioactive seed placement in cancer treatment.
Operations research. Airline crew assignment, vehicle routing.
Physics. Ground states of 3-D Ising spin glasses.

Plasma physics. Optimal stellarator design.
Telecommunication. Network design, Internet routing.
Sports. Scheduling ACC basketball, handicapping horse races.



Linear programming

Model problem as maximizing an objective function subject to constraints.

Input: real numbers ajj. Cj, and b;.

Output: real numbers x;.
matrix version

n variables
. maximize ¢’ x
maximize C1X1+ C2X2+ ...+ CnXn
subject to the Ax=b
. X1+Qa12 X2 +. ..+ Xn < b
SUbJCCT o The ai1 Xi1+aiz Xz Qin Xn 1

_ constraints
constraints Q21 X1+ Q22 X2+. ..+ 02n Xn < b2

m equations

Om1 X1+Qm2 X2+ ...+ Qmn Xn bm

IA

X1,X2,..,Xn 2 0

Solutions. [see ORF 307]

» Simplex algorithm has been used for decades to solve practical LP instances.
* Newer algorithms guarantee fast solution.

18



Linear programming

“Linear programming”

* Process of formulating an LP model for a problem.

* Solution to LP for a specific problem gives solution fo the problem.
 Equivalent to "reducing the problem to LP."

1. Identify variables.
2. Define constraints (inequalities and equations).
3. Define objective function.

Examples:
* Shortest paths
e Maximum flow. <« stay tuned (next)

* Bipartite matching.

* [avery long list ]

19



Single-source shortest-paths problem (revisited)

Given. Weighted digraph, single source s.
Distance from s to v. Length of the shortest path froms tov.

Goal. Find distance (and shortest path) from s to every other vertex.

20



Single-source shortest-paths problem reduces to LP

LP formulation.
* One variable per vertex, one inequality per edge.

* Interpretation: x;= length of shortest path subject

from s to i. to the
constraints

maximize

\%”)@<”/’ 19
15
5

6

Xt
Xs+9 > X2
Xs+ 14
Xs+15
X2+ 24

v

X6

v

X7

v

X3
X3+2 > X5
X3+19 > Xt

X4+ 6

v

X3

X4+6

v

Xt

X5+11

v

X4
xXs5+16 > Xt

Xe + 18

v

X3
Xe+ 30 2 x5
X6+D > X7
x7+20 > X5
x7+44

v

Xt

"
(@)

Xs

21



Single-source shortest-paths problem reduces to LP

LP formulation.

* One variable per vertex, one inequality per edge.
» Interpretation: x;= length of shortest path

from s to i.

2

19

18
H 14/
\?\ 30 / P
15 ;
34
20
7 44
15

50
Xs = O X5 = 34
= = 14
X2 =9 xe solution
X3 = 32 x7 = 15
X4 = 45 xt = B0

maximize

subject
to the
constraints

Xt
Xs+9 2 X2
Xs+ 14
Xs+15 > x7

X2+24

v

X6

v

X3
X3+2 2 X5
x3+19 > x4
X4+6 > X3
X4+ 6 2 Xt

X5+11

v

X4
xXs5+16 > Xt

Xe + 18

v

X3
X6+ 30 > X5
Xe+HD 2 X7
x7+20
x7+44

v

X5

v

X+t

"
o

Xs

22



Maxflow problem

Given: Weighted digraph, source s, destination t.

Interpret edge weights as capacities

* Models material flowing through network

» Ex: oil flowing through pipes
» Ex: goods in trucks on roads
* [many other examples]

Flow: A different set of edge weights

* flow does not exceed capacity in any edge

* flow at every vertex satisfies equilibrium

[ flow in equals flow out ]

Goal: Find maximum flow from s to t.

flow < capacity
in every edge

flow out of sis 3

*)

flow in

\ equals

flowintotis 3

flow out

23



Maximum flow reduces to LP

One variable per edge.
One inequality per edge, one equality per vertex.

maximize X3t + X4t
i Xs1 ¢ 2 A
subject "
to the Xs2 ¢ 3
constraints
X13 ¢ 3
: L capacity
interpretation: x4 < 1 > constraints
x;; = flow in edge i-} X3 < 1 add dummy
e 1 edge from

ttos
X3t ¢ 2 @
J
X4t ¢ 3 @
1 Xs1 = X13 + X14 @

Xs2 = X23 +X24

- @
X14 + X X
 X14 *+ X4 4t
all xij > 0 @

equilibrium
constraints X13 + X23

O,

24



Maxflow problem reduces to LP

One variable per edge.
One inequality per edge, one equality per vertex.

maximize

subject
to the
constraints

intferpretation:
x;; = flow in edge i-}

equilibrium
constraints

X3+ + X4t
Xs1 £ 2 \
Xs2 ¢ 3
X13 ¢ 3

X14

A
—

X23

IA
—

X24

A
[
V

X3¢t 2

A

J

Xat ¢ 3
Xs1 = X13 + X14

Xs2 = X23 +X24

X13 + X23 = X3t
X14 + X24 = X

& 14 24 4+
all xi; 2 0

capacity
constraints

solution

Xs1 =

”’

2 s 2
2
1 1
2 2 4
t

1
1I
3\

add dummy
edge from

ttos

”

25



Maximum cardinality bipartite matching problem

Bipartite graph. Two sets of vertices; edges
connect vertices in one set to the other.

Matching. Set of edges with no vertex
appearing twice.

Goal. Find a maximum cardinality matching.

Interpretation. Mutual preference constraints.
» Ex: people to jobs.

» Ex: Medical students to residence positions.
» Ex: students to writing seminars.

* [many other examples]

Alice Adobe

Adobe, Apple, Google Alice, Bob, Dave
Bob Apple

Adobe, Apple, Yahoo Alice, Bob, Dave
Carol Google

Google, IBM, Sun Alice, Carol, Frank
Dave IBM

Adobe, Apple Carol, Eliza
Eliza Sun

IBM, Sun, Yahoo Carol, Eliza, Frank
Frank Yahoo

Google, Sun, Yahoo Bob, Eliza, Frank

job offers

26



Maximum cardinality bipartite matching reduces to LP

LP formulation.

* One variable per edge, one equality per vertex.

» Interpretation: an edge is in matching iff xi = 1.

maximize

subject

to the constraints

Xa0 + XAl +Xa2 +Xgo + XB1 +Xps + Xc2 + Xc3 + Xca
+ Xpo + Xp1 + Xg3 + Xg4 + Xg5 + XF2 + XF4 + XF5

XA0 + Xa1+Xaz2=1
Xpo + Xp1 +Xp5 = 1
Xc2 + Xc3 +Xca =1

Xpo +Xpt = 1

}
—

XE3 + Xg4 + Xgp5 =

}
—

XF2 + XF4 + XF5 =

all x; 20

\

XA0 + XBo +Xpo = 1
Xat + Xp1+Xp1 = 1
Xa2 + Xc2 +Xp2 =1

Xc3+Xe3 = 1

}
—

Xc4 + Xe4 + XF4 =

|
—

XB5 + Xg5 + XfF5 =

N

Theorem. [Birkhoff 1946, von Neumann 1953]
All extreme points of the above polyhedron have integer (O or 1) coordinates.
Corollary. Can solve bipartite matching problem by solving LP.

constraints on top vertices (left)
and bottom vertices (right)

crucial point: not always so lucky!



Maximum cardinality bipartite matching reduces to LP

LP formulation.

* One variable per edge, one equality per vertex.

« Interpretation: an edge is in matching iff x; = 1.

maximize

subject
to the constraints

XA0 + XAl +Xa2 +Xgo + XB1+ X5 +Xc2 + Xc3 + Xca
+Xpo + Xp1 + Xe3 + Xg4 + XE5 + XF2 + XF4 + XF5

Xa0 + Xa1+Xa2=1
XBo + Xp1 +Xp5 = 1
Xc2 + Xc3 +Xca =1
Xpo +Xp1 = 1
Xe3 + X4 +Xgs5 = 1
XF2 + Xpa +Xp5 = 1

all x; 20

XA0 + Xpo +Xpo = 1
Xa1 + Xp1+Xp1 = 1
Xa2 + Xc2 +Xp2 = 1
Xc3+Xxegz = 1
Xca + Xes4 + Xps = 1

Xp5 + Xg5 + Xp5 = 1

solution
Xa1 = 1
xps = 1
Xc2 = 1
xpo = 1
XE3 = 1
XFs = 1

all other x;; = O

28



Linear programming perspective

Got an optimization problem?
Ex. Shortest paths, maximum flow, matching, ...

Approach 1. Use a specialized algorithm to solve it.

 Algorithms in Java.
* Vast literature on complexity.

* Performance on real problems not always well-understood.

Approach 2. Reduce to a LP model; use a commercial solver.

» A direct mathematical representation of the problem often works.

* Immediate solution to the problem at hand is often available.

* Might miss faster specialized solution, but might not care.

Got an LP solver? Learn to use it!

% ampl

AMPL Version 20010215 (SunOS 5.7)
ampl: model maxflow.mod;

ampl: data maxflow.dat;

ampl: solve;

CPLEX 7.1.0: optimal solution;
objective 4;

29



» establishing lower bounds
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Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. Q(N log N) lower bound for sorting.

1251432
2861534
3988818
4190745
13546464
89885444
43434213

argument must apply to all
conceivable algorithms

/

Bad news. Very difficult to establish lower bounds from scratch.

Good news. Can spread Q(N log N) lower bound to ¥ by reducing sorting to Y.

\

assuming cost of reduction
is not too high

31



Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:
 Linear number of standard computational steps.
» Constant number of calls to Y.

Ex. Almost all of the reductions we've seen so far. [Which one wasn't?]

Establish lower bound:
* If X takes Q(N log N) steps, then so does Y.
o If X takes Q(N?) steps, then so does Y.

Mentality.

e If I could easily solve Y, then I could easily solve X.
» I can't easily solve X.

e Therefore, I can't easily solve Y.

32



Lower bound for convex hull

Proposition. In quadratic decision tree model, any algorithm for sorting
N integers requires (N log N) steps. \

allows quadratic tests of the form:
Xi < Xjor (xj - xi) (xk - xi) - (x;) (xj-x)<0

Proposition. Sorting linear-time reduces to convex hull,
Pf. [see next slide]

1251432 o’ e,
2861534 ! ° *
3988818 / ;

/I [ ] ° 1
4190745 ; !

v [ J [ J !
13546464 “ . o |
89885444 . . !
43434213 -t ;

sorting convex hull

a quadratic test

\

Implication. Any ccw-based convex hull algorithm requires Q(N log N) ccw's.

33



Sorting linear-time reduces to convex hull
Proposition. Sorting linear-time reduces to convex hull.

e Sorting instance: xi, x2, ..., xw.

o Convex hull instance: (x1,x1?), (x2, x2%), ..., (xn, xa?).

f)=x?

A
/
\

Pf.

* Region {x : x? = x} is convex = all points are on hull.

» Starting at point with most negative x, counter-clockwise order of hull
points yields integers in ascending order.



Lower bound for 3-COLLINEAR
3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane, <—— recall Assignment 3
are there 3 that all lie on the same line?

1251432 . .
-2861534
3988818
-4190745
13546464 o .
89885444 ’

-43434213

3-sum 3-collinear



Lower bound for 3-COLLINEAR
3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane,
are there 3 that all lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
Pf. [see next 2 slide]

Conjecture. Any algorithm for 3-SUM requires Q(N?) steps.
Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.

A\

your N2 log N algorithm was pretty good

36



3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
e 3-SUM instance: xi, x2, ..., xn.
o 3-COLLINEAR instance: (xi,x1%), (x2, x2%), ..., (xn, xa?).

Lemma. If a, b, and c are distinct, thena +b+¢c =0

if and only if (a, @), (b, %), and (c, ¢*) are collinear.

fx)=x

(-3,-27) &

3+2+1=0

37



3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
e 3-SUM instance: xi, x2, ..., xn.
o 3-COLLINEAR instance: (xi,x1%), (x2, x2%), ..., (xn, xa?).

Lemma. If a, b, and c are distinct, thena +b+¢c =0
if and only if (a, @), (b, %), and (c, ¢*) are collinear.

Pf. Three distinct points (a, @), (b, %), and (c, ¢?) are collinear iff:

a o 1
0 = b b 1
c A 1

= ad® —c) —bla® - )+ cla® - b?)

= (a—0b)(b—c)(c—a)la+b+c)

38



More linear-time reductions and lower bounds

element distinctness 3-sum
(N log N lower bound) (conjectured N? lower bound)
sorting closest pair 2d 3-collinear dihedral
rotation
convex hull 2d Euclidean MST 2d 3-concurrent min area triangle

N

Delaunay

39



Establishing lower bounds: summary

Establishing lower bounds through reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself no linear-time convex hull algorithm exists?
Al. [hard way] Long futile search for a linear-time algorithm.
A2. [easy way] Linear-time reduction from sorting.

Q. How to convince yourself no sub-quadratic 3-COLLINEAR algorithm exists.
Al. [hard way] Long futile search for a sub-quadratic algorithm.
A2. [easy way] Linear-time reduction from 3-SUM.

40



» intractability
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Bird's-eye view

Def. A problem is intractable if it can't be solved in polynomial time.
Desiderata. Prove that a problem is intractable.

input size = ¢ + Ig K

Two problems that require exponential time. /
* Given a constant-size program, does it halt in at most K steps?
» Given N-by-N checkers board position, can the first player force a win?

N

using forced capture rule

Frustrating news. Few successes.

42



3-satisfiability

Literal. A boolean variable or its negation. Xi Or ~;
Clause. An or of 3 distinct literals. Ci=(—x1V x2V x3)
Conjunctive normal form. An and of clauses. O =(Ci A ConCsnCynCs)

3-SAT. Given a CNF formula @ consisting of k clauses over n literals,
does it have a satisfying truth assignment?

O =(xivv)A@ Vv oV A(CCx Vv eV X)) A (X VTx2 V) A (T VsV xg)

yes instance X1 X2 X3 X4

T T F T

CTvT vEF)A(Tv-T vVFEF)ACT v-T v F)A(CT v Tv T)A(~Tv FvT)

Applications. Circuit design, program correctness, ...

43



3-satisfiability is believed intractable

Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2" truth assignments.

Q. Can we do anything substantially more clever?

Conjecture (P 2 NP). 3-SAT is intractable (no poly-time algorithm).

44



Polynomial-time reductions

Def. Problem X poly-time (Cook) reduces to problem Y if X can be solved with:

 Polynomial number of standard computational steps.

* Polynomial number of calls to Y.

_ —> Algorithm
instanceI — [ > jt:
fory

(of X) — —

Algorithm for X

> solution to I

Establish infractability. If 3-SAT poly-time reduces to Y, then Y is intractable.

(assuming 3-SAT is intractable)

Mentality.

* If I could solve Y in poly-time, then I could also solve 3-SAT in poly-time.

e 3-SAT is believed to be intractable.
 Therefore,soisY.
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Independent set

Def. An independent set is a set of vertices, no two of which are adjacent.

IND-SET. Given a graph G and an integer k, find an independent set of size k.

Applications. Scheduling, computer vision, clustering, ...

46



3-satisfiability reduces to independent set

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance ® of 3-SAT, create an instance G of IND-SET:

* For each clause in @, create 3 vertices in a triangle.
* Add an edge between each literal and its negation.

O =@xvxavxy) A (x1v v A (X1 vxsVv ) A (X1 VX3V X4)

47



3-satisfiability reduces to independent set
Proposition. 3-SAT poly-time reduces to IND-SET.
Pf. Given an instance ® of 3-SAT, create an instance G of IND-SET:

* For each clause in @, create 3 vertices in a triangle.
* Add an edge between each literal and its negation.

O =@xvxavxy) A (x1v v A (X1 vxsVv ) A (X1 VX3V X4)

* G has independent set of size k = @ satisfiable.

!

set literals corresponding to vertices in independent to true;
set remaining literals in consistent manner

48



3-satisfiability reduces to independent set

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance ® of 3-SAT, create an instance G of IND-SET:

* For each clause in @, create 3 vertices in a triangle.
* Add an edge between each literal and its negation.

O =@xvxavxy) A (x1v v A (X1 vxsVv ) A (X1 VX3V X4)

* G has independent set of size k = @ satisfiable.
» O satisfiable = 6 has independent set of size k.

f

for each clause, take vertex corresponding to one true literal

49



3-satisfiability reduces to independent set
Proposition. 3-SAT poly-time reduces to IND-SET.

Implication. Assuming 3-SAT is intractable, so is IND-SET.

O =@xvxavxy) A (x1v v A (X1 vxsVv ) A (X1 VX3V X4)

50



Integer linear programming

ILP. Given a system of linear inequalities, find an integral solution.

3x1 +5x2+2x3 +x4+4x5 > 10
Sx1+2x2+4xa+ 1xs < 7
X1 +x3+2xs <2
3x1+4x3+7x4 <7
x1+x4 <1
x1+x3+xs <1

all x; = {0,1}

AL e

Context. Cornerstone problem in operations research.

linear inequalities

integer variables

Remark. Finding a real-valued solution is tractable (linear programming).
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Independent set reduces to integer linear programming

Proposition. IND-SET poly-time reduces to ILP.
Pf. Given an instance G, k of IND-SET, create an instance of ILP as follows:

Intuition. x; = 1if and only if vertex v; is in independent set.

Xi+txo+txs+txatxs =3 <« number of vertices
selected
Vi @ x1+tx2 <1 \
+ <
x2+x3 <1 -
v Vs @ at most one vertex
/ xitxs =1 <« selected from each edge
is there an independent set of size 3 ?
! / x1+x4 <1 o
x3txs <1 /
allx; = {0,1} “ binary variables

is there a feasible solution?
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3-satisfiability reduces to integer linear programming

Proposition. 3-SAT poly-time reduces to IND-SET.
Proposition. IND-SET poly-time reduces to ILP.

Transitivity. If X poly-time reduces to Y and Y poly-time reduces to Z,
then X-poly-time reduces to Z.

Implication. Assuming 3-SAT is intractable, so is ILP.
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More poly-time reductions from 3-satisfiability

3-SAT
3-COLOR IND-SET VERTEX COVER Dick Karp
‘85 Turing award
®
O
>
—.l
®
=3
EXACT COVER & CLIQUE HAM-CYCLE
3
=
—
O
v
SUBSET-SUM ILP TSP HAM-PATH

PARTITION
Conjecture. 3-SAT is intractable.

Implication. All of these problems are intractable.

v

KNAPSACK BIN-PACKING



Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself that a new problem is (probably) intractable?

Al. [hard way] Long futile search for an efficient algorithm (as for 3-SAT).
A2. [easy way] Reduction from 3-SAT.

Caveat. Intricate reductions are common.
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Search problems

Search problem. Problem where you can check a solution in poly-time.

Ex 1. 3-SAT.

O =xvxovx) A(xIVvx2Vvxs) A(x VX3V X)) A (X VX3V X4)

X1 = true, X2 = true, X3 = true, X4= true

Ex 2. IND-SET.

{v2, X4, V5 }
®

V2

b C<
[l -



P vs. NP

P. Set of search problems solvable in poly-time.
Importance. What scientists and engineers can compute feasibly.

NP. Set of search problems.

Importance. What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion. No.
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Cook's theorem

Def. An NP is NP-complete if all problems in NP poly-time to reduce to it.

Cook's theorem. 3-SAT is NP-complete.
Corollary. 3-SAT is tractable if and only if P = NP.

Two worlds.

D@

Pz NP P = NP
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Implications of Cook's theorem

3-SAT

3-COLOR COVER Stephen Cook

'82 Turing award

EXACT COVER CLIQUE

SUBSET-SUM HAM-PATH

All of these problems (and many, many more)

KNAPSACK BIN-PACKING poly-time reduce to 3-SAT
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Implications of Karp + Cook

="\
A TR

SUBSET-SUM TSP, ,HAM-PATH

A\ 4

PARTITION

‘v \ All of these problems are NP-complete; they are

KNAPSACK < » BIN-PACKING manifestations of the same really hard problem.
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Implications of NP-completeness

“I can’t find an efficient algorithm, but neither can all these famous people.”
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Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

linear N min, max, median,
Burrows-Wheeler transform, ...
: : : sorting, convex hull.
linearithmic N log N 9 :
closest pair, farthest pair, ...
quadratic N?2 ???
exponential cN 2?2?

Frustrating news. Huge number of problems have defied classification.



Birds-eye view: revised

Desiderata. Classify problems according to computational requirements.

linear N min, max, median,
Burrows-Wheeler transform, ...
: L sorting, convex hull.
linearithmic NlogN closest pair, farthest pair, ...
3-SUM, 3-COLLINEAR
- 2 ' '
3-SUM complete probably N 3-CONCURRENT. ...
NP-complete probably cN 3-SAT, IND-SET, ILP, ...

Good news. Can put problems in equivalence classes.



Summary

Reductions are important in theory to:

 Establish tractability.

 Establish intractability.

e Classify problems according to their computational requirements.

Reductions are important in practice to:
* Design algorithms.
» Design reusable software modules.
- stack, queue, priority queue, symbol table, set, graph
- sorting, regular expression, Delaunay triangulation
- minimum spanning tree, shortest path, maximum flow, linear programming
* Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems
- use heuristics for intractable problems
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Combinatorial Search

» permutations

» backtracking

» counting

» subsets

» paths in a graph

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2009 -  January 26, 2010 9:21:13 AM



Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size =
effectiveness may be limited to relatively small instances.

Backtracking. Systematic method for examining feasible solutions
to a problem, by systematically pruning infeasible solutions.



Warmup: enumerate N-bit strings

Goal. Process all 2N bit strings of length N.
e Maintain a[i] where a[i] represents bit i.
» Simple recursive method does the job.

// enumerate bits in al[k] to a[N-1]

private void enumerate (int k)
{
if (k == N)
{ process(); return; }
enumerate (k+1) ;

alk] = 1;
enumerate (k+1) ;
al[k] = 0; < clean up

Remark. Equivalent to counting in binary from O to 2N - 1.

>R PR PR PR RHFRHRRMHOOOOOOODOoO

Il
>

)P R, RPrKFPOOOOPRKFRRRKREKERREROOODO

)R Rr,rOOHWRKRHKK OOIF PR OORHRKER OO
P OPRPROPRFRPROHROIFPOPRFRPROPR OHRO

>
>

o

a[N-1]




Warmup: enumerate N-bit strings

public BinaryCounter (int N)
{

this.N = N;
this.a = new int[N];

java BinaryCounter 4
enumerate (0) ;

0

private void process()
{
for (int i = 0; i < N; i++4)
StdOut.print(a[i]) + " ";
StdOut.println() ;

private void enumerate (int k)

{ . .
if (k == N) all programs in this

{ process(); return; } lecture are variations
enumerate (k+1) ; on this theme
alk] = 1;

enumerate (k+1) ;

a[k] = 0;

P PFRrR R HRKHEHHEHHOOOOOOOGO ®
HF PP HEHOOOOHREREREKEREROOOO

HHOORRFROOKHKHOORLERERO
HOHOHFROKFROKOKOHKOHRO




» permutations



N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that
no rook can attack any other?

I El IR E] K ElE
o
2

2
2

B

B X
E

2

int[] a={2, 0, 1, 3, 6, 7, 4, 5 };

Representation. No two rooks in the same row or column = permutation.

Challenge. Enumerate all NI permutations of O to N-1.



Enumerating permutations

Recursive algorithm to enumerate all NI permutations of size N.
e Start with permutation a[0] to a[N-1].
 For each value of i:

- swap a[i] into position 0

- enumerate all (N-1)! permutations of a[1] to a[N-1]

- clean up (swap a[i] back to original position)

0 followed by 1 followed by 2 followed by 3 followed by
permsof 1 2 3 permsof 0 2 3 permsofl 0 3 permsofl 2 0

N =2 N =3 l l l l
01 O|1 2 0l1 2 3 1,0 2 3 2|1 0 3 3|11 20
10 0|21 0|1 3 2 1,0 3 2 2|1 30 3(1 0 2
0|2 1 3 1,2 0 3 2/0 1 3 3|12 10

1/0 2 0|2 3 1 1|2 3 0 2|0 31 3|12 01

112 0 0|3 2 1 1320 2|3 01 3|0 21

0|3 1 2 1|3 0 2 2|13 10 3101 2

2/1 0 T T
201 al[0] a[N-1]

ﬂ\

cleanup swaps that bring perm back to original



Enumerating permutations

Recursive algorithm to enumerate all NI permutations of size N.

e Start with permutation a[0] to a[N-1].

 For each value of i:
- swap a[i] into position 0
- enumerate all (N-1)! permutations of a[1] to a[N-1]
- clean up (swap a[i] back to original position)

// place N-k rooks in a[k] to a[N-1]
private void enumerate (int k)

{
if (k == N)
{ process(); return; }

for (int i = k; i < N; i++)
{
exch(k, i) ;
enumerate (k+1) ;
exch (i, k); <«—— cleanup

o

java Rooks 4

2

o followed by
permsof 1 2 3

1 followed by
perms of 0 2 3

2 followed by
perms of 1 0 3

3 followed by
permsof 1 2 0

O O MNNDN PR PKFEWWOOR HIWWMNDOO[w WNDNDRRE
R N OF ONDNPRPR OWER WOIO N WO WDNEFEDNdNMNWRER W

O —P> W W W W WWMDMDMNMDMMNMMNMNRRRRRRPRLROOOOODO

1

—_—> N R PR ONO|IIOFR P WO WINMNoO O WwdNWINEFEFEWDMNDW

a[N-1]




Enumerating permutations

public Rooks (int N)
{
this.N = N;
= new int[N];

for (int i = 0; i < N;

a[i] = i;
enumerate (0) ;

private void enumerate (int k)
{ /* see previous slide */

private void exch(int i, int j)
{ int t = a[i]; a[i] = a[3j]l; al]jl

= O

permutation

java Rooks 2
1
0

java Rooks 3
2



4-rooks search tree

I

solutions

=

10



N-rooks problem: back-of-envelope running time estimate

Slow way to compute NL.

% java Rooks
5040

% java Rooks
40320

% java Rooks
362880

% java Rooks
3628800

% java Rooks

7 | we -1

8 | we -1

9 | we -1

10 | we -1

25 | we -1

instant

1.6 seconds

15 seconds

170 seconds

forever

Hypothesis. Running time is about 2(N! / 8!) seconds.

1



» backtracking
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N-queens problem

Q. How many ways are there to place N queens on an N-by-N board so that
no queen can attack any other?

Iﬂﬂgﬂﬂ
w

€
C

IE

IE

€

lnt[] a = { 2, 7, 3, 6, 0, 5/ 1/ 4 };

Representation. No two queens in the same row or column = permutation.
Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions. «—  unlike N-rooks problem,
nobody knows answer for N > 30

13



4-queens search tree

diagonal conflict
on partial solution:
no point going deeper

@

P

=

N/

solutions

14



4-queens search tree (pruned)

"backtrack" on

diagonal conflicts

)

N\

solutions

®

15



N-queens problem: backtracking solution

Backtracking paradigm. Iterate through elements of search space.
* When there are several possible choices, make one choice and recur.
» If the choice is a dead end, backtrack to previous choice,

and make next available choice.

Benefit. Identifying dead ends allows us to prune the search tree.

Ex. [backtracking for N-queens problem]
e Dead end: a diagonal conflict.

* Pruning: backtrack and try next column when diagonal conflict found.

16



N-queens problem: backtracking solution

% java Queens 4

private boolean backtrack (int k) 1302
{ 2031
for (int 1 = 0; i < k; i++)
{ % java Queens 5
if ((a[i]l - a[k]) (k - i)) return true; 02413
if ((a[k] - a[i]) (k - i)) return true; 03142
} 130214
return false; 14203
20314
24130
31420
302141
41302
42031

ava Queens 6

J
3
5
0
2

if (!'backtrack(k)) enumerate (k+1l);

al[o0] a[N-1]




N-queens problem: effectiveness of backtracking

Pruning the search tree leads to enormous time savings.

2 0 2

3 0 6

4 2 24

5 10 120

6 4 720

7 40 5,040

8 92 40,320

9 352 362,880

10 724 3,628,800
11 2,680 39,916,800
12 14,200 479,001,600
13 73,712 6,227,020,800
14 365,596 87,178,291,200




N-queens problem: How many solutions?

% java Queens
73712

% java Queens
365596

% java Queens
2279184

% java Queens
14772512

% java Queens

13

14

15

16

17

wC

wC

wC

wC

wC

-1 <«<—— 1.1 seconds
-1 <«—— 5.4 seconds
-1 <«—— 29 seconds
-1 <«—— 210 seconds
-1 <«—— 1352 seconds

Hypothesis. Running fime

is about (N! / 2.5N) / 43,000 seconds.

Conjecture. Q(N) is ~ NI/ cN, where c is about 2.54.

19



20



Counting: Java implementation

Goal. Enumerate all N-digit base-R numbers.
Solution. Generalize binary counter in lecture warmup.

for (int r = 0; r < R; r++)

{

alk] =
enumerate (k+1) ;

java Counter 2 4

W ww wNDMNMNMMMNMNRFEFRFRPEFEFEFEPOOOO W
W NhDNF OWDMNMRFROWDMNMRFROWNDNDHRDO

java Counter 3 2
0

H HKHERHOOOO W
H HOORHKRKR OO
H OKH OROHR

a[0] a[N-1]

21



Counting application: Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains
each of the digits 1 through 9.

& T
[2]9]
-

Hn

=

T

Remark. Natural generalization is NP-complete.
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Counting application: Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains
each of the digits 1 through 9.

2 9 4 6 1 5‘
9 3 4 5 6 7 8
nl 6 7 3 8 2 4 9
1 7 5 9 3 8“
6 9 4“2 1 5 7
8 5 2 6 7 4 3
2“3 1 5 7 8

4 8 1 396 2

8 2 4 9 3 1

[+))
~
(6]

Solution. Enumerate all 81-digit base-9 numbers (with backtracking).

all

using digits 1109 ——> e |
0 1 2 3

4 5 6 7 8



Sudoku: backtracking solution

Iterate through elements of search space.

* For each empty cell, there are 9 possible choices.

* Make one choice and recur.

» If you find a conflict in row, column, or box, then backtrack.

3

ST

N

m [

ﬂn\

backtrack on 3,4,5,7, 8,9

24



Sudoku: Java implementation

if (k == 81)
{ process(); return; }

found a solution

if (a[k] '= 0) cell k initially filled in;
{ enumerate(k+l); return; } recur on next cell

for (int r = 1; r <= 9; try 9 possible digits
{ for cell k

alk] = r; unless it violates a
if ('backtrack(k)) Sudoku constraint

enumerate (k+1) ; (see booksite for code)

clean up

O O O O WO Ul O J o°
O O VWV O O M O OO
O O O O O o oo

N B N 00 WR UlWw Jd o

more board. txt

0o
o
o

O OOk OO ONDNO
O 94 O O o O o
O O OO oo o
O U1 OO OO O oW
O O O VW ON O OO
O O b O OO O OO

java Sudoku
8 4 6

N o0 w U R WN
O Fr WN O JdJO &
o WwWwo P & Od DNV
N 9P, o0 © W WL
B W I DN Woo R
O U 9P ONOOW

W o WU N JKF A

board. txt

H N & WJd o © 00U

25
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Enumerating subsets: natural binary encoding

Given N items, enumerate all 2N subsets.
* Count in binary from O to 2N - 1.

e Bit i representsitem ..

e If O, in subset; if 1, not in subset.

] binary subset complement
0 00O00O empty 4 321
1 00O01 1 4 3 2
2 0010 2 4 31
3 0011 2 1 4 3
4 0100 3 4 2 1
5 0101 31 4 2

6 0110 32 4 1

7 0111 321 4

8 1000 4 321
9 1001 4 1 32
10 1010 4 2 31
11 1011 4 2 1 3

12 1100 4 3 21
13 1101 4 31 2

14 1110 4 3 2 1
15 1111 4321 empty

27



Enumerating subsets: natural binary encoding

Given N items, enumerate all 2N subsets.
* Count in binary from O to 2N - 1.

e Maintain a[i] where a[i] represents item i.

e If 0, a[i] in subset; if 1, a[i] not in subset.

Binary counter from warmup does the job.

private void enumerate (int k)
{

if (k == N)

{ process(); return; }

enumerate (k+1) ;

alk] = 1;

enumerate (k+1) ;

a[n] = 0;

28



Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit
one at a time, such that each subset of actors appears exactly once.

code subset move
0000 empty
0001 1 enter 1
0011 2 1 enter 2
0010 2 exit 1
0110 3 2 enter 3
0111 321 enter 1
0101 31 exit 2
0100 3 exit 1
1100 4 3 enter 4
1101 4 31 enter 1
1111 4321 enter 2
1110 4 3 2 exit 1
1010 4 2 exit 3
1011 4 2 1 enter 1
1001 4 1 exit 2
1000 4 exit 1
|
l

ruler function



Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit
one at a time, such that each subset of actors appears exactly once.

“faceless, emotionless one of the far future, a world where people are born, go
through prescribed movements, fear non-being even though their lives are
meaningless, and then they disappear or die.” — Sidney Homan
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Binary reflected gray code

Def. The k-bit binary reflected Gray code is:
* the (k-1) bit code with a O prepended to each word, followed by
» the (k-1) bit code in reverse order, with a 1 prepended to each word.

1-bit code 3-bit code

0
1

~—

2-bit

1
S
-,
~

0
0
1
1

o+

AN
1-bit code
(reversed)

2-bit code

3-bit

OCO0OCO0COKRHHKHHKHRHKEHKHOOOO
OCOHHHHOOOCOKRHKHKEHKEOO|<«
OrPrHPOOHRHOORKROORERO

OOk KEFKERRKER OO
-
O R OOKKO

HFHPKFHFRKEOOOO

!

2-bit code
(reversed)

—_—

O—> HHHRHHHHRHOOOOOOOO

—

V)

a[N-1]




Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:
 Flip ark] instead of setting it to 1.
 Eliminate cleanup.

Gray code binary counter standard binary counter (from warmup)
// all bit strings in a[k] to a[N-1] // all bit strings in a[k] to a[N-1]
private void enumerate (int k) private void enumerate (int k)
{ {
if (k == N) if (k == N)
{ process(); return; } { process(); return; }
enumerate (k+1) ; enumerate (k+1) ;
enumerate (k+1) ; olo 1 enumerate (k+1) ; 00 1
} alk] = 0;
0|11 ) 010
| 0| 1 O+ a 011
R o AN same values 100
111 since no cleanup 101
110 1 110
1/0 0 111

E

Advantage. Only one item in subset changes at a time. lol et
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More applications of Gray codes

3-bit rotary encoder

Towers of Hanoi

8-bit rotary encoder

JITTITT

Chinese ring puzzle

33



Scheduling

Scheduling (set partitioning). Given n jobs of varying length, divide among
two machines to minimize the makespan (time the last job finishes).

\

or, equivalently, difference

between finish times
cost

|—

. machine 0 0 2
job length

0 141 machine 1 1 3
1 1.73
2 2.00 machine 0 0 3
3 2.23
machine 1 1 2

.09

Remark. This scheduling problem is NP-complete.

34



Scheduling (full implementation)

trace of
% java Scheduler 4 < jobs.txt

all finish times cost

public Scheduler (double[] jobs)
{
this.N = jobs.length;
this.jobs = jobs;
a = new int[N];
b = new int[N];
enumerate (N) ;

private void process()
{
if (cost(a) < cost(b))
for (int i = 0; i1 < N; i++)
b[i] = a[i];




Scheduling (larger example)

Observation. Large number of subsets
leads to remarkably low cost.

cost < 10 . —_—

36



Scheduling: improvements

Many opportunities (details omitted).
 Fix last job to be on machine O (quick factor-of-two improvement).
* Maintain difference in finish times (instead of recomputing from scratch).
* Backtrack when partial schedule cannot beat best known.
(check total against goal: half of total job times)

private void enumerate (int k)
{
if (k == N-1)
{ process(); return; }
if (backtrack(k)) return;
enumerate (k+1) ;
alk] =1 - a[k];
enumerate (k+1) ;

* Process all 2¥ subsets of last k jobs, keep results in memory,
(reduces time to 2N when 2% memory available).



» paths in a graph
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Enumerating all paths on a grid

Goal. Enumerate all simple paths on a grid of adjacent sites.

no two atoms can occupy
same position at same time

Application. Self-avoiding lattice walk to model polymer chains.

39



Enumerating all paths on a grid: Boggle

Boggle. Find all words that can be formed by tracing a simple path of
adjacent cubes (left, right, up, down, diagonal).

Pruning. Stop as soon as no word in dictionary contains string of letters on

current path as a prefix = use a trie. o
BA

BAX

40



Boggle: Java implementation

string of letters on current path to (i, j)

if ((1 <0 |] i > N) ||
(3 <0 1] J>N ||
(visited[i] []3]) I
!dictionary.containsAsPrefix (prefix)) backtrack

return;

visited[i] [j] = true;
prefix = prefix + board[i] []j]:

add current character

if (dictionary.contains (prefix))
dd to set nd words
found.add (prefix) ; add to set of found wor

for (int ii = -1; ii <= 1; ii++)
for (int jj = -1; jj <= 1; jj++) try all possibilities
dfs (prefix, i + ii, j + jj);

visited[i] [j] = false; clean up

41



Hamilton path

Goal. Find a simple path that visits every vertex exactly once.

visit every edge exactly once

v

Remark. Euler path easy, but Hamilton path is NP-complete.

42



Knight's tour

Goal. Find a sequence of moves for a knight so that (starting from any
desired square) it visits every square on a chessboard exactly once.

A
N2

NRE N

-
S

e
AN
° ° <\7\
\

<
X

A

W M
/i

Q

N
SRS

P

legal knight moves a knight's tour

Solution. Find a Hamilton path in knight's graph.
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Hamilton path: backtracking solution

Backtracking solution. To find Hamilton path starting at v:
e Add v to current path.
* For each vertex w adjacent fo v
- find a simple path starting at w using all remaining vertices
 Clean up: remove v from current path.

Q. How to implement?
A. Add cleanup to DFS (!)

44



Hamilton path: Java implementation

public HamiltonPath (Graph G)

{

marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
dfs (G, v, 1);

private void dfs(Graph G, int v, int depth)

{

found one

marked[v] = true; \ Izngﬂ;‘ of cur'r‘enT path
if (depth == G.V()) count++; (depth of recursion)

for (int w : G.adj(v))
if ('marked[w]) dfs (G, w, depth+l); «—— backfrackif wis

already part of path
marked[v] = false; <«— cleanup

45



Exhaustive search: summary

N-rooks

N-queens
Sudoku
scheduling
Boggle

Hamilton path

permutations
permutations
base-9 numbers
subsets
paths in a grid

paths in a graph

no

yes

yes

yes

yes

yes
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The longest path

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,

There would still be papers left to write,
I have a weakness,

I'm addicted to completeness,

And I keep searching for the longest path.

The algorithm I would like to see

Is of polynomial degree,

But it's elusive:

Nobody has found conclusive

Evidence that we can find a longest path.

I have been hard working for so long.

I swear it's right, and he marks it wrong.

Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.

Am I a mad fool

If I spend my life in grad school,

Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Recorded by Dan Barrett in 1988
while a student at Johns Hopkins
during a difficult algorithms final
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That's all, folks: Keep searching!

The world's longest path (Chile): 8500 km
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