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COS 226 course overview

What is COS 226?
* Intermediate-level survey course.

* Programming and problem solving with applications.
* Algorithm: method for solving a problem.
» Data structure: method to store information.

data structures and algorithms

data types stack, queue, union-find, priority queue
sorting quicksort, mergesort, heapsort, radix sorts

searching hash table, BST, red-black tree
graphs BFS, DFS, Prim, Kruskal, Dijkstra
strings KMP, regular expressions, TST, Huffman, LZW

geometry Graham scan, k-d tree, Voronoi diagram




Why study algorithms?
Their impact is broad and far-reaching.

Internet. Web search, packet routing, distributed file sharing, ...
Biology. Human genome project, protein folding, ...

Computers. Circuit layout, file system, compilers, ...

Computer graphics. Movies, video games, virtual reality, ...
Security. Cell phones, e-commerce, voting machines, ...
Multimedia. CD player, DVD, MP3, JPG, DivX, HDTYV, ...
Transportation. Airline crew scheduling, map routing, ...

Physics. N-body simulation, particle collision simulation, ...



Why study algorithms?

Old roots, new opportunities.
300 BCE

» Study of algorithms dates at least to Euclid.
* Some important algorithms were
discovered by undergraduates!

1920s

1940s
1950s
1960s
1970s
1980s
1990s
2000s




Why study algorithms?

To solve problems that could not otherwise be addressed.

Ex. Network connectivity. [stay tuned]
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Why study algorithms?

For intellectual stimulation.

“ For me, great algorithms are the poetry of computation. Just like
verse, they can be terse, allusive, dense, and even mysterious. But
once unlocked, they cast a brilliant new light on some aspect of
computing. > — Francis Sullivan

“ An algorithm must be seen to be believed. ” — D. E. Knuth




Why study algorithms?

They may unlock the secrets of life and of the universe.

Computational models are replacing mathematical models in scientific inquiry.

E = mc? for (double t = 0.0; true; t = t + dt)
F Gm1m2 for (int i = 0; i < N; i++)
= 5 {
F = ma 1”2 bodies[i] .resetForce() ;
for (int j = 0; j < N; j++)
2 if (1 !'= 3J)
_7V2 + V(r) ‘P(I’) = F lp(r) bodies[i] .addForce (bodies[j]) ;
2m }
20th century science 21st century science
(formula based) (algorithm based)

“Algorithms: a common language for nature, human, and computer.” — Avi Wigderson




Why study algorithms?

For fun and profit.

Nmtendo M
Google | w
Gavamai|

DE ShawévCo l

Morgan Stanley

YaHOO!




Why study algorithms?

Their impact is broad and far-reaching.

Old roots, new opportunities.

To solve problems that could not otherwise be addressed.

For intellectual stimulation.

They may unlock the secrets of life and of the universe.

For fun and profit.

Why study anything else?

10



Coursework and grading
8 programming assignments. 45%
 Electronic submission.

* Due 11pm, starting Wednesay 9/23.

Exercises. 15%

* Due in lecture, starting Tuesday 9/22.

Exams.

* Closed-book with cheatsheet.
e Midterm. 15%

e Final. 25%

Staff discretion. To adjust borderline cases.

AN

Programs

everyone needs to meet me in office hours

Final \

Exercises

Midterm

11



Resources (web)

Course content.
e Course info.

e Exercises.

e Lecture slides.

* Programming assignments.
[ ]

Submit assignments.

Booksites.
* Brief summary of content.
» Download code from lecture.

. Computer Science 226
CETO
»N E}\(wpg g ITI\\( Algorithms and Data Structures
Fall 2009

Course Information | Assignments | Exercises | Lectures

COURSE INFORMATION

Description. This course surveys the most important algorithms and data structures in use on computers
today. Particular emphasis is given to algorithms for sorting, searching, and string processing.
Fundamental algorithms in a number of other areas are covered as well, including geometric and graph
algorithms. The course will concentrate on developing implementations, understanding their performance
characteristics, and estimating their potential effectiveness in applications.

http://www.princeton.edu/~cos226

ALGORITHMS, 4TH EDITION

what every serious programmer
needs to know about
data structures and algorithms

Algorithms

This booksite supplements the textbook (under development)
Algorithms, 4th Edition by Robert Sedgewick and Kevin
Wayne. Currently, it's just intended for COS 226 students as
a convenient location to find the source code from lecture.

Textbook. This book surveys the most important algorithms
and data structures in use today. The broad perspective

0. Prologue taken makes the book an appropriate introduction to the
field. The book is organized into 8 chapters:
1. Fundamentals
2. Data Types e Chapter 1: Fundamentals considers a scientific and
engineering basis for comparing algorithms and making
3. Sorting predictions.
4. Symbol Tables e Chapter 2: Data Types introduces fundamental data

http://www.cs.princeton.edu/IntroProgramming
http://www.cs.princeton.edu/algs4

12
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Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.
Model the problem.
Find an algorithm to solve it.

Fast enough? Fits in memory?

If not, figure out why.

Find a way to address the problem.

Iterate until satisfied.

The scientific method.

Mathematical analysis.



» dynamic connectivity




Dynamic connectivity

Given a set of objects
e Union: connect two objects. more difficult problem: find the path

e

e Find: is there a path connecting the two objects?

union (3, 4)

union (8, 0)

union (2, 3)

union (5, 6)
find (0, 2) no
find (2, 4) yes

™)
()
®

union(5, 1)
union (7, 3)
union(l, 6)

union (4, 8) <E> 8

find (0, 2) yes

find (2, 4) yes




Network connectivity: larger example

Q. Is there a path from p to g?
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A. Yes. <—— but finding the path is more difficult: stay tuned (Chapter 4)




Modeling the objects

Dynamic connectivity applications involve manipulating objects of all types.
 Variable name aliases.

Pixels in a digital photo.

Computers in a network.

Web pages on the Internet.

Transistors in a computer chip.

Metallic sites in a composite system.

When programming, convenient to hame objects O to N-1.
e Use integers as array index.
 Suppress details not relevant to union-find.

N

can use symbol table to translate from
object names to integers (stay tuned)



Modeling the connections

Transitivity. If p is connected to g and q is connected to r,
then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

©

O—O—®
{156}{2347}{08}|

\\T//

connected components




Implementing the operations
Find query. Check if two objects are in the same set.

Union command. Replace sets containing two objects with their union.

©
2

union (4, 8)

@ —
{156}{2347}{08}' {156}{023478}|

\\T//

connected components

)




Union-find data type (APT)

Goal. Design efficient data structure for union-find.
* Number of objects N can be huge.
* Number of operations M can be huge.

 Find queries and union commands may be intermixed.

public class UnionFind

UnionFind (int N) create union-find data structure with
N objects and no connections

boolean find(int p, int q) are p and q in the same set?

i ) ) i replace sets containing p and
void unite(int p, int q) p with their uniognp 1




» quick find

10



Quick-find [eager approach]

Data structure.
e Integer array id[] of size .
» Interpretation: p and q are connected if they have the same id.

i 6 1 2 3 4 5 6 7 8 9 5 and 6 are connected
id[i] 0 1 9 9 9 6 6 7 8 9 2,3,4,and 9 are connected
© ® ©

1



Quick-find [eager approach]

Data structure.
e Integer array id[] of size .

» Interpretation: p and q are connected if they have the same id.

i 6 1 2 3 4 5 6 7 8 9 5 and 6 are connected
id[i]J] 0o 1 9 9 9 6 6 7 8 9 2,3,4,and 9 are connected

Find. Check if p and q have the same id. id[3] = 9; id[6] = 6

3 and 6 not connected

12



Quick-find [eager approach]

Data structure.
e Integer array id[] of size .
» Interpretation: p and q are connected if they have the same id.

i 0 1 2 3 4 5 6 7 8 9 5 and 6 are connected
id[i]J] 0 1 9 9 9 6 6 7 8 9 2,3,4,and 9 are connected
Find. Check if p and q have the same id. id[3] = 9;id[6] = 6

3 and 6 not connected

Union. To merge sets containing p and q, change all entries with id[p] o idIq].

i 0

1 2 3 4 5 6 7 8 9 union of 3 and 6
id[i] O 1 &6

6 6 6 6 7 8 6 2,3,4,5,6,and 9 are connected
AN 7

problem: many values can change

13



Quick-find example

6-1 1

~./

problem: many values can change

@@@:@@@@

@@@@&@@@
@@@@@:
@@@@
®B0e s
® oo 6
© o8 Dwe 6

@ (D)

@@ ® ®@ ®

OROZORCROLOAORORE

14



Quick-find: Java implementation

id = new int[N];
for (int 1 = 0; i < N; i++4)
id[i]

return id[p] == id[q];

int pid = id[p];
for (int i = 0; i < id.length; i++)
if (id[i] == pid) id[i] = id[q]:

set id of each object to itself
(N operations)

check if p and q have same id
(1 operation)

change all entries with id[p] to id[q]
(N operations)

15



Quick-find is too slow

Quick-find defect.
 Union too expensive (N operations).

* Trees are flat, but too expensive to keep them flat.

quick-find N

algorithm
1

Ex. Takes N? operations to process sequence of N union commands
on N objects.

16



Quadratic algorithms do not scale

Rough standard (for now).

« 10° operations per second.

« 10° words of main memory. e
» Touch all words in approximately 1 second.

a truism (roughly) since 1950 |

Ex. Huge problem for quick-find.

* 10° union commands on 10° objects.

* Quick-find takes more than 10'® operations.
» 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

* New computer may be 10x as fast.
 But, has 10x as much memory so problem may be 10x bigger.
* With quadratic algorithm, takes 10x as long!

17
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Quick-union [lazy approach]

Data structure.

* Integer array id[] of size N.

o Interpretation: id[i] is parent of i. e
e Root of i is id[id[id[...id[i]...]1]1].

i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8

keep going until it doesn't change

| OROROBNONONO

ONON s I

P

3's root is 9; 5's root is 6

19



Quick-union [lazy approach]

Data structure.

* Integer array id[] of size N.

o Interpretation: id[i] is parent of i. -
e Root of i is id[id[id[...id[i]...]1]1].

i 0 1 2 3 4 5 6 7 8 9
id[i] 0 1 9 4 9 6 6 7 8

keep going until it doesn't change

l OROROBNONONO

Find. Check if p and q have the same root.

ONON s I

P

3's root is 9; 5's root is 6
3 and 5 are not connected

20



Quick-union [lazy approach]

Data structure.
* Integer array id[] of size N.
keep going until it doesn't change

o Interpretation: id[i] is parent of i. e
e Root of i is id[id[id[...id[i]...]1]1].

i 0 1 2 3 4 5 6 7 8 9 @@’
9

id[i] 0 1 9 4 9 6 6 7 8

Find. Check if p and q have the same root. F

3's root is 9; 5's root is 6
3 and 5 are not connected

Union. To merge sets containing p and q,

set the id of p's root to the id of q's root. @ @ () (7)

i 0 1 2 3 4 5 6 7 8 9 o
id[iJ] 0 1 9 4 9 6 6 7 8 6

only one value changes é
p




Quick-union example

2-3

7-3

6-1

012414

@@@:@@@@

@@@é@@@
(OXONONGRORG)
8
®
@ q @@@
@ ®
® & @0
e
®
@ @@
©
® 9 ®
®
@ Q
(9)
@ ® @
® ®

/

—

problem:
trees can get tall

22



Quick-union: Java implementation

public class QuickUnion

{

private int[] id;

public QuickUnion (int N)

{
id = new int[N]; set id of each object to itself
for (int i = 0; i < N; i++) id[i] = i; (N operations)
}
private int root(int i)
{
while (i !'= id[i]) i = id[i]; chase parent pointers until reach root
return i; (depth of i operations)
}
public boolean find(int p, int q)
{ :
return root(p) == root(q) ; « checkrfpandq?mvesameroot
} (depth of p and q operations)

public void unite(int p, int q)
{
int i = root(p), j = root(q); change root of p to point to root of q
id[i] J; (depth of p and q operations)




Quick-union is also too slow

Quick-find defect.
 Union too expensive (N operations).

* Trees are flat, but too expensive to keep them flat.

Quick-union defect.

* Trees can get tall.

 Find too expensive (could be N operations).

S i
quick-find N 1
quick-union NT N <«—— worst case

T includes cost of finding root

24



» improvements

25



Improvement 1: weighting

Weighted quick-union.
* Modify quick-union to avoid tall trees.
» Keep track of size of each sef.

* Balance by linking small tree below large one.

Ex. Union of 3 and s.
e Quick union: link 9 to s.
» Weighted quick union: link 6 to 9.

size 2 1 1

@@i@
ONO

q

26



Weighted quick-union example

3-4 01233567829 @@@:@@@@
4-9 0123356783 @@@&@@@
8-0 8123356783 :@®@©®
2-3 8133356783 ®©©®

OMCOY

@ (8) @
® @®
5-9 8133335783 ®

00 A
7-3 81 333353833 © 993 ®
A3 @ .
4-8 81 33335333 oL oS no problem:
© ® / trees stay flat
6-1 8333335333 B -~
=7 AN
OROROROAC)




Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i]

to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

return root(p) == root(q):;

Union. Modify quick-union to:

* Merge smaller tree into larger tree.

e Update the sz[] array.

int i = root(p):
int j = root(q):;
if (sz[i] < sz[j]) { id[i]
else { id[]]

= J; sz[]] +=

i; sz[i] +=

sz[i]; }

sz[j]; }

28



Weighted quick-union analysis

Analysis.

* Find: takes time proportional to depth of p and q.

* Union: takes constant time, given roots.

Proposition. Depth of any node x is at most Ig N.

N =10
depth(x)=3< IgN

29



Weighted quick-union analysis

Analysis.

* Find: takes time proportional to depth of p and q.
* Union: takes constant time, given roots.

Proposition. Depth of any node x is at most Ig N.
Pf. When does depth of x increase?

Increases by 1 when tree T; containing x is merged into another tree To.
* The size of the tree containing x at least doubles since |T2| > |T1|.

» Size of tree containing x can double at most Ig N times. Why?

30



Weighted quick-union analysis

Analysis.

* Find: takes time proportional to depth of p and q.

* Union: takes constant time, given roots.

Proposition. Depth of any node x is at most Ig N.

quick-find N 1
quick-union Nt N
weighted QU IgN t Ig N

T includes cost of finding root

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

31



Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,

set the id of each examined node to root (p).

32



Path compression: Java implementation

Standard implementation: add second loop to root() to set the id[]
of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other
node in path point to its grandparent.

public int root(int i)
{
while (i '= id[i])
{

id[i] = id[id[i]]; < only one extra line of code |
i = id[i];
}

return i;

In practice. No reason not to! Keeps tree almost completely flat.

33



Weighted quick-union with path compression example

@@@:@@@@
@@@é@)‘@)@@

:@@@@@

G) @@@

3° 2w 8®
® FTOW
@ (3) @
® @6
®
® @
0oL R0
®
Fou @
T® 66
® ®

@ ® OnE)

—

®
O

no problem:
~” trees stay VERY flat

34



WQUPC performance

Proposition. [Tarjan 1975] Starting from an empty data structure,
any sequence of M union and find ops on N objects takes O(N + M Ig* N) time.

* Proof is very difficult. T
e But the algorithm is still simplel actually O(N + M a(M, N))
see COS 423

Linear algorithm?

 Cost within constant factor of reading in the data.
e Intheory, WQUPC is not quite linear. > 1
* Inpractice, WQUPC is linear. 4 2
T 16 3
because Ig* N is a constant in this universe 65536 4
265536 5
Ig* function

number of times needed to take

Amazing fact. No linear-time linking strategy exists. the Ig of a number until reaching 1

35



Summary

Bottom line. WQUPC makes it possible to solve problems that
could not otherwise be addressed.

algorithm worst-case fime

quick-find M N
quick-union M N
weighted QU N+ MlogN
QU + path compression N+ M log N
weighted QU + path compression N+MIg* N

M union-find operations on a set of N objects

Ex. [107 unions and finds with 10° objects]
 WQUPC reduces time from 30 years to 6 seconds.
» Supercomputer won't help much; good algorithm enables solution.

36



» applications

37



Union-find applications

Percolation.
Games (Go, Hex).

v Network connectivity.

Least common ancestor.

Equivalence of finite state automata.
Hoshen-Kopelman algorithm in physics.
Hinley-Milner polymorphic type inference.
Kruskal's minimum spanning tree algorithm.
Compiling equivalence statements in Fortran.
Morphological attribute openings and closings.
Matlab’s bwlabel () function in image processing.

38



Percolation

A model for many physical systems:

* N-by-N grid of sites.

* Each site is open with probability p (or blocked with probability 1-p).
» System percolates if top and bottom are connected by open sites.

percolates does not percolate
. Dlocked

site

full

<~—open

empty site
open —
e N\ N7
site connected to top
N=238

no open site connected to top




Percolation

A model for many physical systems:

* N-by-N grid of sites.

* Each site is open with probability p (or blocked with probability 1-p).
» System percolates if top and bottom are connected by open sites.

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates




Likelihood of percolation

Depends on site vacancy probability p.

igh

perco ates

i

ph

p medium
percolates?

p low
late

does

not perco

20
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Percolation phase transition

When N is large, theory guarantees a sharp threshold p*.
* p > p*: almost certainly percolates.

* p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

percolation

probability

AN S

0 p* 1

N =100 site vacancy probability p

42



Monte Carlo simulation

* Initialize N-by-N whole grid o be blocked.
* Declare random sites open until fop connected to bottom.

* Vacancy percentage estimates p*.

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

Sites = 135




UF solution to find percolation threshold

How to check whether system percolates?
* Create an object for each site.
» Sites are in same set if connected by open sites.

 Percolates if any site in top row is in same set as any site in bottom row.

N

brute force algorithm needs to check N2 pairs

oo EIEEEY K3
-ﬂ---

B - 1
E3E3 - Y -
%-ﬂﬂﬂﬂﬂ

full open site
(connected to top)

empty open site
(not connected to top)

blocked site

44



UF solution to find percolation threshold

Q. How to declare a new site open?

open this site

full open site
(connected to top)

empty open site
(not connected to top)

blocked site

45



UF solution to find percolation threshold

Q. How to declare a new site open?
A. Take union of new site and all adjacent open sites.

open this site

full open site
(connected to top)

empty open site
(not connected to top)

blocked site

46



UF solution: a critical optimization

Q. How to avoid checking all pairs of top and bottom sites?

LRI
o R - el
BRI eI
25 25 25 25 25

25
v
- [ -

full open site
(connected to top)

empty open site
(not connected to top)

blocked site

47



UF solution: a critical optimization
Q. How to avoid checking all pairs of top and bottom sites?

A. Create a virtual fop and bottom objects;
system percolates when virtual top and bottom objects are in same set.

virtual fop row —>

oo EEEIENEN BN
-m---

full open site
(connected to top)

-E%-%-Eﬂ e
(not connected to top)

E3EY - B3 - B -

-ﬂﬂ

blocked site

virtual bottom row —



Percolation threshold

Q. What is percolation threshold p* ?
A. About 0.592746 for large square lattices.

T

percolation constant known
only via simulation

1— po—o——o——
percolation
probability

“—J p*

0 [ I
0 0.593 1
site vacancy probability p

49



Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.
Model the problem.
Find an algorithm to solve it.

Fast enough? Fits in memory?

If not, figure out why.

Find a way to address the problem.

Iterate until satisfied.

The scientific method.

Mathematical analysis.

50



1.4 Analysis of Algorithms

constant

- r
s m gany

key :..

timeg:z

performance

'°|mp rtant
con5|dero %
°

210

3_

Algorithms in Java, 4" Edition

» estimating running time

» mathematical analysis

» order-of-growth hypotheses
» input models

» measuring space

Reference: Intro to Programming in Java, Section 4.1

- Robert Sedgewick and Kevin Wayne - Copyright © 2009 -  January 22, 2010 10:11:28 AM



Cast of characters

Programmer needs to develop

a working solution. <

Student might play any

*‘ /
Client wants problem onal) of Fhese roles

solved efficiently. SR

Theoretician wants
to understand.

Basic blocking and tackling
IS sometimes necessary.
[this lecture]




Running time

“As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will arise—By what course of calculation can these results be arrived at by
the machine in the shortest time? ” — Charles Babbage

how many times
do you have to
turn the crank?

Bt

—

Charles Babbage (1864) Analytic Engine



Reasons to analyze algorithms

\ this course (COS 226)

Compare algorithms. <

—
~—

Understand theoretical basis. @ «———  theory of algorithms (COS 423)

Predict performance.

Provide guarantees.

Primary practical reason: avoid performance bugs.

client gets poor performance because programmer
did not understand performance characteristics




Some algorithmic successes

Discrete Fourier transform.

* Break down waveform of N samples into periodic components.
Applications: DVD, JPEG, MRI, astrophysics, ...

Brute force: N? steps.

Friedrich Gauss

FFT algorithm: N log N steps, enables new technology. 1805

time

| quadratic
64T

32T

16T — . . .
linearithmic

8T -
linear

| | | |
size — 1K 2K 4K 8K




Some algorithmic successes

N-body Simulation.

» Simulate gravitational interactions among N bodies.
 Brute force: NZ steps.

e Barnes-Hut: N log N steps, enables new research.
Andrew Appel

PU '81

time

! quadratic
64T —

Calaxies NGC 2207 and IC 2163
32T —
16T — . . .
linearithmic
Hitc,
8T — .
linear
| | | |
size — 1K 2K 4K 8K




» estimating running time



Scientific analysis of algorithms
A framework for predicting performance and comparing algorithms.

Scientific method.
e Observe some feature of the universe.

Hypothesize a model that is consistent with observation.

Predict events using the hypothesis.

Verify the predictions by making further observations.

Validate by repeating until the hypothesis and observations agree.

Principles.
« Experiments must be reproducible.
* Hypotheses must be falsifiable.

Universe = computer itself.



Experimental algorithmics

Every fime you run a program you are doing an experiment!

Why is my program so slow 2?
»

First step. Debug your program!
Second step. Choose input model for experiments.
Third step. Run and time the program for problems of increasing size.



Example: 3-sum

3-sum. Given N integers, find all triples that sum to exactly zero.

% more input8. txt
8
30 -30 -20 -10 40 0 10 5

% java ThreeSum < input8. txt
4

30 -30 0
30 -20 -10
-30 -10 40
-10 0 10

Context. Deeply related to problems in computational geometry.

10



3-sum: brute-force algorithm

public class ThreeSum

{
public static int count(int[] a)

{

int N = a.length;

int cnt = 0;

for (int i = 0; i < N; i++)

for (int j = i+l; j < N; j++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + al[k] == 0)

cnt++;

return cnt;

public static void main(String[] args)
{
long[] a = StdArrayIO.readIntlD() ;
StdOut.println(count(a)) ;

—— check each friple

—— ignore overflow

1



Empirical analysis

Run the program for various input sizes and measure running time.

ThreeSum. java

1000 0.26
2000 2.16
4000 17.18
8000 137.76

T Running Linux on Sun-Fire-X4100

12



Measuring the running time

Q. How to time a program?
A. Manual.

% java ThreeSum < 1Kints.txt

tick tick tick

0

% java ThreeSum < 2Kints.txt

tick tick tick tick tick tick
tick tick tick tick tick tick
tick tick tick tick tick tick
tick tick tick tick tick tick

2
391930676 -763182495 371251819
-326747290 802431422 -475684132

13



Measuring the running time

Q. How to ftime a program?
A. Automatic.

Stopwatch stopwatch = new Stopwatch() ;
ThreeSum.count (a) ;

double time = stopwatch.elapsedTime () ;
StdOut.println("Running time: " + time + " seconds");

client code

public class Stopwatch
{

private final long start = System.currentTimeMillis() ;

public double elapsedTime ()
{

long now = System.currentTimeMillis() ;
return (now - start) / 1000.0;

implementation (part of stdlib.jar, see http://www.cs.princeton.edu/introcs/stdlib)

14



Data analysis

Plot running time as a function of input size N.

time

512T —

256T —

128T —
64T -

size — 1K 2K 4K 8K




Data analysis

Log-log plot. Plot running time vs. input size N on log-log scale.

time

!
1024T

512T

- slope = 3
8T -
4T
2T

T_

| | | |
size — 1K 2K 4K 8K

power law

Regression. Fit straight line through data points: a N o,

slope

e
Hypothesis. Running time grows with the cube of the input size: a N-.



Doubling hypothesis
Doubling hypothesis. Quick way to estimate b in a power law hypothesis.

Run program, doubling the size of the input.

500 0.03 -

1,000 0.26 7.88 2.98
2,000 2.16 8.43 3.08
4,000 17.18 7.96 2.99
8,000 137.76 7.96 2.99

T

seems fo converge to a constant b # 3

Hypothesis. Running time is about a N> with b = Ig ratio.
Caveat. Can't identify logarithmic factors with doubling hypothesis.

17



Prediction and verification

Hypothesis. Running time is about a N3 for input of size N.

A. Run the program! 4,000 17.18
4,000 17.15 17.17
= a

4,000 17.17

Refined hypothesis. Running time is about 2.7 x 10 -1 x N 3 seconds.

Prediction. 1,100 seconds for N = 16,000.

Observation.
——

16384 1118.86

validates hypothesis!

= a x 40003
= 2.7x%x 1010

18



Experimental algorithmics

Many obvious factors affect running time:
* Machine.

» Compiler.

 Algorithm.

e Input data.

More factors (not so obvious):

» Caching.

* Garbage collection.

e Just-in-time compilation.

» CPU use by other applications.

Bad news. It is often difficult fo get precise measurements.
Good news. Easier than other sciences.

N

e.g., can run huge number of experiments



War story (from COS 126)

Q. How long does this program take as a function of N?

public class EditDistance

{

String s = StdIn.readString();
int N = s.length()

for (int i = 0; i < N; i++)

for (int

distance[i] []J] = ...

j=0; jJ < N; jt++)

1,000
Jenny. ~ c1 N? seconds. 2 000
4,000

Kenny. ~ c2 N seconds.
8,000

0.11 250 0.5

0.35 500 1.1
1.6 1,000 1.9
6.5 2,000 3.9

Jenny Kenny

20



» mathematical analysis
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Mathematical models for running time

Total running time: sum of cost x frequency for all operations.

* Need fo analyze program to determine set of operations.
» Cost depends on machine, compiler.

* Frequency depends on algorithm, input data.

N THE CLASSIC WORK
ED AND REVISED NEWLY UPDATED AND REVISED

The Art of The Art of The Art of
Computer Computer Computer
Programming Programming Programming

Fundamental Algorithms Seminumerical Algorithms
I Third Edition

DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH Donald Knuth

1974 Turing Award

In principle, accurate mathematical models are available.

22



Cost of basic operations

integer add a+hb 2.1
intfeger multiply a*b 2.4
integer divide a/b 5.4

floating point add a+b 4.6

floating point multiply a*b 4.2
floating point divide a/b 13.5
sine Math.sin (theta) 91.3
arctangent Math.atan2(y, x) 129.0

T Running OS X on Macbook Pro 2.26Hz with 26B RAM



Cost of basic operations

variable declaration int a i
assignment statement a=> C2
integer compare a<b G
array element access a[i] C4
array length a.length Cs

1D array allocation new int[N] ¢ N

2D array allocation new int[N] [N] cz N?
string length s.length() 8
substring extraction s.substring(N/2, N) Co

string concatenation s +t cio N

Novice mistake. Abusive string concatenation.

24



Example: 1-sum

Q. How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
if (a[i] == 0) count++;

variable declaration 2
assignment statement 2
less than compare N+ 1

equal to compare
q P between N (no zeros)

array access N / and 2N (all zeros)

2w

increment <




Example: 2-sum

Q. How many instructions as a function of N?

int count = 0;
for (int i =
for (int j =

if (a[i] + a[j]

0; i < N; i++)
i+l; j < N; j++4)

0) count++;

0+14+2+...+(N-1) =
operation frequency

variable declaration
assignment statement
less than compare
equal o compare
array access

increment

N+ 2
N+ 2
1/2 (N+l)(N+7
1/2 N(N=1)
N(N=1)

< N2

.

tedious to count exactly

26



Tilde notation

» Estimate running time (or memory) as a function of input size N.
» Ignore lower order terms.

- when N is large, tferms are negligible

- when N is small, we don't care

Ex 1. 6N3 + 20N + 16 ~ 6N3
Ex2. 6N3 + I00N43 + 56 ~ 6N3
Ex3. 6N3+ 17N21gN+ 7N ~ 6N3
_ J
e

discard lower-order terms
(e.g., N = 1000: 6 billion vs. 169 million)

Technical definition. fiN) ~ g(N) means lim V) _
N=® g(N)

27



Example: 2-sum

Q. How long will it take as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+l; j < N; j++)

if (a[i] + a[j] == 0) count++; <—— "inner loop"
variable declaration ~ ca N
assignment statement ~ N C2 ~ N
less than comparison ~1/2 N2
C3 ~ 3 N?
equal to comparison ~1/2 N2
array access ~ N2 Ca ~ ca N?
increment < N2 Cs < ¢ N2

depends on input data



Example: 3-sum

Q. How many instructions as a function of N?

int count = 0; — ~1

for (int i = 0; i < N; i++)

for (int j = i+l; j < N; j++)

< ~ 2
for (int k = j+1; k < N; k++) VE/2
"inner loop" > |if (a[i] + al[j] + al[k] == 0) |« (gf) _ N(N—g(N_z)
count++; 1,
AN
‘\\\

may be in inner loop, depends on input data

Remark. Focus on instructions in inner loop; ignore everything elsel



Bounding the sum by an integral trick

Q. How to estimate a discrete sum?
Al. Take COS 340.
A2. Replace the sum with an integral, and use calculus!

N N 1
Ex1 1+2+ .. +N. Zz ~ / xdr ~ §N2
i=1 w=l
N W)
Ex2. 1+1/2+1/3+..+ UN. >3~ [ gdo = N
: (] :E_lfU

N N N N

N N
Ex 3. 3-sum triple loop. Y'Y 1 o~ / / / dz dy dx
z=1Jy=x Jz=y

1=1 =1 k=3

30



Mathematical models for running time
In principle, accurate mathematical models are available.

In practice,

e Formulas can be complicated.

* Advanced mathematics might be required.
» Exact models best left for experts.

costs (depend on machine, compileek+

P .

TN = 1A + 2B + ¢c3C + ¢c4D + ¢c5E
A = variable declarations

\\
B = assignment statements — e
C:= compare (depend on algorithm, input)
L
D = array access 1~
E = increment d

Bottom line. We use approximate models in this course: Tn~c N3,

31



» order-of-growth hypotheses
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Common order-of-growth hypotheses

To determine order-of-growth:

* Assume a power law Tv ~a N°.

» Estimate exponent b with doubling hypothesis.
* Validate with mathematical analysis.

EX. ThreeSumDeluxe. java
Food for precept. How is it implemented?

1,000 0.26 1,000 0.43
2,000 2.16 2,000 0.53
4,000 17.18 4,000 101
8,000 137.76 8.000 287
ThreeSum. java 16,000 11.00
32,000 44 64
64,000 177.48

ThreeSumDeluxe. java



Common order-of-growth hypotheses

Good news. the small set of functions
1, log N, N, Nlog N, N2, N3,and 2V

suffices to describe order-of-growth of typical algorithms.

time

1024T

512T

exponential

logarithmic

constant

size —

IK 2K 4K 8K 1024K

Orders of growth (log-log plot)
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Common order-of-growth hypotheses

log N

N log N

N2

N3

2N

constant

logarithmic

linear

linearithmic

quadratic

cubic

exponential

typical code framework

a=>b + c;

while (N > 1)
{ N=N/2; ... }

for (int i = 0; i < N; i++)
{ ... }

[see mergesort lecture]

for (int 1 = 0; i < N; i++)
for (int j = 0; j < N; j++)

{ ... }
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
{ ... }

[see combinatorial search lecture]

description

statement

divide in half

loop

divide
and conquer

double loop

triple loop

exhaustive
search

example

add two
numbers

binary search

find the
maximum

mergesort

check all pairs

check all
triples

check all
possibilities

T(2N)/ T
(N)

T(N)

35



Practical implications of order-of-growth

effect on a program that
runs for a few seconds

description
time for 100x size for 100x
more data faster computer
1 constant independent of input size - -
log N logarithmic nearly independent of input size - -
N linear optimal for N inputs a few minutes 100x
N log N linearithmic nearly optimal for N inputs a few minutes 100x
N2 quadratic not practical for large problems several hours 10x
N3 cubic not practical for medium problems several weeks 4-5x
2N exponential useful only for tiny problems forever 1x

36



» input models
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Types of analyses

Best case. Lower bound on cost.
» Determined by “easiest” input.
 Provides a goal for all inputs.

Worst case. Upper bound on cost.
* Determined by "most difficult” input.
 Provides guarantee for all inputs.

Average case. "Expected” cost.
* Need a model for "random” input.

* Provides a way to predict performance.

Ex 1. Array accesses for brute-force 3-sum.
o Best: ~ iN3

s Average: ~ $N3

« Worst: ~ 3N3

Ex 2. Compares for insertion sort.

» Best (ascending order): ~ N.

« Average (random order): ~ 3 N2

« Worst (descending order): ~ $N2
(details in Lecture 4)

10000000 1
* Descendng

100000 - * Random
* Ascending

1000 -

Comparsions (millions)

0.1

0.001 T T "
1000 10000 100000 1000000

Input Size

38



Commonly-used notations

10 N2 ,
Tilde leading term ~10 N2 10 N2+ 22 Nlog N provide
10 N2+ 2 N+37 approximate model
i N lassif
Big Theta asymptotic O(N2) 9000 N2 c as§| y
growth rate 5 N2+ 22 Nlog N+ 3N algorithms
N devel
Big Oh O(N?2) and smaller O(N?) 100 N evelop
22 Nlog N+ 3 N upper bounds
2000 Nz develo
Big Omega O(N?) and larger Q(N?2) N> P
N3+ 22 Nlog N+ 3 N lower bounds

Common mistake. Interpreting big-Oh as an approximate model.



Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.
 Big-Oh notation suppresses leading constant.

* Big-Oh notation only provides upper bound (not lower bound).

time/memory

time/memory

f(N)

values represented
by O(f(N))

c f(N)

/

values represented
by ~ ¢ f(N)

N\

input size

input size




» measuring space
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Typical memory requirements for primitive types in Java

Bit. Oor 1.

Byte. 8 bits.

Megabyte (MB). 1 million bytes.
Gigabyte (GB). 1 billion bytes.

boolean 1
byte 1
char 2
int 4
float 4
long 8

double 8




Typical memory requirements for arrays in Java

Array overhead. 16 bytes.

char[] 2N+ 16
int[] 4N + 16
double[] 8N+ 16

one-dimensional arrays

char[][] 2N2 + 20N+ 16
int[][] 4N2 + 20N + 16

double[][] 8N2 + 20N+ 16

two-dimensional arrays

Ex. An N-by-N array of doubles consumes ~ 8N2 bytes of memory.

43



Typical memory requirements for objects in Java

Object overhead. 8 bytes.
Reference. 4 bytes.

Ex 1. A complex object consumes 24 bytes of memory.

public class Complex

{

private double re;
private double im;

A

A

8 bytes overhead for object

8 bytes
8 bytes

24 bytes

object
overhead

re ~_double
n «— values

24 bytes

44



Typical memory requirements for objects in Java

Object overhead. 8 bytes.

Reference. 4 bytes.

Ex 2. A virgin string of length N consumes ~ 2N bytes of memory.

public class String

{

private
private
private
private

int offset;
int count;
int hash;
char|[] value;

A

A

A

A

object
overhead

value

offset

count

hash

—— reference
™~ int

— wvalues
V'

8 bytes overhead for object

4 bytes
4 bytes
4 bytes

4 bytes for reference
(plus 2N + 16 bytes for array)

2N + 40 bytes
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Example 1

Q. How much memory does guickuwec use as a function of N?

A.

public class QuickUWPC

{

private int[] id;
private int[] sz;

public QuickUWPC (int N)
{

id = new int[N];

sz = new int[N];

for (int 1 = 0; i < N; i++) id[i] = i;
for (int 1 = 0; i < N; i++) sz[i] = 1;

public boolean find(int p, int q)
{ ...}

public void unite(int p, int q)
{ ...}

46



Example 2

Q. How much memory does this code fragment use as a function of N?
A.

int N = Integer.parseInt(args[0])
for (int 1 = 0; i < N; i++) {
int[] a = new int[N];

Remark. Java automatically reclaims memory when it is no longer in use.

not always easy for Java to know /

47



Turning the crank: summary

In principle, accurate mathematical models are available.
In practice, approximate mathematical models are easily achieved.

Timing may be flawed?

 Limits on experiments insignificant compared to IM'MM
other sciences.

* Mathematics might be difficult?
* Only a few functions seem to turn up.
* Doubling hypothesis cancels complicated constants.

Actual data might not match input model?

* Need to understand input to effectively process it.

» Approach 1: design for the worst case.

» Approach 2: randomize, depend on probabilistic guarantee.

48



1.3 Stacks and Queues
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stack
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Stacks and queues

Fundamental data types.

* Values: sets of objects

* Operations: insert, remove, test if empty.
* Intent is clear when we insert,

e Which item do we remove?
LIFO = "last in first out"

v

Stack. Remove the item most recently added.

Analogy. Cafeteria trays, Web surfing.
FIFO = "first in first out"

e

Queue. Remove the item least recently added.
Analogy. Registrar's line.

push

pop

enqueue | § dequeue




Client, implementation, interface

Separate interface and implementation.
Ex: stack, queue, priority queue, symbol table, union-find, ...

Benefits.
 Client can't know details of implementation =
client has many implementation from which to choose.
* Implementation can't know details of client needs =
many clients can re-use the same imptémentation.
e Design: creates modular, reusable libraries.
e Performance: use optimized implementation where it matters.

Client: program using operations defined in interface.
Implementation: actual code implementing operations.
Interface: description of data type, basic operations.







Stacks

Stack operations.

* push () Insert a new item onto stack.
* pop() Remove and return the item most recently added.
* isEmpty () Is the stack empty?

push

pop

public static void main(String[] args)
{
StackOfStrings stack = new StackOfStrings() ;
while (!StdIn.isEmpty())
{
String item = StdIn.readString();
if (item.equals("-")) StdOut.print(stack.pop())
else stack.push (item) ;

$ more tobe.txt
to be or not to - be - - that - - - 1is '

[

% java StackOfStrings < tobe. txt
to be not that or be




Stack pop: linked-list implementation

o



Stack push: linked-list implementation



Stack: linked-list implementation

public class StackOfStrings
{

private Node first = null;

private class Node
{
String item;
Node next;

public boolean isEmpty ()
{ return first == null; }

public void push(String item)
{
Node oldfirst = first;
first = new Node() ;
first.item = item;
first.next = oldfirst;

}

public String pop ()
{
if (isEmpty()) throw new RuntimeException() ;
String item = first.item;
first = first.next;
return item;

<—

"inner class"

stack underflow



Stack:

linked-list trace

StdIn

to

be

or
not

to

be

that

is

StdOut

to

be

not

that

or

[ ]

| is |




Stack: array implementation

Array implementation of a stack.

» Use array s[] to store n items on stack.
e push(): add new item at s[N].

* pop(): remove item from s[N-1].

s[] it was the best of times

0 1 2 3 4 5

null

6

N

null

7

null

8

null

9

capacity = 10

10



Stack: array implementation

public class StackOfStrings
{

private String[] s; a cheat
(stay tuned)

l

public StackOfStrings (int capacity)

private int N = 0;

{ s = new String[capacity]; }

public boolean isEmpty ()
{ return N == 0; }

public void push(String item)
{ s[N++] = item; }

public String pop()
{ return s[--N]; 1}

public String pop ()

{
String item = s[--N];
s[N] = null;
return item;

A\

decrement N;
then use to index into array

this version avoids "loitering"

garbage collector only reclaims memory
if no outstanding references

1



» dynamic resizing
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Stack: dynamic array implementation

Problem. Requiring client to provide capacity does not implement API!
Q. How to grow and shrink array?

First try.
« push(): increase size of s[] by 1.

* pop(): decrease size of s[] by 1.

Too expensive.
* Need to copy all item to a new array.
 Inserting first N items takes time proportional to1+2 + ..+ N ~ N&/2.

T

infeasible for large N

Goal. Ensure that array resizing happens infrequently.

13



Stack: dynamic array implementation

"repeated doubling"

Q. How fo grow array? /
A. If array is full, create a new array of twice the size, and copy items.

public StackOfStrings() { s = new String[2]; }

public void push(String item)

{
if (N == s.length) resize(2 * s.length)
s[N++] = item;

}

private void resize(int capacity)
{
String[] dup = new String[capacity];
for (int i = 0; i < N; i++)
dup[i] = s[i];
s = dup;

1+2+4+  +N/2+N ~ 2N

/

Consequence. Inserting first N items takes time proportional to N (not N2).

14



Stack: dynamic array implementation
Q. How to shrink array?

First try.
* push(): double size of s[1 when array is full.
* pop(): halve size of s[]1 when array is half full.

"thrashing"
Too expensive
 Consider push-pop-push-pop-... sequence when array is full.

» Takes time proportional to N per operation.

N =25 it was the Dbest of null null null
N =4 it was the Dbest
N =5 it was the Dbest of null null null

N =4 it was the Dbest




Stack: dynamic array implementation
Q. How to shrink array?

Efficient solution.

* push(): double size of s[1 when array is full.
* pop(): halve size of s[]1 when array is one-quarter full.

public String pop ()
{
String item = s[--N];
s[N] = null;
if (N > 0 && N == s.length/4) resize(s.length / 2);
return item;

Invariant. Array is always between 25% and 100% full.

16



Stack: dynamic array implementation trace

StdIn StdOut N a.length 0 1 5 3 4 5 6 7
0 1 null
to 1 to
be 2 2 be
or 3 4 or null
not 4 not
to 5 8 to null null null
- 4 null
be 5 be
- be 4 null
- not 3 null
that 4 that
- that 3 null
- or 2 null null
- be 1 2 null
is 2 is




Amortized analysis

Amortized analysis. Average running time per operation over
a worst-case sequence of operations.

Proposition. Starting from empty data structure, any sequence of M push and
pop ops takes time proportional fo M.

running time for doubling stack with N items

construct 1

1 1
push N 1 1

N 1 1
N

doubling or shrinking

Remark. Recall, WQUPC used amortized bound.

18



Stack implementations: memory usage

Linked list implementation. ~ 16N bytes.

private class Node 8 bytes overhead for object
{

String item; <«—F—— 4 bytes

Node next; <«—F+—— 4 bytes
}

16 bytes per item

Doubling array. Between ~ 4N (100% full) and ~ 16N (25% full).

public class DoublingStackOfStrings
{
private String[] s;
private int N = 0;

4 bytes x array size
4 bytes

A A

Remark. Our analysis doesn't include the memory for the items themselves.

19



Stack implementations: dynamic array vs. linked List

Tradeoffs. Can implement with either array or linked list;

client can use interchangeably. Which is better?

Linked list.

» Every operation takes constant time in worst-case.
» Uses extra time and space to deal with the links.

Array.

» Every operation takes constant amortized time.
* Less wasted space.

20
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Queues

Queue operations.

enqueue () Insert a new item onto queue.
dequeue () Delete and return the item least recently added.
isEmpty () Is the queue empty?

public static void main(String[] args)
{

QueueOfStrings g = new QueueOfStrings() ;
while (!StdIn.isEmpty())
{

String item = StdIn.readString();

if (item.equals("-")) StdOut.print(g.dequeue())

else g.enqueue (item) ;

% more tobe.txt
to be or not to - be - - that - - - 1is

% java QueueOfStrings < tobe. txt
to be or not to be

*______.

22



Queue dequeue: linked list implementation

first last

! l
B

String item = first

"it"

first = first.next;

return item;

w it"

.item;

23



Queue enqueue: linked list implementation

first last

first oldlast last
first oldlast last

24



Queue: linked list implementation

public class QueueOfStrings

{

private Node first, last;

private class Node
{ /* same as in StackOfStrings */

public boolean isEmpty ()
{ return first == null; }

public void enqueue (String item)
{

Node oldlast = last;

last = new Node() ;

last.item = item;

last.next = null;

if (isEmpty()) first = last;

else oldlast.next = last;

public String dequeue ()

{
String item = first.item;
first = first.next;
if (isEmpty()) last = null;
return item;

25



Queue: dynamic array implementation

Array implementation of a queue.

e Use array q[1 to store items in queue.

* enqueue(): add new item at gq[tail].

* dequeue(): remove item from q[head].
Update head and tail modulo the capacity.
Add repeated doubling and shrinking.

qll null null the best of times null
0 1 2 3 4 5 6
head tail

null

7

null

8

null

9

capacity = 10

26



» generics
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Parameterized stack

We implemented: stackofstrings.

We also want: stackofURLs, StackOfCustomers, StackOfInts, etc?

Attempt 1. Implement a separate stack class for each type.
* Rewriting code is tedious and error-prone.

* Maintaining cut-and-pasted code is tedious and error-prone.

@#3%*| most reasonable approach until Java 1.5.
[hence, used in Algorithms in Java, 3™ edition]

28



Parameterized stack

We implemented: stackofstrings.

We also want: stackofURLs, StackOfCustomers, StackOfInts, etc?

Attempt 2. Implement a stack with items of type object.

 Casting is required in client.

* Casting is error-prone: run-time error if types mismatch.

StackOfObjects s = new StackOfObjects() ;

Apple a = new Apple();
Orange b = new Orange() ;
s.push(a) ;
s.push (b) ;

a = (Apple) (s.pop()):

A

run-time error

29



Parameterized stack

We implemented: stackofstrings.

We also want: stackofURLs, StackOfCustomers, StackOfInts, etc?

Attempt 3. Java generics.

* Avoid casting in both client and implementation.
» Discover type mismatch errors at compile-time instead of run-time.

/ *ype parame‘rer‘

Stack<Apple> s = new Stack<Apple>() ;

Apple a = new Apple();
Orange b = new Orange () ;
s.push(a) ;

s.push(b) ;

a = s.pop();

A

compile-time error

Guiding principles. Welcome compile-time errors; avoid run-time errors.
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Generic stack: linked list implementation

¢ type name
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Generic stack: array implementation

{ s = new Item[capacity];

the way it should be

@#$*! generic array creation not allowed in Java

}

32



Generic stack: array implementation

the ugly cast

{

s = (Item[]) new Object[capacity];

the way it is

}

33



Generic data types: autoboxing

Q. What to do about primitive types?

Wrapper type.

» Each primitive type has a wrapper object type.

* EX: Integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.

Syntactic sugar. Behind-the-scenes casting.

Stack<Integer> s = new Stack<Integer>() ;
s.push(17) ; // s.push(new Integer (17));
int a = s.pop(); // int a = s.pop().intValue() ;

Bottom line. Client code can use generic stack for any type of data.

34



Autoboxing challenge
Q. What does the following program print?

public class Autoboxing {

public static void cmp(Integer a, Integer b) {

if (a < Db) StdOut.printf("%d < %d\n", a, b);
else if (a == b) StdOut.printf("$d == %d\n", a, b);
else StdOut.printf("%d > %d\n", a, b);

public static void main(String[] args) {
cmp (new Integer (42), new Integer (42));
cmp (43, 43);
cmp (142, 142);

} % Java Autoboxing
42 > 42

" 43 == 43 I

142 > 142

Best practice. Avoid using wrapper types whenever possible.



Generics

Caveat. Java generics can be mystifying at times.

public class Collections mixing generics with inheritance

- / N\

public static<T> void copy(List<? super T> dest, List<? extends T> src)
{

for (int i = 0; i < src.size(); i++) - S =
Speed Up The Java Development Process
dest.set (i, src.get(i))

JEAZ
Generics

and Collections

M

» faurice Naftalin
O’REILLY & Philip Wadler

This course. Restrict attention to "pure generics."

AN

avoid mixing generics with inheritance
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Iteration

Design challenge. Support iteration over stack items by client,
without revealing the internal representation of the stack.

i N
s[] it was the best of times null null null null
0 1 2 3 4 5 6 7 8 9
first current

of —>» best ——— the —— was —— it —— null

Java solution. Make stack implement the 1terable interface.
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Iterators

Q. What is an Iterable ?

A. Has a method that returns an rterator.

Q. What is an 1terator ?

A. Has methods hasNext () and next ().

Q. Why make data structures rterable ?
A. Java supports elegant client code.

public interface Iterable<Item>
{

Iterator<Item> iterator() ;

public interface Iterator<Item>
{

boolean hasNext () ;

Item next () ;

T O optional; use .
} at your own risk

"foreach” statement equivalent code

for (String s : stack)
StdOut.println(s) ;

Iterator<String> i = stack.iterator();
while (i.hasNext())

{

String s = i.next();
StdOut.println(s) ;
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Stack iterator: linked list implementation

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{

public Iterator<Item> iterator() { return new ListIterator():;

private class ListIterator implements Iterator<Item>

{

private Node current = first;

public boolean hasNext() { return current != null;

public void remove () { /* not supported */
public Item next()

{
Item item = current.item;
current = current.next;
return item;

}
}

}

first current

| |

of ——»> best ——»> the ——»> was ———> it

e

null

40



Stack iterator: array implementation

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>

{
public Iterator<Item> iterator() { return new ArrayIterator(); }
private class Arraylterator implements Iterator<Item>

{

private int i = N;

public boolean hasNext() { return i > 0O; }
public void remove () { /* not supported */ }
public Item next() { return s[--i]; }
}
}
i N
s[] it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9
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» applications
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Java collections library

java.util.List APT.

boolean isEmpty ()

int size()

void add(Item item)

void add(int index, Item item)
Item get (int index)

Item remove (int index)

Item set(int index Item item)
boolean contains(Item item)

Iterator<Item> iterator ()

Implementations.

Is the list empty?

Return number of items on the list.
Insert a new item to end of list.
Insert item at specified index.
Return item at given index.

Return and delete item at given index.

Replace element at given index.
Does the list contain the item?
Return iterator.

* java.util.ArrayList implements API using an array.

* java.util.LinkedList implements APT using a (doubly) linked list.

43



Java collections library

java.util. Stack.

» Supports push(), pop(), size(), isEmpty(), and iteration.

* Also implements java.util.List interface from previous slide,
e.g., set(), get(), and contains().

* Bloated and poorly-designed API = don't use.

java.util.Queue.

* An interface, not an implementation of a queue.

Best practices. Use our implementations of stack and Queue if you need a
stack or a queue.
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War story (from COS 226)

Generate random open sites in an N-by-N percolation system.
« Jenny: pick (i, j) at random; if closed, repeat.

Takes ~ c1 N? seconds.
* Kenny: maintain a java.util.ArrayList of open sites.

Pick an index at random and delete.

Takes ~ c1 N* seconds.

Q. Why is Kenny's code so slow?

Lesson. Don't use a library until you understand its API!

COS 226. Can't use a library until we've implemented it in class.
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Stack applications

Real world applications.
 Parsing in a compiler.

Java virtual machine.

Undo in a word processor.

Back button in a Web browser.

PostScript language for printers.

Implementing function calls in a compiler.

46



Function calls

How a compiler implements a function.
* Function call: push local environment and return address.
» Return: pop return address and local environment.

Recursive function. Function that calls itself.
Note. Can always use an explicit stack to remove recursion.

gcd (216, 192)

static int gcd(int p, int q) {
if (g == 0) return p;

else gcd (192, 24)

P = 216, g = 192

static int gecd(int p, int q) {
p =192, g = 24 if (g == 0) return p;

else gcd (24, 0)

static int gcd(int p, int q) {
if (g == 0) return p;
else return gcd(g, P % Q)

47



Arithmetic expression evaluation

Goal. Evaluate infix expressions.

value stack
operator stack

(1+((2+3) * (4*5)))

R LV
\ \
operand operator

Two-stack algorithm. [E. W. Dijkstra]

* Value: push onto the value stack.

* Operator: push onto the operator stack.

o Left parens: ignore.

* Right parens: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.

Context. An interpreter!

H

L

HIT

|

:SH ‘

I

vl

20

i

100

101

H

(L+CC2+3)*(4%5)))

+(C2+3)*(C4%5)))

(C2+3)*(C4%5)))

+3)*(C4%5)))

3)*(C4%5)))

) *(4%5)))

*(4%5)))

(4*5)))

*5)))

5))0)

)))

) )

)
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Arithmetic expression evaluation

public class Evaluate
{
public static void main(String[] args)
{
Stack<String> ops = new Stack<String>();
Stack<Double> vals = new Stack<Double>() ;
while (!StdIn.isEmpty()) {
String s = StdIn.readString();

if (s.equals (" (")) ;
else if (s.equals("+")) ops.push(s) ;
else if (s.equals("*")) ops.push(s) ;

else if (s.equals(")"))
{
String op = ops.pop() ;
if (op.equals("+")) wvals.push(vals.pop() + wvals.pop())
else if (op.equals("*")) vals.push(vals.pop() * vals.pop()):
}
else vals.push (Double.parseDouble(s)) ;

}
StdOut.println(vals.pop()) ;

ava Evaluate

5 3
(1 + ((2+3) *(4*x5)))
101.0 (
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Correctness

Q. Why correct?

A. When algorithm encounters an operator surrounded by two values within
parentheses, it leaves the result on the value stack.

(1 +((2+3)* (4*5))) I

as if the original input were:

(1 + (5* (4*5))) I

Repeating the argument:

(1 + (5 * 20) )
(1 + 100 )
101

Extensions. More ops, precedence order, associativity.
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Stack-based programming languages

Observation 1. The 2-stack algorithm computes the same value if the
operator occurs after the two values.

(1 ((23+) (45*) *) +) l

Observation 2. All of the parentheses are redundant!

123+ 45 * + l

Jan Lukasiewicz

Bottom line. Postfix or "reverse Polish" notation.
Applications. Postscript, Forth, calculators, Java virtual machine, ...
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PostScript

Page description language.
» Explicit stack.

 Full computational model
* Graphics engine.

Basics.
* %!: "I am a PostScript program.”
 Literal: "push me on the stack.”

 Function calls take arguments from stack.

* Turtle graphics built in.

a PostScript program

%!

72 72 moveto

0 72 rlineto
72 0 rlineto

0 -72 rlineto
-72 0 rlineto
2 setlinewidth
stroke

its output
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PostScript

Data types.

 Basic: integer, floating point, boolean, ...
* Graphics: font, path, curve, ....

 Full set of built-in operators.

Text and strings.
System.out.print ()

 Full font support. S
* show (display a string, using current font).
* cvs (convert anything to a string).

AN

toString()

%!

/Helvetica-Bold findfont 16 scalefont setfont
72 168 moveto Square root of 2:
(Square root of 2:) show 1.41421

72 144 moveto

2 sqrt 10 string cvs show




PostScript

Variables (and functions).
 Identifiers start with /.
* def operator associates id with value.

* Braces.

* args on stack.

function
definition

function calls

_—

%!
/box
{
/sz exch def
0 sz rlineto
sz 0 rlineto
0 sz neg rlineto
sz neg 0 rlineto
} def

72 144 moveto

72 box

288 288 moveto
144 box

2 setlinewidth
stroke
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PostScript

For loop.

e "from, increment, 0" on stack.

 Loop body in braces.

* for operator.

If-else conditional.

e Boolean on stack.

e Alternatives in braces.
* if operator.

.. (hundreds of operators)

$!
\box
{

}

1120

{ 19 mul dup 2 add moveto 72 box }
for

stroke
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PostScript

Application 1. All figures in Algorithms in Java, 3™ edition: figures created

directly in PostScript.

%!

72 72 translate

/kochR
{

2 copy ge { dup 0 rlineto }

{

div
copy
copy

copy
2 copy

} ifelse
Pop pop
} def

NNDNW

0 0 moveto
0 81 moveto
0 162 moveto
0 243 moveto
stroke

kochR 60 rotate
kochR -120 rotate
kochR 60 rotate
kochR

81 243 kochR
27 243 kochR
9 243 kochR
1 243 kochR

it

Algorithms

See page 218

Application 2. All figures in Algorithms, 4™ edition: enhanced version of

stdbraw saves to PostScript for vector graphics.
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Queue applications

Familiar applications.

e iTunes playlist.

e Data buffers (iPod, TiVo).

» Asynchronous data transfer (file IO, pipes, sockets).
 Dispensing requests on a shared resource (printer, processor).

Simulations of the real world.

e Traffic analysis.

* Waiting times of customers at call center.

» Determining number of cashiers to have at a supermarket.
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M/M/1 queuing model

M/M/1 queue.
e Customers arrive according to Poisson process at rate of A per minute.

e Customers are serviced with rate of u per minute. \

interarrival time has exponential distribution PriX<x]=1-¢-*~

<x]=1
service time has exponential distribution PriX<x]=1-¢-*~

Arrival rate A — — — Departure rate p

Infinite queue Server

Q. What is average wait time W of a customer in system?
Q. What is average number of customers L in system?
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M/M/1 queuing model: example simulation

time (seconds)

o

™ T

\
I?

T

T
T
Toh
I?

I?

T®

=T

— 10

— 20

— 30

arrival

0

2

7
17
19
21

departure

5
10
15
23
28
30

wait

5

O ©O© O & oo
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M/M/1 queuing model: event-based simulation

public class MMlQueue
{
public static void main(String[] args) ({
double lambda = Double.parseDouble (args[0]) ; // arrival rate
double mu = Double.parseDouble (args[1l]) ; // service rate
double nextArrival = StdRandom.exp (lambda) ;
double nextService = nextArrival + StdRandom.exp (mu) ;

Queue<Double> queue = new Queue<Double>() ;
Histogram hist = new Histogram("M/M/1l Queue", 60);

while (true)

{

while (nextArrival < nextService)

{

next event is an arrival

queue.enqueue (nextArrival) ;
nextArrival += StdRandom.exp (lambda) ;

double arrival = queue.dequeue(); next event is a service completion
double wait = nextService - arrival;
hist.addDataPoint (Math.min (60, (int) (Math.round(wait)))):

if (queue.isEmpty()) nextService = nextArrival + StdRandom.exp (mu) ;
else nextService = nextService + StdRandom.exp (mu) ;




M/M/1 queuing model: experiments

Observation. If service rate u is much larger than arrival rate A,
customers gets good service.

% java MMlQueue .2 .333

||"l"‘lllI|Illlllllllllllllllll -------------------
12 18 24 30 36

42 48 54 60+




M/M/1 queuing model: experiments

Observation. As service rate u approaches arrival rate A, services goes to h***,

% java MMlQueue .2 .25

30 36 42 48 54

60+
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M/M/1 queuing model: experiments

Observation. As service rate u approaches arrival rate A, services goes to h***,

% java MMlQueue .2 .21

sllulabunnnonnnnnndnnnnnnnnnnnnnnlnnnnnnntnntanuntnnnntinnnns
0 6 12 18 24 30 36 a2 48 54 60+
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M/M/1 queuing model: analysis

M/M/1 queue. Exact formulas known.

wait time W and queue length L approach infinity

as service rate approaches arrival rate o
Little's Law

W=—, L=\W

More complicated queueing models. Event-based simulation essentiall
Queueing theory. See ORF 309.
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Sorting problem

Ex. Student record in a University.

. Fox 1 A 243-456-9091 101 Brown
file =
Quilici 1 c 343-987-5642 32 MccCosh
Chen 2 A 884-232-5341 11 Dickinson
Furia 3 A 766-093-9873 22 Brown
Kanaga 3 B 898-122-9643 343 Forbes
r\ecor‘d * Andrews 3 A 874-088-1212 121 whitman
Rohde 3 A 232-343-5555 115 Holder
Battle 4 c 991-878-4944 308 Blair
key ll’ Aaron 4 A 664-480-0023 097 Little
Gazsl 4 B 665-303-0266 113 walker

Sort. Rearrange array of N objects into ascending order.

Aaron 4 A 664-480-0023 097 Little
Andrews 3 A 874-088-1212 121 whitman
Battle 4 (o 991-878-4944 308 Blair
Chen 2 A 884-232-5341 11 pickinson
Fox 1 A 243-456-9091 101 Brown
Furia 3 A 766-093-9873 22 Brown
Gazsi 4 B 665-303-0266 113 walker
Kanaga 3 B 898-122-9643 343 Forbes
Rohde 3 A 232-343-5555 115 Holder
Quilici 1 (o 343-987-5642 32 MccCosh




Sample sort client

Goal. Sort any type of data.

Ex 1. Sort random numbers in ascending order.

public class Experiment

{

public static void main (String[] args)

{

int N = Integer.parselInt(args[0]);
Double[] a = new Double[N];
for (int 1 = 0; i < N; i++)
a[i] = StdRandom.uniform() ;
Insertion.sort(a);
for (int i = 0; i < N; i++)
StdOut.println(a[i]) ;

O O O O O O OO O O o

java Experiment 10

.08614716385210452
.09054270895414829
.10708746304898642
.21166190071646818
.363292849257276
.460954145685913
.5340026311350087
.7216129793703496
.9003500354411443
.9293994908845686




Sample sort client

Goal. Sort any type of data.
Ex 2. Sort strings from standard input in alphabetical order.

public class StringSorter
{

public static void main (String[] args)
{
String[] a = StdIn.readAll() .split("\\s+");
Insertion.sort(a) ;
for (int i = 0; i < a.length; i++)
StdOut.println(a[i]) ;

% more words3. txt
bed bug dad yet zoo ... all bad yes

% java StringSorter < words. txt
all bad bed bug dad ... yes yet zoo




Sample sort client

Goal. Sort any type of data.
Ex 3. Sort the files in a given directory by filename.

import java.io.File;
public class FileSorter
{
public static void main(String[] args)
{
File directory = new File(args[O0])
File[] files = directory.listFiles();
Insertion.sort (files) ;
for (int i = 0; i < files.length; i++)
StdOut.println(files[i] .getName()) ;

% java FileSorter .

Insertion.class
Insertion. java
InsertionX.class
InsertionX. java
Selection.class
Selection. java
Shell.class
Shell. java
ShellX.class
ShellX. java




Callbacks
Goal. Sort any type of data.

Q. How can sort know to compare data of type string, Double, and File
without any information about the type of an item?

Callbacks.

 Client passes array of objects to sorting routine.
 Sorting routine calls back object's compare function as needed.

Implementing callbacks.

e Java: interfaces.

e C: function pointers.

o C++. class-type functors.

e ML: first-class functions and functors.



Callbacks: roadmap

client

import java.io.File;
public class FileSorter
{
public static void main(String[] args)
{
File directory = new File(args[O0]) ;
File[] files = directory.listFiles() ;
Insertion.sort(files) ;
for (int i = 0; i < files.length; i++)
StdOut.println(files[i] .getName()) ;

built in to Java
interface /

public interface Comparable<Item>

{
public int compareTo(Item that);

key point: no reference to File ——

object implementation

public class File
implements Comparable<File>

{

public int compareTo(File b)
{

return -1;
return +1;

return O;

sort implementation

public static void sort (Comparable[] a)
{
int N = a.length;
for (int 1 = 0; i < N; i++)
for (int j =1i; j > 0; j--)
if (a[j].compareTo(a[j-1]) < 0)
exch(a, j, j-1);
else break;




Comparable interface APT

Compar‘able interface. Implemen‘r compareTo () SO that v.compareTo (w):
* Returns a negative integer if v is less than w.

» Returns a positive integer if v is greater than w.

* Returns zero if v is equal to w.

e Throw an exception if incompatible types or either is nu11.

public interface Comparable<Item>
{ public int compareTo(Item that); }

Required properties. Must ensure a total order.

e Reflexive: (v=v).

o Antisymmetric: if (v<w) then (w>v); if (v=w) then (w=v).
e Transitive: if (v<w)and (w<x) then (v <x).

Built-in compamble Types. String, Double, Integer, Date, File, ...

User-defined comparable types. Implement the comparable interface.



Implementing the Comparable interface: example 1

Date data type. Simplified version of java.util.pate.

public class Date implements Comparable<Date>
{

private final int month, day, year;

public Date(int m, int d, int y)
{

month = m;

day d;

year = y;

public int compareTo (Date that)

{
if (this.year < that.year ) return -1;
if (this.year > that.year ) return +1;
if (this.month < that.month) return -1;
if (this.month > that.month) return +1;
if (this.day < that.day ) return -1;
if (this.day > that.day ) return +1;
return O;

\only compare dates

to other dates




Implementing the Comparable interface: example 2

Domain names.

Subdomain: bolle.cs .princeton.edu.
Reverse subdomain: edu. princeton.cs.bolle.

Sort by reverse subdomain to group by category.

subdomains
public class Domain implements Comparable<Domain>
{ ee.princeton.edu
private final String[] fields; cs.princeton.edu
private final int N; princeton.edu
cnn.com

public Domain (String name)

{ google.com
fields = name.split("\\."); apple.com

N = fields.length; WWw.cs.princeton.edu

} bolle.cs.princeton.edu

public int compareTo (Domain that)

{ reverse-sorted subdomains
for (int i = 0; i < Math.min(this.N, that.N); i++)
{ com.apple
String s = fields[this.N - i - 1]; com.cnn
String t = fields[that.N - i - 1]; com.google

int cmp = s.compareTo(t); edu.princeton

if (cmp < 0) return -1; d N £
else if (cmp > 0) return +1; only use this trick € u.pr:ll.nce eifls (S
} when no danger edu.princeton.cs.bolle
return this.N - that.N: 4__———,,—~ of overflow edu.princeton.cs.www
} edu.princeton.ee

10



Two useful sorting abstractions
Helper functions. Refer to data through compares and exchanges.

Less. Is object v less than w ?

private static boolean less (Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }

Exchange. Swap object in array a[] at index i with the one at index ;.

private static void exch(Comparable[] a, int i, int j)

{
Comparable t = a[i];
al[i] = a[]jl~’
a[j] = t;

1



Testing

Q. How to test if an array is sorted?

private static boolean isSorted(Comparable[] a)
{
for (int i = 1; i < a.length; i++)
if (less(a[i], a[i-1])) return false;
return true;

Q. If the sorting algorithm passes the test, did it correctly sort its input?
A. Yes, if data accessed only through exch () and 1ess().

12



» selection sort
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Selection sort

Algorithm. 1 scans from left to right.

Invariants.

» Elements to the left of | (including 1) fixed and in ascending order.
* No element to right of | is smaller than any element to its left.

in final order

14



Selection sort inner loop
To maintain algorithm invariants:
* Move the pointer to the right.

i++;

» Identify index of minimum item on right.

int min = i;
for (int j = i+l; j < N; J++)
if (less(a[jl, a[min]))
min = j;

* Exchange into position.

exch(a, i, min);

|

in final order

t

15



Selection sort: Java implementation

int N a.length;
for (int i = 0; i < N; i++)
{

int min = i;
for (int j = i+l; j < N; j++)
if (less(a[j], a[min]))

min = j;
exch(a, i, min);

16



Selection sort: mathematical analysis

Proposition A. Selection sort uses (N-1)+ (N-2)+ ...+1+0 ~ N?/2
compares and N exchanges.

all
. entries in black
1 min 1 2 3 4 5 6 7 8 910 are examined to find
he minimum
ORTEXAMPLE / ‘
0 6 O R T E X A M P L E
entries in red
1 4 O R T EX S M P L E __— areamin]
2 10 R T 0 X S M P L E
3 9 T O X S M P L R
4 7 O X S M P T R
5 7 X S 0O P T R
6 8 S X P T R
7 10 X S T R
8 8 S T X ..
entries in gray are
9 9 T ‘X/ in final position
10 10 X
A E E L M OPIR S T X
Trace of selection sort (array contents just after each exchange)

Running time insensitive to input. Quadratic time, even if array is presorted.
Data movement is minimal. Linear number of exchanges.



Selection sort animations

20 random elements

A algorithm position

meesssssmm  n final order
s hot in final order

http://www.sorting-algorithms.com/selection-sort
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Selection sort animations

20 partially-sorted elements

A algorithm position

meesssssmm  n final order
s hot in final order

http://www.sorting-algorithms.com/selection-sort
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» insertion sort
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Insertion sort

Algorithm. 1 scans from left to right.

Invariants.

» Elements to the left of 1 (including |) are in ascending order.
» Elements to the right of | have not yet been seen.

in order ) not yet seen

21



Insertion sort inner loop

To maintain algorithm invariants:

* Move the pointer to the right.

i++;

in order not yet seen

* Moving from right to left, exchange
a[i] with each larger element to its left.

for (int j =1i; jJ > 0; j--)
if (less(a[j]l, alj-11))
exch(a, j, j-1):

else break; 11

in order not yet seen

22



Insertion sort: Java implementation

public class Insertion {

public static void sort(Comparable[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
for (int j =1i; jJ > 0; j--)
if (less(a[j], al[3j-11))
exch(a, j, j-1);
else break;

private static boolean less (Comparable v, Comparable w)
{ /* as before */ '}

private static void exch (Comparable[] a, int i, int j)
{ /* as before */ '}

23



Insertion sort: mathematical analysis

Proposition B. To sort a randomly-ordered array with distinct keys,
insertion sort uses ~ N?/4 compares and N2/4 exchanges on average.

Pf. For randomly-ordered data, we expect each element o move halfway back.

afll]
1 j 0 1 3 4 5 6 7 8 910
S O R TEXAMP L E entries in gray
1 0 0 s — do not move
2 1 R S
3 3 T
4 0 F O R S T entry in red
c c X isalj]
6 0 A E O R S T X
; j Mo E ; ;_ i " entries in black
moved one position
9 2 L M O P R S T X — right for insertion
10 2 EL M OPR S TX
AE E L M OP R S T X

Trace of insertion sort (array contents just after each insertion)
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trace

Insertion sort

al]

2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1

0

J

E

I ON S ORTEXAMPL

N S E R T

A S OMEWHA AT L ONGE R

(o]
E MO S

H MO S W
A EH MO S W

~

LMOS TW

O SsS T W
N O O S T W
GCHLMNOOSTW

10
11
12
13

EGHLMNOOSTW

RS T W

LMNOORSTW

14 11
15

N O OR S TW

16 10
17 15
18

T

LMNNUOORSSTW

E G H

T

S

R S

19 15

20 19
21

LMNNOUORRSSTTW

O RRS S TTW
N OO ORRS S TTW

22 15

23 13

S T T W

ORRS S S TTW

24 21

25 17
26 20
27 26

28

RS S S TTW

LMNNNOOOUORRRSSSTTTW

E G H

29 29
30

LMNNNOUOOORRRSSSTTTWKX

A E E E E G H

M NNNOOOUORRRSS STTTWKX

31 13

P RRRS S STTTWKX

L MMNNNOUOUOOU®PRRR RS S

32 21

S T T T WX

33 12
34

LLMMNNNOOOOPRRRSSSTTTWX

L LMMNNNOUOOOTPRTR RIR RS

E G H

A A A EEEEEGH

S ST T T WX
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Insertion sort animation

40 random elements

http://www.sorting-algorithms.com/insertion-sort

A

algorithm position
in order
not yet seen
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Insertion sort: best and worst case

Best case. If the input is in ascending order, insertion sort makes
N-1 compares and O exchanges.

AEELMOPRSTX I

Worst case. If the input is in descending order (and no duplicates),
insertion sort makes ~ N2/2 compares and ~ N?/2 exchanges.

XTSRPOMLETEA I
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Insertion sort animation

40 reverse-sorted elements

http://www.sorting-algorithms.com/insertion-sort

A

algorithm position
in order
not yet seen
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Insertion sort: partially sorted inputs

Def. Aninversion is a pair of keys that are out of order.

AEELMOTRIXZPS

T-R T-P T-S R-P X-P X-S

(6 inversions)

Def. Anarray is partially sorted if the number of inversions is O(N).
 Ex 1. A small array appended to a large sorted array.
* Ex 2. An array with only a few elements out of place.

Proposition C. For partially-sorted arrays, insertion sort runs in linear time.

Pf. Number of exchanges equals the number of inversions.

I

number of compares = exchanges + (N-1)

29



Insertion sort animation

40 partially-sorted elements

http://www.sorting-algorithms.com/insertion-sort

A

algorithm position
in order
not yet seen
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» sorting challenges

31



Sorting challenge O

Input. Array of doubles.

Plot. Data proportional to length.

Name the sorting method.
e Tnsertion sort.
e Selection sort.

[ AT RTINT
Lunllltanl.al
il

gray entries sl

are untouched

alllilanly
S i

black entries """

are involve

in compares i
1

i

I
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Sorting challenge 1

Problem. Sort a file of huge records with tiny keys.

Ex. Reorganize your MP3 files

Which sorting method to use?
* System sort.

e Insertion sort.

e Selection sort.

. Fox 1 A 243-456-9091 101 Brown
file =
Quilici 1 (= 343-987-5642 32 MccCosh
Chen 2 A 884-232-5341 11 Dickinson
Furia 3 A 766-093-9873 22 Brown
Kanaga 3 B 898-122-9643 343 Forbes
record # Andrews 3 A 874-088-1212 121 wWhitman
Rohde 3 A 232-343-5555 115 Holder
Battle 4 (= 991-878-4944 308 Blair
kcy » Aaron 4 A 664-480-0023 097 Little
Gazsi 4 B 665-303-0266 113 walker
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Sorting challenge 2

Problem. Sort a huge randomly-ordered file of small records.
Ex. Process transaction records for a phone company.

Which sorting method to use?
* System sort.

e Insertion sort.

e Selection sort.

. Fox 1 A 243-456-9091 101 Brown
file =
Quilici 1 (= 343-987-5642 32 MccCosh
Chen 2 A 884-232-5341 11 Dickinson
Furia 3 A 766-093-9873 22 Brown
Kanaga 3 B 898-122-9643 343 Forbes
record ﬂ Andrews 3 A 874-088-1212 121 wWhitman
Rohde 3 A 232-343-5555 115 Holder
Battle 4 (= 991-878-4944 308 Blair
kcy * Aaron 4 A 664-480-0023 097 Little
Gazsi 4 B 665-303-0266 113 walker
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Sorting challenge 3

Problem. Sort a huge number of tiny files (each file is independent).
Ex. Daily customer transaction records.

Which sorting method to use?
* System sort.

e Insertion sort.

e Selection sort.

. Fox 1 A 243-456-9091 101 Brown
file =
Quilici 1 (= 343-987-5642 32 MccCosh
Chen 2 A 884-232-5341 11 Dickinson
Furia 3 A 766-093-9873 22 Brown
Kanaga 3 B 898-122-9643 343 Forbes
record ﬂ Andrews 3 A 874-088-1212 121 wWhitman
Rohde 3 A 232-343-5555 115 Holder
Battle 4 (= 991-878-4944 308 Blair
kcy * Aaron 4 A 664-480-0023 097 Little
Gazsi 4 B 665-303-0266 113 walker
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Sorting challenge 4

Problem. Sort a huge file that is already almost in order.
Ex. Resort a huge database after a few changes.

Which sorting method to use?
* System sort.

e Insertion sort.

e Selection sort.

. Fox 1 A 243-456-9091 101 Brown
file =
Quilici 1 (= 343-987-5642 32 MccCosh
Chen 2 A 884-232-5341 11 Dickinson
Furia 3 A 766-093-9873 22 Brown
Kanaga 3 B 898-122-9643 343 Forbes
record # Andrews 3 A 874-088-1212 121 wWhitman
Rohde 3 A 232-343-5555 115 Holder
Battle 4 (= 991-878-4944 308 Blair
kcy » Aaron 4 A 664-480-0023 097 Little
Gazsi 4 B 665-303-0266 113 walker
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» shellsort
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Shellsort overview

Idea. Move elements more than one position at a tfime by h-sorting the array.

an h-sorted array is h interleaved sorted subsequences

h=4

L EEAMWHLEP S OL TS X R
L

Shellsort. h-sort the array for a decreasing sequence of values of h.

imput S H E L L S O R TE X A M P L E
3sort p H E L L S O R T E X A M S L E
4sot L E E A M H L E P S O L T S X R
sot A E E E H L L L M O P R S S T X




h-sorting

How to h-sort an array? Insertion sort, with stride length h.

3-sorting an array

M O L E E X A S P R T

Why insertion sort?
* Big increments = small subarray.
e Small increments = nearly in order. [stay tuned]

39



Shellsort example: increments 7, 3, 1

input

7-sort

3-sort

1-sort

result

A E L E O P M S X R T
E
L
E L
0
O P
M O P
S
S X
R S X
T X
A E E L M O P R

40



Shellsort: intuition

Proposition. A g-sorted array remains g-sorted after h-sorting it.

Pf. Harder than you'd think!

7-sort

L R
E T
M O L E E X A S P R T

3-sort

M O L E E X A S P R T

E M
E 0)
X
A E M
S
X
R
T
A E L E O P M S X R T
r A
\ /

still 7-sorted

41



What increments to use?

1,2,4,8,16,32...
No.

1,3,7,15,31,63, ...
Maybe.

1,4,13,40, 121, 364, ...
OK, easy to compute 3x+1 sequence.

1,5,19, 41,109, 209, 505, . ..
Tough to beat in empirical studies.

Interested in learning more?
» See Algs 3 section 6.8 or Knuth volume 3 for details.
 Consider doing a JP on the topic.

42



Shellsort: Java implementation

magic increment
sequence

int h = 1;
while (h < N/3) h=3*h +1; // 1, 4, 13, 40, 121, 364, 1093,

for (int i = h; i < N; i++) insertion sort

{

for (int j = i; j >= h && less(al[j]l, al[j-h]l); j -= h)
exch(a, j, j-h);

move to next
increment

43



Visual trace of shellsort

....|.|.|\..||.|.||....h|.m|..ﬂ.‘Mll“.l‘II‘\.n||.m\l\I.|“|LI‘.WI““\“\ “||‘|I“Ih “‘ ‘ h ‘
...|....||......|I..|||..u|.II.|||II||||||I||IIII|I”I”||||I||I‘m“I‘|I“I““m“|“|““‘ “““ﬂ““ “ ‘ ‘
4-sorted

input

40-sorted

13-sorted

result

44



Shellsort animation

50 random elements

http://www.sorting-algorithms.com/shell-sort

|||>

algorithm position
h-sorted

current subsequence
other elements
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Shellsort animation

50 partially-sorted elements

http://www.sorting-algorithms.com/shell-sort

|||>

algorithm position
h-sorted

current subsequence
other elements
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Shellsort: analysis

Proposition. The worst-case number of compares used by shellsort with the
3x+1 increments is O(N3/2),

Property. The number of compares used by shellsort with the 3x+1 increments
is at most by a small multiple of N times the # of increments used.

93 58 106

5,000

10,000 209 143 230
20,000 467 349 495
40,000 1022 855 1059
80,000 2266 2089 2257

measured in thousands

Remark. Accurate model has not yet been discovered (1)
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Why are we interested in shellsort?

Example of simple idea leading to substantial performance gains.

Useful in practice.

 Fast unless array size is huge.

 Tiny, fixed footprint for code (used in embedded systems).
* Hardware sort prototype.

Simple algorithm, nontrivial performance, interesting questions.
e Asymptotic growth rate?
* Best sequence of increments? <«—— open problem: find a better increment sequence

* Average case performance?

Lesson. Some good algorithms are still waiting discovery.
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2.2 Mergesort

one
|mprovements
method

implementation
H Top-down

arrays

l’unnmg auxiliary

extra
problem

- array

subarraysumoer

performance 5 3

7, Jin » mergesort

wOBotto_r; up

? gggg% » bottom-up mergesort
= used(‘D
5 sma!.go';ﬁhm » sorting complexity

& subarraysize case » comparators
M ““sorted gesort p

Another

imerge

compares

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2009 - January 22, 2010 2:31:50 PM



Two classic sorting algorithms

Critical components in the world's computational infrastructure.
* Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

 Quicksort honored as one of top 10 algorithms of 20™ century
in science and engineering.

Mergesort. < foday

« Java sort for objects.
* Perl, Python stable sort.

QUiCkSOF‘T. <«——— next lecture
» Java sort for primitive types.
e C gsort, Unix, g++, Visual C++, Python.






Mergesort

Basic plan.

 Divide array into two halves.
» Recursively sort each half.

* Merge two halves.

mput M E R G E S O R T E X A M P L E
sortlefthaf E E G M O R R S

sort right half A E E L M P T X

mergeresults A E E E E G L M M O P R R S T X

Mergesort overview

First Draft
of a

Report on the
EDVAC

John von Neumann




Merging

Q. How to combine two sorted subarrays into a sorted whole.
A. Use an auxiliary array.

al] aux|[]
i 0O 1 2 3 4 5

6

input E E G M
copy E E G M

~ |
> > |u
N N |o
m m |~
X X |00
— - |©

O 00 00 00 00 N N N o wv
()]

W 00 N O Ui h W NN R O
m
S L1 LT DA W NN R OO O

-
merged result A C E E E GM R R T

=
o

Abstract in-place merge trace

~ & X XN




Merging: Java implementation

private static void merge (Comparable[] a, int lo, int mid, int hi)

{
assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
assert isSorted(a, mid+l, hi); // precondition: a[mid+1l..hi] sorted

for (int k = lo; k <= hi; k++)
co
aux[k] = alk]; P

int i = lo, j = mid+1;
for (int k = lo; k <= hi; k++)
{

if (i > mid) alk] = aux[j++]; merge
else if (j > hi) alk] = aux[i++];
else if (less(aux[]j], aux[i])) alk] = aux[j++];
else alk] = aux[i++];
}
assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}
lo i mid 3 hi
aux[] A G L (0] R H I M S T
k

afl A G H I L M



Assertions

Assertion. Statement to test assumptions about your program.
* Helps detect logic bugs.

 Documents code.

Java assert statement. Throws an exception unless boolean condition is ture.

assert isSorted(a, lo, hi);

Can enable or disable at runtime. = No cost in production code.

java -ea MyProgram // enable assertions

java -da MyProgram // disable assertions (default)

Best practices. Use to check internal invariants. Assume assertions will be

disabled in production code (e.g., don't use for external argument-checking).



Mergesort: Java implementation

if (hi <= lo) return;
int mid = 1lo + (hi - lo) / 2;

sort(a, lo, mid);
sort(a, mid+1l, hi);
merge(a, lo, m, hi);

lo mid hi
10 11 12 13 14 15 16 17 18 19



Mergesort trace

To h1

\ /

merge(a, O, 0, 1)
merge(a, 2, 2, 3)
merge(a, 0, 1, 3)
merge(a, 4, 4, 5)
merge(a, 6, 6, 7)
merge(a, 4, 5, 7)
merge(a, 0, 3, 7)
merge(a, 8, 8, 9)
merge(a, 10, 10, 11)
merge(a, 8, 9, 11)
merge(a, 12, 12, 13)
merge(a, 14, 14, 15)
merge(a, 12, 13, 15)
merge(a, 8, 11, 15)
merge(a, O, 7, 15)

all
0 1 2 3 4 5 6 7 8 910 11 12 13 14 15
M E R GESOWRTENXA AMTPTLE
E M
G R
E G M R
E S
0 R
E O R S
E E GMO R R S
E T
A X
A E T X
M P
E L
E L M P
A E E L M P T X
A E E EE GLMMUOU PRI RSTX

Trace of merge results for top-down mergesort

result after recursive call



Mergesort animation

50 random elements

http://www.sorting-algorithms.com/merge-sort

|||>

algorithm position
in order
current subarray

not in order

10



Mergesort animation

50 reverse-sorted elements

http://www.sorting-algorithms.com/merge-sort

|||>

algorithm position
in order
current subarray

not in order

1



Mergesort: empirical analysis

Running time estimates:

» Home pc executes 108 comparisons/second.
 Supercomputer executes 102 comparisons/second.

insertion sort (N?) mergesort (N log N)

home instant 2.8 hours 317 years instant

1 second 18 min

super instant 1 second 1 week instant instant instant

Bottom line. Good algorithms are better than supercomputers.

12



Mergesort: mathematical analysis
Proposition. Mergesort uses ~2 Nlg N data moves to sort any array of size N.

Def. D(N) = number of data moves to mergesort an array of size N.
-~ D(N/2) + DIN/2) + 2N
1 1 )

left half right half merge

Mergesort recurrence. D(N)=2D(N/2)+2 N for N> 1, with T(1)=0.
* Not quite right for odd V.

 Similar recurrence holds for many divide-and-conquer algorithms.

Solution. D(NV) ~2 Nlg N.

* For simplicity, we'll prove when N is a power of 2.
e True forall N. [see COS 340]

13



Mergesort recurrence: proof 1

Mergesort recurrence. D(N)=2D(N/2)+2 N for N> 1, with D(1)=0.

Proposition. If N is a power of 2, then D(N) =2 Nlg N.

Pf.
D(N) 2N
D(N/2) D(N/2) 2 (2N/2)
D(N/4) D(N/4) D(N/4) D(N/4) 4 (2N/4)

2K (2N/2K)

D(2) D(2) D(2) D(2) D(2) D(2) D(2) D(2) N/2 (4)

2N

2N

2N

2N

2NIgN

14



Mergesort recurrence: proof 2

Mergesort recurrence. D(N)=2D(N/2)+2N for N> 1, with D(1)=0.

Proposition. If N is a power of 2, then D(N) =2 Nlg N.
Pf.

D(N) = 2D(N/2) + 2N given
D(IN)/N = 2D(N/2)/N + 2 divide both sides by N
= D(N/2) / (N/2) + 2 algebra
= D(N/4)/ (N/4) + 2 + 2 apply to first term
= D(N/8)/(N/8) + 2 + 2 + 2 apply to first term again
= DIN/N)/ (N/N) + 2+2 + ..+ 2 stop applying, T(1) = 0
= 2IgN

15



Mergesort recurrence: proof 3
Mergesort recurrence. D(N)=2D(N/2)+2 N for N> 1, with D(1)=0.

Proposition. If N is a power of 2, then D(N) =2 Nlg N.
Pf. [by induction on N]

* Base case: N=1.

* Inductive hypothesis: D(V)=2NIg N.

e Goal: show that D(2N) =2(2N)lg (2N).

D(2N) = 2 D(N) + 4N given
= 4NIgN+4N inductive hypothesis
= 4N (lg (2N) - 1) +4N algebra

= 4Nlg (2N) QED

16



Mergesort: number of compares

Proposition. Mergesort uses between ! N1g N and Nlg N compares to sort
any array of size N.

Pf. The number of compares for the last merge is between 2 Nlg N and N.

17



Mergesort analysis: memory

Proposition 6. Mergesort uses extra space proportional to N.
Pf. The array aux[] needs to be of size N for the last merge.

two sorted subarrays

e

A ¢C Db G H I M NUV B E F J 0O P O R S T

A B C D E F G H I J M N O P Q R S T U V
)

merged result

Def. A sorting algorithm is in-place if it uses O(log N) extra memory.
Ex. Insertion sort, selection sort, shellsort.

Challenge for the bored. In-place merge. [Kronrud, 1969]

18



Mergesort: practical improvements

Use insertion sort for small subarrays.

* Mergesort has too much overhead for tiny subarrays.
 Cutoff to insertion sort for # 7 elements.

Stop if already sorted.

» Is biggest element in first half < smallest element in second half?
» Helps for partially-ordered arrays.

A B C D E F G H I J M N O P O R S T U V

A B C D E F G H I J M N O P QOQ R S T U V

Eliminate the copy to the auxiliary array. Save time (but not space)

by switching the role of the input and auxiliary array in each recursive call.

Ex. See MergeX. java OI"' Arrays.sort().

19



Mergesort visualization

first subarray -|I|||||""|
second subarray ..|II||""|
first merge ..-ullI||||||"""""|
il
_antlll
ot
first half sorted .......mlIIIIII|||||||||||||||"""""""""

__|III""|||
...||II||I||
il
....||II|""
..|II|||"||
..... .ulllllll"""""
second half sorted ..ot TR LNV e ...mmul||IIIIII||||""""""""|
reSUIt - oneveeunes ......mmm||||||||IIIIIIIIIII|||||||||||||||""""l""""I""""""""""

Visual trace of top-down mergesort for with cutoff for small subarrays
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» bottom-up mergesort
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Bottom-up mergesort

Basic plan.
 Pass through array, merging subarrays of size 1.
e Repeat for subarrays of size 2, 4, 8, 16, ....

a[i]
0 1 2 3 4 5 6 7 8
sz=2 M E R G E S O R T
merge(a, O, 0, 1) E M
merge(a, 2, 2, 3) G R
merge(a, 4, 4, 5) E S
merge(a, 6, 6, 7) 0 R
merge(a, 8, 8, 9) E
merge(a, 10, 10, 11)
merge(a, 12, 12, 13)
merge(a, 14, 14, 15)
sz=4
merge(a, 0, 1, 3) E G M R
merge(a, 4, 5, 7) E O R S
merge(a, 8, 9, 11) A
merge(a, 12, 13, 15)
sz=8
merge(a, O, 3, 7) E E G M O R R S
merge(a, 8, 11, 15) A
sz=16
merge(a, 0, 7, 15) A E E E E G L MM

Trace of merge results for bottom-up mergesort

Bottom line. No recursion needed!



Bottom-up mergesort: Java implementation

public class MergeBU
{

private static Comparable[] aux;

private static void merge (Comparable[] a, int lo, int mid, int hi)
{ /* as before */ }

public static void sort(Comparable[] a)
{
int N
aux = new Comparable[N];

a.length;

for (int sz = 1; sz < N; sz = sz+sz)
for (int lo = 0; lo < N-sz; lo += sz+sz)
merge (a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));

Bottom line. Concise industrial-strength code, if you have the space.



Bottom-up mergesort: visual trace

" ol Lo Lol

II| I IIl IIII l II||I IIIIlI-II IIII.I-lIIIl
* bt
I|I III Ill II III 1l IIII-lIIIII .IIIlII _I
g1 TR
I|IIII IIIIl I|I|I -lIIIIII.IIIIII -IIIII
16
I|IIIIIIIIll““-lllllllllllll“-.lIIIIIIIIIIl
32
-llII|||IIIIIIIIIIIIIII""““‘__-.|IIII|||||

Visual trace of bottom-up mergesort
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» sorting complexity
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Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms for
solving a particular problem X.

Machine model. Focus on fundamental operations.

Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best cost guarantee for X.

\

lower bound ~ upper bound

access information only through compares

Example: sorting. -
* Machine model = # compares.

» Upper bound = ~ N Ig N from mergesort.
e Lower bound = ~Nlg N ?

e Optimal algorithm = mergesort ?

26



Decision tree (for 3 distinct elements)

no

code between compares
(e.g., sequence of exchanges)

yes

height of free =
worst-case number
of compares

27



Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
lgN! ~ NlgN compares in the worst-case.

Pf.
* Assume input consists of N distinct values ai through aw.
» Worst case dictated by height & of decision tree.

 Binary tree of height 7 has at most 2/ |leaves.
» N!different orderings = at least N! leaves.

at least N! leaves

no more than 2 leaves

28



Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
lgN! ~ NlgN compares in the worst-case.

Pf.
* Assume input consists of N distinct values ai through aw.
» Worst case dictated by height & of decision tree.

* Binary tree of height / has at most 2 leaves.
» N!different orderings = at least N! leaves.

2h > #leaves > N!

= h>1gN! ~NIgN
T

Stirling's formula
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Complexity of sorting

Machine model. Focus on fundamental operations.
Upper bound. Cost guarantee provided by some algorithm for X.

Lower bound. Proven limit on cost guarantee of all algorithms for X.

Optimal algorithm. Algorithm with best cost guarantee for X.

Example: sorting.

* Machine model = # compares.

» Upper bound = ~ N Ig N from mergesort.
* Lower bound = ~ N g N.

e Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.
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Complexity results in context

Other operations? Mergesort optimality is only about number of compares.

Space?

* Mergesort is not optimal with respect to space usage.
» Insertion sort, selection sort, and shellsort are space-optimal.

Challenge. Find an algorithm that is both time- and space-optimal.

Lessons. Use theory as a guide.

Ex. Don't try to design sorting algorithm that uses ' Nlg N compares.
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Complexity results in context (continued)

Lower bound may not hold if the algorithm has information about:
* The initial order of the input.

* The distribution of key values.

* The representation of the keys.

Partially-ordered arrays. Depending on the initial order of the input,
we mGY not need N |9 N ComPGr'es- \ insertion sort requires only N-1

compares on an already sorted array

Duplicate keys. Depending on the input distribution of duplicates,
we may not need N Ig N compares. AN

stay tuned for 3-way quicksort

Digital properties of keys. We can use digit/character compares instead of
key compares for numbers and strings.

stay tuned for radix sorts
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» comparators
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Sort by artist name

13

Born In The U.S.A.
Bruce Springsteen

Name Artist A Time Album ‘
12 M Let It Be The Beatles 4:03 Let It Be |
13 M Take My Breath Away BERLIN 4:13 Top Gun - Soundtrack
14 @ Circle Of Friends Better Than Ezra 3:27 Empire Records
15 @ Dancing With Myself Billy Idol 4:43 Don't Stop
16 ™ Rebel Yell Billy Idol 4:49 Rebel Yell
17 M Piano Man Billy Joel 5:36 Createst Hits Vol. 1
18 ™ Pressure Billy Joel 3:16 CGreatest Hits, Vol. 11 (1978 - 1985) (Disc 2)
19 M The Longest Time Billy Joel 3:36 CGreatest Hits, Vol. 11 (1978 - 1985) (Disc 2)
20 M Atomic Blondie 3:50 Atomic: The Very Best Of Blondie
21 ™ Sunday Girl Blondie 3:15 Atomic: The Very Best Of Blondie
22 ™ Call Me Blondie 3:33 Atomic: The Very Best Of Blondie
23 M Dreaming Blondie 3:06 Atomic: The Very Best Of Blondie
24 ™ Hurricane Bob Dylan 8:32 Desire
25 M The Times They Are A-Changin' Bob Dylan 3:17 CGreatest Hits
26 M Livin' On A Prayer Bon Jovi 4:11 Cross Road
27 @ Beds Of Roses Bon Jovi 6:35 Cross Road
28 ™ Runaway Bon Jovi 3:53 Cross Road
29 M Rasputin (Extended Mix) Boney M 5:50 CGreatest Hits
30 ™ Have You Ever Seen The Rain Bonnie Tyler 4:10 Faster Than The Speed Of Night ‘
31 @ Total Eclipse Of The Heart Bonnie Tyler 7:02 Faster Than The Speed Of Night
32 @ Straight From The Heart Bonnie Tyler 3:41 Faster Than The Speed Of Night
33 ™ Holding Out For A Hero Bonny Tyler 5:49 Meat Loaf And Friends
34  m Dancing In The Dark © Bruce Springsteen © 4:05 Born In The U.S.A.
35 M Thunder Road Bruce Springsteen 4:51 Born To Run
36 @ Born To Run Bruce Springsteen 4:30 Born To Run
37 ™ Jungleland Bruce Springsteen 9:34 Born To Run :
20 8 Toenl Tiival Tieal (Ta Coinetlain Thho Diede 2.£7 Coavvnrt Fimanm Tha Cavnmdreanrle INic~ O |




Sort by song hame

Cross Road
Bon Jovi

Name A Artist Time Album
1 M Alive Pearl Jam 5:41 Ten
2 ™ All Over The World Pixies 5:27 Bossanova
3 M All Through The Night Cyndi Lauper 4:30 She's So Unusual
4 ™ Allison Road Cin Blossoms 3:19 New Miserable Experience
5 M Ama, Ama, Ama Y Ensancha El ... Extremoduro 2:34 Deltoya (1992)
6 ™ And We Danced Hooters 3:50 Nervous Night
7 ™ As | Lay Me Down Sophie B. Hawkins 4:09 Whaler
8 M Atomic Blondie 3:50 Atomic: The Very Best Of Blondie
9 M Automatic Lover Jay-Jay Johanson 4:19 Antenna
10 ™ Baba O'Riley The Who 5:01 Who's Better, Who's Best
11 @ Beautiful Life Ace Of Base 3:40 The Bridge
12 ™ Beds Of Roses © Bon Jovi © 6:35 Cross Road
13 ™ Black Pearl Jam 5:44 Ten
14 ™ Bleed American Jimmy Eat World 3:04 Bleed American
15 ™ Borderline Madonna 4:00 The Immaculate Collection
16 # Born To Run Bruce Springsteen 4:30 Born To Run
17 @ Both Sides Of The Story Phil Collins 6:43 Both Sides
18 ™ Bouncing Around The Room Phish 4:09 A Live One (Disc 1)
19 ™ Boys Don't Cry The Cure 2:35 Staring At The Sea: The Singles 1979-1985
20 ™ Brat Creen Day 1:43 Insomniac
21 ™ Breakdown Deerheart 3:40 Deerheart
22 @ Bring Me To Life (Kevin Roen Mix) Evanescence Vs. Pa... 9:48
23 ™ Californication Red Hot Chili Pepp... 1:40
24 ™ Call Me Blondie 3:33 Atomic: The Very Best Of Blondie
25 @ Can't Get You Out Of My Head Kylie Minogue 3:50 Fever
26 ™ Celebration Kool & The Cang 3:45 Time Life Music Sounds Of The Seventies - C:

27 ERA Claaivnis Claaivacs Colibaisimdane Clnmals c.11 Dawmalbaai: Neanoar
C ) 4 »




Natural order

Comparable interface: sort uses type's natural order.

public class Date implements Comparable<Date>

{

private final int month, day, year;

public Date(int m, int d, int y)

{

month = m;

day
year

}

d;
Yy

public int compareTo (Date that)

{
if (this
if (this
if (this
if (this
if (this.
if (this.
return O;

.year
.year
.month <
.month >

day
day

<
>

<
>

that

that.
that.
that.
that.

.year )
that.

year )
month)
month)

day
day

)
)

return
return
return
return
return
return

-1;
+1;

+1;
+1;

natural order
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Generalized compare
Comparable interface: sort uses type's natural order.

Problem 1. May want to use a non-natural order.
Problem 2. Desired data type may not come with a "natural” order.

Ex. Sort strings by:

. . pre-1994 order for digraphs
e Natural order. Now is the time A T o
e Case insensitive. is Now the time l
- Spanish. café cafetero cuarto churro nube fofio
* British phone book. McKinley Mackintosh
String[] a;

Arrays.sort(a) ;

Arrays.sort(a, String.CASE INSENSITIVE ORDER) ;
Arrays.sort(a, Collator.getInstance (Locale.SPANISH)) ;

I

import java.text.Collator;
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Comparators

Solution. Use Java's comparator interface.

public interface Comparator<Key>

{
public int compare (Key v, Key w);

}

Remark. The compare () method implemen‘rs a total order like compareTo ().

Advantages. Decouples the definition of the data type from the
definition of what it means to compare two objects of that type.
e Can add any number of new orders to a data type.

e Can add an order to a library data type with no natural order.
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Comparator example

Reverse order. Sort an array of strings in reverse order.

public class ReverseOrder implements Comparator<String>

{
public int compare (String a, String b)

{

return b.compareTo(a) ;

comparator implementation

Arrays.sort(a, new ReverseOrder()) ;

client
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Sort implementation with comparators

To support comparators in our sort implementations:
e Pass Comparator t0 sort () and less ().
e Use it in 1ess().

Ex. Insertion sort.

public static void sort (Object[] a, Comparator comparator)
{
int N = a.length;
for (int 1i = 0; i1 < N; i++)
for (int j =1i; j > 0 && less(comparator, a[j], al[j-11); j--)
exch(a, j, j-1);

private static boolean less (Comparator c, Object v, Object w)
{ return c.compare(v, w) < O0; }

private static void exch (Object[] a, int i, int j)
{ Object swap = a[i]; a[i] = a[j]; a[]j] = swap; }




Generalized compare

Comparators enable multiple sorts of a single array (by different keys).

Ex. Sort students by name or by section.

sort by name

Andrews
Battle
Chen

ox
Furia
Gazsi
Kanaga

Rohde

Arrays.sort(students, Student.BY NAME) ;
Arrays.sort(students, Student.BY SECT) ;

> ® ™ > > > O >

664-480-0023
874-088-1212
991-878-4944
884-232-5341
766-093-9873
665-303-0266
898-122-9643

232-343-5555

097 Little
121 Whitman
308 Blair
11 Dickinson
101 Brown
22 Brown
22 Brown

343 Forbes

sort by section

Fox
Chen
Andrews
Furia
Kanaga
Rohde
Battle

Gazsi

® O > ®W > > > >

884-232-5341
991-878-4944
664-480-0023
766-093-9873
898-122-9643
232-343-5555
874-088-1212

665-303-0266

11 Dickinson
308 Blair
097 Little
101 Brown
22 Brown

343 Forbes

121 Whitman

22 Brown
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Generalized compare

Ex. Enable sorting students by name or by section.

public class Student

{

public static final Comparator<Student> BY NAME = new ByName () ;
public static final Comparator<Student> BY SECT = new BySect();

private final String name;
private final int section;

private static class ByName implements Comparator<Student>
{

public int compare (Student a, Student b)

{ return a.name.compareTo (b.name); }

private static class BySect implements Comparator<Student>
{

public int compare (Student a, Student b)

{ return a.section - b.section; }

\ only use this trick if no danger of overflow
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Generalized compare problem

A typical application. First, sort by name; then sort by section.

Arrays.sort(students, Student.BY NAME) ; Arrays.sort(students, Student.BY SECT) ;
l l

3 A 664-480-0023 097 Little Fox A 884-232-5341 11 Dickinson
4 C 874-088-1212 121 Whitman Chen A 991-878-4944 308 Blair
2 A 991-878-4944 308 Blair B 898-122-9643 22 Brown
1 A 884-232-5341 11 Dickinson A 664-480-0023 097 Little
3 A 766-093-9873 101 Brown A 766-093-9873 101 Brown
4 B 665-303-0266 22 Brown A 232-343-5555 343 Forbes
3 B 898-122-9643 22 Brown Battle C 874-088-1212 121 Whitman
3 A 232-343-5555 343 Forbes Gazsi B 665-303-0266 22 Brown

@#%4&@Il. Students in section 3 no longer in order by name.

A stable sort preserves the relative order of records with equal keys.
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Sorting challenge 5

Q. Which sorts are stable?
Insertion sort? Selection sort? Shellsort? Mergesort?

sorted by time

Chicago
Phoenix
Houston
Chicago
Houston
Chicago
Seattle
Seattle
Phoenix
Chicago
Chicago
Chicago
Seattle
Seattle
Chicago
Chicago
Seattle
Phoenix

09:
09:
09:
09:
09:

09

09

09:

00:
00:
00:
00:
01:
:03
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

14

21

25

00
03
13
59
10

:13
10:
10:
125
19:
19:
:05
22:
22:

11
25

32
46

43
54

152
35:
:36:
37:

21
14
44

sorted by location (not stable)

09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Houston
Houston
Phoenix
Phoenix
Phoenix
Seattle
Seattle
Seattle
Seattle
Seattle

Stability when sorting on a second key

25:
03:
21:
19:
19:
00:
35:
00:
01:
00:
37:
00:
14:
10:
36:
22:
10:
22:

52
13
05
46
32
00
21
59
10
13
44
03
25
25
14
43
11
54

1o
longer
sorted

by time

sorted by location (stable)

09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Houston
Houston
Phoenix
Phoenix
Phoenix
Seattle
Seattle
Seattle
Seattle
Seattle

00:
00:
03:
19:
19:
:05
25:
35:
00:
01:
00:
125
37:
10:
10:
22:
22:
36:

21

14

00
59
13
32
46

52
21
13

03

44
11
25
43
54
14

10|

still
sorted
by time
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» sorting challenge
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Sorting challenge 5A

Q. Is insertion sort stable?

public class Insertion

{
public static void sort (Comparable[] a)

{
int N = a.length;
for (int 1 = 0; i < N; i++)
for (int j =1i; j > 0 && less(al[j]l, alj-11); j--)
exch(a, j, j-1);

]
0 0 B
1 0 A B
2 1 At A2 By
3 2 A A2 As B
4 4 A A2 A3 B B
At A2 A3 Bi B

A. Yes, equal elements never more past each other.
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Sorting challenge 5B

Q. Is selection sort stable ?

public class Selection

{
public static void sort (Comparable[] a)

{

int N = a.length;

for (int i = 0; i < N; i++)

{
int min = i;
for (int j = i+l; j < N; j++)

if (less(a[j]l, almin]))
min = j;

exch(a, i, min);

min 0 1 2
2 B B2 A
1 B2 B
2 Bi

A Bz B

A. No, long-distance exchange might move left element to the right

of some equal element.




Sorting challenge 5C

Q. Is shellsort stable?

int N = a.length;

int h = 1;

while (h < N/3) h = 3*h + 1;
while (h >= 1)

{

for (int i = h; i < N; i++)

{
for (int j = 1i; j > h && less(a[j], al[j-h]);

exch(a, j, j-h);

}
h = h/3;

A. No. Long-distance exchanges.
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Sorting challenge 5D

Q. Is mergesort stable?

public class Merge
{
private static Comparable[] aux;

private static void merge (Comparable[] a, int lo, int mid, int hi)
{ /* as before */ }

private static void sort(Comparable[] a, int lo, int hi)
{

if (hi <= lo) return;

int mid = lo + (hi - lo) / 2;

sort(a, lo, mid);

sort(a, mid+1l, hi);

merge (a, lo, mid, hi);

public static void sort (Comparable[] a)
{
aux = new Comparable[a.length];
sort(a, 0, a.length - 1);
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Sorting challenge 5D

Q. Is mergesort stable?

merge(a,
merge(a,
merge(a,
merge(a,
merge(a, ,
merge(a, 10,
merge(a, 12,
merge(a, 14,
merge(a, O,
merge(a, 4,
8,
2

oA NO <

merge(a,

merge(a, 0, 3, 7)
merge(a, 8, 11, 15)
merge(a, 0, 7, 15)

OO ANO—-SS

10,

12,

14,
11
51

hi

/

1
3)
5)
7)
9
11)
13)
15)
3)
7)

9, 11)
merge(a, 12, 13, 15)

Trace of merge results for bottom-up mergesort

w

(o)}

9 10 11 12 13 14 15

=

E

A

m

E

E

G

E

M

E

0

E

R

G

R

L

S

M

A
M

E X A M P L E

m
—
~ =
o
—
pa

E
O P R

A. Yes, if merge is stable.
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Sorting challenge 5D (continued)

Q. Is merge stable?

private static void merge (Comparable[] a, int lo, int mid, int hi)
{
for (int k = lo; k <= hi; k++)
aux[k] = alk];

int i = lo, j = mid+1;
for (int k = lo; k <= hi; k++)
{

if (1 > mid) alk] = aux[j++];
else if (j > hi) alk] = aux[i++];
else if (less(aux[j], aux[i])) al[k] = aux[j++];
else alk] = aux[i++];

A. Yes, if implemented carefully (take from left subarray if equal).
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Sorting challenge 5 (summary)
Q. Which sorts are stable ?
Yes. Insertion sort, mergesort.

No. Selection sort, shellsort.

Note. Need to carefully check code ("less than" vs “less than or equal”).
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Postscript: optimizing mergesort (a short history)

Goal. Remove instructions from the inner loop.

private static void merge (Comparable[] a, int lo, int mid, int hi)

{

for (int k = lo; k <= hi; k++)
aux[k] = alk];

int i = lo, j = mid+1;
for (int k = lo; k <= hi; k++)

if (i > mid) alk] = aux[j++];
else if (j > hi ) alk] = aux[i++];
else if (less(aux[]j], aux[i])) alk] = aux[]j++];
else alk] = aux[i++];
}
lo at mid j hi
aux[] A G L (0] R H I M S T

al] A G H I L M



Postscript: optimizing mergesort (a short history)

Idea 1 (1960s). Use sentinels.

a[M] := maxint; b[N] := maxint;
for (int i =0, j =0, k =0; k < M+1; k++)
if (less(aux[j], aux[i])) aux[k] = a[i++];
aux[k] = b[j++];

0 i M J N
a[] A G L (o) R ©° b[] H I M S T o0
k
aux|[] A G H I L M

Problem 1. Still need copy.
Problem 2. No good place to put sentinels.
Problem 3. Complicates data-type interface (what is infinity for your type?)
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Postscript: Optimizing mergesort (a short history)

Idea 2 (1980s). Reverse copy.

private static void merge (Comparable[] a, int lo, int mid, int hi)

{
for (int i = lo; i <= mid; i++)
aux[i] = a[i];

for (int j = mid+1l; j <= hi; j++)
aux[j] = a[hi-j+mid+1];

int i = 1o, j = hi;
for (int k = lo; k <= hi; k++)

copy

reverse copy

merge

if (less(aux[j], aux[i])) a[k] = aux[j--1;
else alk] aux[i++];
}
lo i mid 3 hi
aux[] A G L (o} R S M H
k
a[l A G H I L

Problem. Copy still in inner loop.
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Postscript: Optimizing mergesort (a short history)

Idea 3 (1990s). Eliminate copy with recursive argument switch.

int mid = (lo+hi)/2;

mergesortABr (b, a, lo, mid);
mergesortABr (b, a, mid+l, r);

mergeAB(a, lo, b, lo, mid, b, mid+l, hi);

Problem. Complex interactions with reverse copy.
Solution. Go back to sentinels.

—

_Java

Arrays.sort()
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Sorting challenge 6

Problem. Choose mergesort for Algs 4th edition.

Recursive argument switch is out (recommended only for pros).

Q. Why not use reverse array copy?

private static void merge (Comparable[] a, int lo, int mid, int hi)

{
for (int i = lo; i <= mid; i++)
aux[i] = al[i];

for (int j = mid+1l; j <= hi; j++)
aux[j] = al[hi-j+mid+1];

int i = 1o, j = hi;
for (int k = lo; k <= hi; k++)

if (less(aux[j], aux[i])) al[k] = aux[j--1;
else alk]

aux[i++];
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Two classic sorting algorithms

Critical components in the world's computational infrastructure.
* Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

 Quicksort honored as one of top 10 algorithms of 20™ century
in science and engineering.

Mergesort. <——  last lecture
« Java sort for objects.
* Perl, Python stable sort.

QUiCkSOF‘T. <«<——  this lecture
» Java sort for primitive types.
e C gsort, Unix, g++, Visual C++, Python.






Quicksort

Basic plan.
e Shuffle the array.
e Partition so that, for some j
- element a[3] is in place
- no larger element to the left of ;

- no smaller element to the right of ;5 , _
Sir Charles Antony Richard Hoare

* Sort each piece recursively. 1980 Turing Award

mput Q U I C K S O R T E X A M P L
shuffle K AT E L E P U I M QC

partitioning element

partiton E C A I E K L P U T M Q R X 0 S
~ el

not greater not less
sortleft A C E E I

sort right L M O P Q R
resut A C E E I K L M O P Q R

Quicksort overview




Quicksort partitioning

Basic plan.

Scan i from left for an item that belongs on the right.

Scan j from right for item item that belongs on the left.

Exchange a[i] and a[j].

Continue until pointers cross.

initial values

scan left, scan right
exchange

scan left, scan right
exchange

scan left, scan right
exchange

scan left, scan right
final exchange

result

v ali]
i j\0123456789101112131415

-1 15 K R ATELEWPUIMOAQOCIX O S

1 12 R cC X 0 S
1 12 C R

3 9 A_'L I M Q

3 9 I T

5 6 E L E P U

5 6 E L

6 5 E L

0 5 E <K_

ECATIEKLPUTMAQRX 0 S

Partitioning trace (array contents before and after each exchange)




Quicksort:

Java code for partitioning

while (less(a[++i], a[lo]))
if (i == hi) break;

while (less(a[lo], al[--31))
if (j == lo) break;

find item on left to swap

find item on right to swap

before |V|

during |V| =v |_|
t t

t

lo

.i




Quicksort: Java implementation

StdRandom. shuffle(a);
sort(a, 0, a.length - 1);

shuffle needed for
performance guarantee

if (hi <= lo) return;

int j = partition(a, lo, hi);
sort(a, lo, j-1);

sort(a, j+1, hi);




Quicksort trace

1o
initial values

random shuffle

/ ;
no partition 7

O O OO

for subarrays v
ofsizel T~

10

10

10

14

result

O N WU

O O

13
12
11

14

15
12
11

15

>>mMmmRXLQOIO
NnNONOnOnN=xCE
m > > > H|N
mHE— 0w
HmMmmMmX|&>

A \hnu
—mo|o

U U o

c c |

— H MmO

== X|O

==
O O OoC

o0 X W0n

A -CE E I KL M O P Q

Quicksort trace (array contents after each partition)
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Quicksort animation

50 random elements

http://www.sorting-algorithms.com/quick-sort

|||>

algorithm position
in order
current subarray

not in order



Quicksort: implementation details

Partitioning in-place. Using a spare array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier
than it might seem.

Staying in bounds. The (3 == 10) test is redundant (why?),
but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) best
to stop on elements equal to the partitioning element.
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Quicksort: empirical analysis

Running time estimates:

* Home pc executes 108 compares/second.

* Supercomputer executes 10'? compares/second.

insertion sort (N?) mergesort (N log N) quicksort (N log N)
st ettt et
home instant 2.8 hours 317 years  instant 1 second 18 min instant 0.3 sec 6 min
super instant 1 second 1 week instant instant instant instant instant instant

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.



Quicksort: best case analysis

Best case. Number of compares is ~ N Ig N.

al ]

lo j hi O 1 2 3 4 5 6 7 8 10 11 12 13 14
H A CB F E G D L K J N MO
H A CB F E G D L K J N M O
7 14 D A C B F E G H L K J N M O
3 6 B A CD F E G
1 2 A B C
A
C
4 5 6 E F G
E
G
8 11 14 J L NMO
8 9 10 I
I
K
12 13 14 M N O
M
0
A B C D E F G H I K L M N O
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worst case analysis

Quicksort

Worst case. Number of compares is ~ N2 / 2.

al ]

6 7 8 9 10 11 12 13 14

5

4

3
A B C D E
A B C D E

14 A B C D E

14
14
14
14
14
14
14
14
14

10 10 14

11

h

lo

K L M NO

J
J
J
J
J
J
J
J
J

F G H

L M N O
K L M N O

K

F G H

F G H

0

0

K L M N O

F G H

B C D E

K L M N O

E F G H

D

K L M N O

F G H

D E

K L M N O

F G H

E

K L M NO

G H

F

K L M NO

H
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K
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K
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12 14
13 14
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K

J

F G H

A B C D E
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Quicksort: average-case analysis

Proposition I. The average number of compares Cy, to quicksort an array of N

elements is ~ 2N InN (and the number of exchanges is ~ 3 N In N).

Pf. Cy satisfies the recurrence C;=C; = 0 and for N = 2:

Co +C1 + ... +Cn_ Cn-1 + Cn—2 + ... +C
CN:(N+1)+O 1 N-1 o ON-l N—2 0
N N
t t t N

partitioning left right partitioning probability

* Multiply both sides by N and collect terms:

NCy = N(N+1)—|—2(Co—|—01 +...+CN_1)
e Subtract this from the same equation for N-1:
NCyN — (N— 1)CN_1 = 2N + 2CN_1

» Rearrange terms and divide by N(N+1):

Cn Cn-1 2
N+1 N N+1

14



Quicksort: average-case analysis

* Repeatedly apply above equation:

Cn— 2
_ N-1

1/, N N +1
Cn_2 2 2
previous equation - N -1 u N * N+1
Cn—3 2
- N-2 " N-1"
2
3

= 2+2+ + .
- 2

1
2
N

1 S

e Approximate sum by an integral:

1 1
Cny ~ 2(N+1) (1—|—§+§—|—...

N

~ 2(N+1)/ ~dx

1 X

* Finally, the desired result:

Cny ~2(N+1)InN =~ 1.39NIgN

_+_

2

2

N+1

N+1

1
N

)
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Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.
e N+ (N-1)+(N-2)+..+1 ~N?/2.
* More likely that your computer is struck by lightning.

Average case. Number of compares is ~1.39 N Ig N.
* 39% more compares than mergesort.

» But faster than mergesort in practice because of less data movement.

Random shuffle.

 Probabilistic guarantee against worst case.
e Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if input:
e Is sorted or reverse sorted.
* Has many duplicates (even if randomized!) [stay tuned]

16



Quicksort: practical improvements
Median of sample.
 Best choice of pivot element = median.

» Estimate true median by taking median of sample.

Insertion sort small subarrays.

 Even quicksort has too much overhead for tiny subarrays.

 Can delay insertion sort until end.

. ~ 12/7 N In N compares
Optimize parameters.  ~ 12/35 N In N exchanges

* Median-of-3 random elements.
e Cutoff to insertion sort for = 10 elements.

Non-recursive version.
guarantees O(log N) stack size

» Use explicit stack. /
» Always sort smaller half first.

17



Quicksort with cutoff to insertion sort: visualization

input

result of
first partition

left subarray
partially sorted

both subarrays
partially sorted

result

partitioning element

1 IR T o (T T PO ...#..liﬂiﬂ“ﬂlﬂmlﬂﬂﬂﬂmmhﬂﬂhrﬂnmﬂm

Quicksort with median-of-3 partitioning and cutoff for small subarrays
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» selection
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Selection

Goal. Find the k™ largest element.
Ex. Min (k = 0), max (k = N-1), median (k = N/2).

Applications.
* Order statistics.
* Find the "top k."

Use theory as a guide.

e Easy O(N log N) upper bound.

e Easy O(N) upper bound for k=1, 2, 3.
e Easy Q(N) lower bound.

Which is true?
* Q(N log N) lower bound? <«——— is selection as hard as sorting?

e O(N) upper bound? <«——— is there a linear-time algorithm for all k?
PP

20



Quick-select

Partition array so that:

» Element a[j] is in place.

* No larger element to the left of 3.

* No smaller element to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

public static Comparable select (Comparable[] a, int k)
{

StdRandom. shuffle (a) ; ': i [:_] ;S P_\el“le n; ajr [icl ;s hirle
int lo = 0, hi = a.length - 1; erhi 70 J et lofo j

while (hi > 1lo) \& J/
{ :

int j = partition(a, lo, hi);

=v |v| =>v
if (3 <k) lo=3 + 1; } } }
else if (j > k) hi = j - 1; 1o j hi
else return alk];

}

return alk];

21



Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.
Pf sketch.

 Intuitively, each partitioning step roughly splits array in half:
N+N/2+N/4+.+1 ~2N compares.

* Formal analysis similar to quicksort analysis yields:

Cy = 2N +kIn(N/k) +(N-k)In(N/(N-Kk))

Ex. (2+21In2)N compares to find the median.

Remark. Quick-select uses ~ N?/2 compares in worst case,

but as with quicksort, the random shuffle provides a probabilistic guarantee.

22



Theoretical context for selection
Challenge. Design algorithm whose worst-case running time is linear.

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a
compare-based selection algorithm whose worst-case running time is linear.

Remark. But, algorithm is foo complicated to be useful in practice.

Use theory as a guide.

 Still worthwhile to seek practical linear-time (worst-case) algorithm.
* Until one is discovered, use quick-select if you don't need a full sort.

23



Generic methods

In our select() implementation, client needs a cast.

Double[] a = new Double[N];
for (int i = 0; i < N; i++)
a[i] = StdRandom.uniform() ;

Double median = (Double) Quick.select(a, N/2); DR T

The compiler also complains.

% javac Quick. java
Note: Quick.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

Q. How to fix?

unsafe cast
required

24



Generic methods

Pedantic (safe) version. Compiles cleanly, no cast needed in client.

public class QuickPedantic genemcfypevamabk
{ «— (valueinferred from argument a[])

public static <Key extends Comparable<Key>> Key select (Key[] a, int k)

{ /* as before */ } ‘\\\ //’

refturn type matches array type

public static <Key extends Comparable<Key>> void sort (Key[] a)
{ /* as before */ }

private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)
{ /* as before */ }

private static <Key extends Comparable<Key>> boolean less (Key v, Key w)
{ /* as before */ }

private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)
{ Key swap = a[i]; a[i] = a[jl; a[j] = swap; }

} can declare variables of generic type

http://www.cs.princeton.edu/algs4/35applications/QuickPedantic. java.html

Remark. Obnoxious code needed in system sort; not in this course (for brevity).



» duplicate keys
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Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.

Sort population by age.

Find collinear points.  «— see Assignment 3

Remove duplicates from mailing list.

Sort job applicants by college attended.

Typical characteristics of such applications.

e Huge array.
« Small number of key values.

Chicago
Ch1icago
Chicago
Chicago
Ch1icago
Chicago
Chicago
Ch1icago
Houston
Houston
Phoenix
Phoenix
Phoenix
Seattle
Seattle
Seattle
Seattle
Seattle

0

09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

25:
03:
21:
19:
19:
00:
35:
00:
01:
00:
37:
00:
14:
10:
36:
143
10:
22:

22

52
13
05
46
32
00
21
59
10
13
44
03
25
25
14

11
54

key
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Duplicate keys

Mergesort with duplicate keys. Always ~ N Ig N compares.

Quicksort with duplicate keys.

 Algorithm goes quadratic unless partitioning stops on equal keys!
* 1990s C user found this defect in gsort().

N

several textbook and system implementations
also have this defect

STOPONEQUALIKETYS

1 [

swap if we don't stop if we stop on
on equal keys equal keys

28



Duplicate keys: the problem

Mistake. Put all keys equal to the partitioning element on one side.
Consequence. ~ N?/ 2 compares when all keys equal.

BAABABBBCCLC AAAAAAAAAANA

Recommended. Stop scans on keys equal to the partitioning element.
Consequence. ~ N Ig N compares when all keys equal.

BAABABCCBCHEB AAAAAAAAAAA

Desirable. Put all keys equal to the partitioning element in place.

AAABBBBBCCZC AAAAAAAAAAA

29



3-way partitioning

Goal. Partition array into 3 parts so that:
» Elements between 1t and gt equal to partition element v.

* No larger elements to left of 1t.

* No smaller elements to right of gt.

before |V

—_

To

after <V

>V

1o

Dutch national flag problem. [Edsger Dijkstra]

» Conventional wisdom until mid 1990s: not worth doing.

» New approach discovered when fixing mistake in C library gsort ().

* Now incorporated into gsort() and Java system sort.

30



3-way partitioning: Dijkstra's solution

3-way partitioning.

 Let v be partitioning element a[10].

e Scan i from left to right.
- a[i] less than v: exchange a[1t] with a[i] and increment both 1t and i
- a[i] greater than v: exchange a[gt] with a[i] and decrement gt
- a[i] equal fo v: increment i

before |V
t t
. . To hi
All the right properties.
during <V =V >V
° In—place. A A A
Tt i gt
* Not much code.
. after <V =V >V
* Small overhead if no equal keys. ; ; ; ;
To Tt gt hi
3-way partitioning

31



3-way partitioning: frace

Vv al]

Tt i gt \ 0 1 2 3 456 7 8 91011
O 0 11 R B W W R W B R R W B R
0 1 11 R B R
1 2 11 R W R
1 2 10 R R B
1 3 10 R W B
1 3 9 R B W
2 4 9 R R W
2 5 9 R W W
2 5 8 R W R
2 5 7 R R R
2 6 7 R B R
3 7 7 R R
3 8 7 B B B R RRU RURWWW W

3-way partitioning trace (array contents after each loop iteration)




3-way quicksort: Java implementation
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3-way quicksort: visual trace

I I
equal to partitioning element <

Visual trace of quicksort with 3-way partitioning
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Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the i™h one occurs
Xi fimes, any compare-based sorting algorithm must use at least

N! : z;
lg ( ') ~ — g Tilg -~ «—— N Ig N when all distinct;
! N

! | ...
L1 P2 i=1 linear when only a constant number of distinct keys
compares in the worst case.

Proposition. [Sedgewick-Bentley, 1997] proportional to lower bound
Quicksort with 3-way partitioning is entropy-optimal.
Pf. [beyond scope of course]

Bottom line. Randomized quicksort with 3-way partitioning reduces running
time from linearithmic to linear in broad class of applications.
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» system sorts
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Sorting applications

Sorting algorithms are essential in a broad variety of applications:
* Sort a list of names.

* Organize an MP3 library.

« Display Google PageRank results. obvious applications

» List RSS news items in reverse chronological order.

* Find the median.

* Find the closest pair.

* Binary search in a database. problems become easy once items
» Identify statistical outliers. are in sorted order

* Find duplicates in a mailing list.

e Data compression.

» Computer graphics.

» Computational biology.
: non-obvious applications
* Supply chain management.

* Load balancing on a parallel computer.

Every system needs (and has) a system sort!

37



Java system sorts

Java uses both mergesort and quicksort.

* Arrays.sort() Sorts array of comparable or any primitive type.
» Uses quicksort for primitive types; mergesort for objects.

import java.util.Arrays;

public class StringSort

{
public static void main(String[] args)
{
String[] a = StdIn.readAll () .split("\\s+");
Arrays.sort(a) ;
for (int i = 0; i < N; i++)
StdOut.println(a[i]) ;

Q. Why use different algorithms, depending on type?



Java system sort for primitive types

Engineering a sort function. [Bentley-McIlroy, 1993]

 Original motivation: improve gsort().

* Basic algorithm = 3-way quicksort with cutoff to insertion sort.

e Partition on Tukey's ninther: median of the medians of 3 samples,
each of 3 elements. AN

approximate median-of-9

nine evenly o A n a 2 = B 5
spaced elements
groups of 3 R A M G X K B J E
medians = b E

ninther K

Why use Tukey's ninther?
» Better partitioning than random shuffle.
* Less costly than random shuffle.
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Achilles heel in Bentley-McIlroy implementation (Java system sort)

Based on all this research, Java's system sort is solid, right?

A killer input.

more disastrous consequences in C

v

 Blows function call stack in Java and crashes program.

* Would take quadratic time if it didn't crash first.

% more 250000. txt
0

218750

222662

11

166672

247070

83339

1

250,000 integers
between 0 and 250,000

% java IntegerSort < 250000. txt
Exception in thread "main"
java.lang.StackOverflowError

!

at
at
at
at
at

java.
java.
java.
java.
java.

util.
util.
util.
util.
util.

Arrays.

Arrays
Arrays

Arrays.

Arrays

sortl (Arrays.
.sortl (Arrays.
.sortl (Arrays.
sortl (Arrays.
.sortl (Arrays.

java
java
java
java
java

:562)
:606)
:608)
:608)
:608)

Java's sorting library crashes, even if
you give it as much stack space as Windows allows
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Achilles heel in Bentley-McIlroy implementation (Java system sort)

McIlroy's devious idea. [A Killer Adversary for Quicksort]

e Construct malicious input while running system quicksort,
in response to elements compared.

« If vis partitioning element, commit to (v < a[il) and (v < a[3j]), but don't
commit fo (a[i] < a[3]) or (a[j] > a[i]) until afi] and a[j] are compared.

Consequences.
» Confirms theoretical possibility.
* Algorithmic complexity attack: you enter linear amount of data;

server performs quadratic amount of work.

Remark. Attack is not effective if array is shuffled before sort.

Q. Why do you think system sort is deterministic?

41



System sort: Which algorithm to use?
Many sorting algorithms to choose from:

Internal sorts.

e Insertion sort, selection sort, bubblesort, shaker sort.

* Quicksort, mergesort, heapsort, samplesort, shellsort.

 Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

Radix sorts. Distribution, MSD, LSD, 3-way radix quicksort.

Parallel sorts.
e Bitonic sort, Batcher even-odd sort.

* Smooth sort, cube sort, column sort.
e GPUsort.

42



System sort: Which algorithm to use?

Applications have diverse attributes.

Stable?

Parallel?

Deterministic?

Keys all distinct?

Multiple key types?

Linked list or arrays?

Large or small records?

Is your array randomly ordered?
Need guaranteed performance?

attributes
1 2 3 4 .
algorithm A e °

- @ Mmoo W
[ ]

many more combinations of
attributes than algorithms

Elementary sort may be method of choice for some combination.

Cannot cover all combinations of attributes.

Q. Is the system sort good enough?

A. Usually.




Sorting summary

selection

insertion

shell

quick

3-way quick

X X
X
X
X

X
X X

Nz/2 Nz/?2 Nz/2
Nz/2 Nz/4 N
? ? N
N2/2 2NInN NlIgN
N2/2 2NInN N
Nlig N Nlig N Nlg N
Nlg N Nlg N Nlg N

X

N exchanges

use for small N or partially ordered

tight code, subquadratic

N log N probabilistic guarantee
fastest in practice

improves quicksort in presence of
duplicate keys

Nlog N guarantee, stable

holy sorting grail
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Which sorting algorithm?

lifo
fifo
data
type
hash
heap
sort
link
list
push
find
root
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

find
fifo
data
exch
hash
heap
less
left
leaf
lifo
push
root
list
tree
null
path
node
link
sort
type
sink
swim
next
swap

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
left
node
null
path
tree
exch
less
next
sink
swap
swim

data
fifo
find
hash
heap
lifo
link
list
push
root
sort
type
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
sort
tree
null
path
node
type
root
push
sink
swim
next
swap

data
fifo
lifo
type
hash
heap
link
sort
find
list
push
root
leaf
null
path
tree
exch
left
less
node
next
sink
swap
swim

hash
fifo
data
link
leaf
heap
exch
node
lifo
left
find
path
list
next
less
root
sink
swim
null
sort
type
tree
push
swap

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
next
node
null
path
push
root
sink
sort
swap
swim
tree
type

original

sorted
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Priority queue APT

2.4 Priority Queues

stack last in, first out
E queue first in, first out
e
‘c“gg‘fe,’ﬂ:é‘isge priority queue largest value out
| tion
largest —|JS@
heap
Veing o ‘“.?L"..E: AP public class MaxPQ<Key extends Comparable<Key>> operation argument rf;’;“r;l
sortedS 4 m o o 2 [ 3 )
g kpqeys o ; . MaxPQQ) create a priority queue insert p
sink pPiceions » elementary implementations . o ) insert Q
'-nodémm o® K MaxPQ(maxN) create a priority queue of initial capacity maxN insert
wee 3 » binary heaps L o ) . ) E
insert .. g:' void insert(Key v) insertakey into the priority queue remove max Q
API® o b &8 insert
Pr|or|t g » hea psort Key max() return the largest key i:z:i i
implementONE H H .
mapxitﬁum"g'm » event-based simulation Key delMax() return and remove the largest key insert M
remove max X
smoueuesm boolean isEmpty() is the priority queue empty? insert P
int sizeQ number of entries in the priority queue l:”“"rt L
msert E
API for a generic priority queue remove max P
Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne -  Copyright © 2009 - January 22, 2010 4:15:59 PM
Priority queue applications Priority queue client example
» Event-driven simulation. [customers in a line, colliding particles] Problem. Find the largest M in a stream of N elements.
* Numerical computation. [reducing roundoff error] * Fraud detection: isolate $$ transactions.
« Data compression. [Huffman codes] * File maintenance: find biggest files or directories.
* Graph searching. [Dijkstra's algorithm, Prim's algorithm]
e Computational number theory.  [sum of powers] Constraint. Not enough memory to store N elements.
* Artificial intelligence. [A* search] Solution. Use a min-oriented priority queue.
 Statistics. [maintain largest M values in a sequence]
¢ Operating systems. [load balancing, interrupt handling] MinPQ<String> pq = new MinPQ<String>();
 Discrete optimization. [bin packing, scheduling] while (!StdIn.isEmpty ()) sort N log N
q q q a {
* Spam filtering. [Bayesian spam filter] String s = StdIn.readString(); clementary PQ =

pPg.insert(s);
if (pqg.size() > M) . Nloa M
pq.delMin() ; binary heap og

}

best in theory N

q . while (!pqg.isEmpty()) —
Generalizes: stack, queue, randomized queue. System.out.println(pq.delMin()) ; S 1 Gl S (s L
in a stream of N items




» elementary implementations

Priority queue: unordered array implementation

public class UnorderedMaxPQ<Key extends Comparable<Key>>
{
private Key[] pq; // pqli] = ith element on pq
private int N; // number of elements on pq

public UnorderedMaxPQ (int capacity)

{ pq = (Key[]) new Comparable[capacity]; }
public boolean isEmpty ()
{ return N == 0; }
public void insert (Key x)
{ pPqIN++] = x; }
public Key delMax()
{
int max = 0;
for (int i = 1; i < N; i++) ]

if (less(max, i)) max = i;
exch (max, N-1);
return pq[--N];

no generic
array creation

less () and exch ()
as for sorting

Priority queue: unordered and ordered array implementation

. return . contents contents
operation.argument ,qp,,p Sz (unordered) (ordered)
insert P 1 P P
insert Q 2 P Q P Q
insert E 3 P Q E E P Q
remove max Q 2 P E E P
insert X 3 P E X E P X
insert A 4 P E X A A E P X
insert M 5 P E X A M A E M P X
remove max X 4 P E M A A E M P
insert P 5 P EM AP A E M P P
insert L 6 P EMAP L A E L MPP
insert E 7 P EMAP L E A E E L M P
remove max P 6 EM AP L E A E E L M P

A sequence of operations on a priority queue

Priority queue elementary implementations

Challenge. Implement all operations efficiently.

implementu‘rion
1 N

unordered array N
ordered array N 1 1
goal log N log N log N

order-of-growth running time for PQ with N items




» binary heaps

A complete binary tree in nature

Binary tree
Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

N=16
complete tree of height 5 \ [lgN] =4
height = 5

Property. Height of complete tree with N nodes is 1+ |Ig NJ.
Pf. Height only increases when N is exactly a power of 2.

Binary heap
Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary free.
* Keys in nodes.
* No smaller than children’s keys.

Array representation.
* Take nodes in level order.
* No explicit links needed!




Binary heap properties

Property A. Largest key is a[1], which is root of binary tree.
indices start at 1

Property B. Can use array indices to move through free.

* Parent of node at k is af k/2.

* Children of node at x are at 2k and 2k+1.

I H'G

Insertion in a heap

Insert. Add node at end, then swim it up.
Running time. At most ~ Ig N compares.

insert

public void insert(Key x)
{

Pa[++N] = x;

swim(N) ;

add key to heap
violates heap order

Promotion in a heap
Scenario. Node's key becomes larger key than its parent's key.
To eliminate the violation:

» Exchange key in node with key in parent.
* Repeat until heap order restored.

private void swim(int k)

{ ool
while (k > 1 && less(k/2, k violates heap order
hide (k72,59) ® O @ © sk,
exch(k, k/2); P
k = k/2; \
} N Ix)

§O
parent of node at k is at k/2
} @f@g ®’é o

Peter principle. Node promoted to level of incompetence.

Demotion in a heap

Scenario. Node's key becomes smaller than one (or both) of its children's keys.
To eliminate the violation:

» Exchange key in node with key in larger child.
* Repeat until heap order restored.

while (2*k <= N)

. N @
children of node 2@ e
%
® O©
if (!less(k, j)) break; (1)

at k are 2k and 2k+1
exch(k, j); : G

private void sink (int k) violates heap order
‘ /S
int j = 2*%k;
o 5 o
} 10
, G ©

(smaller than a child)
{
if (j < N && less(j, j+1)) j++;
Power struggle. Better subordinate promoted.




Delete the maximum in a heap

Delete max. Exchange root with node at end, then sink it down.
Running time. At most ~ 2 Ig N compares.

remove the maximum

public Key delMax()

{
Key max = pq[l];
exch(l, N--);
sink (1) ; e
Pg[N+1] = null; «<—— prevent loitering Q 0
return max;

, GRONG

sink down

(]
G| O]
® O © i

® ~— key to remove
© ®

violates
heap order

(R)
© ®
remove node

~ from heap

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>

{
private Key[] pq;
private int N;

public MaxPQ(int capacity)
{ pg = (Key[]) new Comparable[capacity+l]; }

public boolean isEmpty ()
{ return N == 0; }

public void insert(Key key) “1— PQops

{ /* see previous code */ }

public Key delMax()

{ /* see previous code */ '}

private void swim(int k)

{ /* see previous code */ '} <«——+—  heap helper functions
private void sink(int k)

{ /* see previous code */ '}

private boolean less(int i, int j)

{ return pq[i].compareTo(pq[j] < 0; } <——F— array helper functions

private void exch(int i, int j)
{ Key t =pq[i]; pqli] = pql[jl; pqlj]l = t; }

Heap operations

insert 0
’ ® remove max (X) m
insert Q 6
Y Q
insert E insert P e e
remove max (Q) e e
e insert L e G
insert X 0 e m e
G, ® ®
0 insert E
j (P L)
insert A
@ ? ®®E®
(P)
X
insert M remove max (P) m
) @ ®

Priority queues implementation cost summary

implementation insert del max

unordered array 1 N N
ordered array N 1 1
binary heap log N log N 1

order-of-growth running time for PQ with N items

Hopeless challenge. Make all operations constant time.
Q. Why hopeless?



Binary heap considerations

Minimum-oriented priority queue.
. Replace less () With greater().
. Implemen‘r greater().

Dynamic array resizing.
¢ Add no-arg constructor.
* Apply repeated doubling and shrinking. <—— leads to O(log N) amortized time per op

Immutability of keys.
* Assumption: client does not change keys while they're on the PQ.
* Best practice: use immutable keys.

Other operations.
* Remove an arbitrary item.

L . > easy to implement with sink () and swim() [stay tuned]
* Change the priority of an item.

21

Heapsort

Basic plan for in-place sort.
* Create max-heap with all N keys.
* Repeatedly remove the maximum key.

start with array of keys
in arbitrary order

build a max-heap

(in place)
LA
sorted result 2E 3 E
in pl
(in place) 4L 5 M 50 7P
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Heapsort: heap construction

First pass. Build heap using bottom-up method.

for (int k = N/2; k >= 1; k--)
sink(a, k, N);

heap construction sink(3, 11)
)
® ®
starting point (arbitrary order) sink(2, 11)
sink(5, 11) o
(P O
)@( (ONONGHG)
sink(1, 11)
sink(4, 11)
®®®

result (heap-ordered)




Heapsort: sortdown

Second pass.
¢ Remove the maximum, one at a time.

* Leave in array, instead of nulling out.

while (N > 1)

{
exch(a, 1, N--);
sink(a, 1, N);

Heapsort: trace

sortdown

starting point (heap-ordered)

exch(l, 11)
sink(1, 10)

6|
® ®
®©® O x
esx\(:k((ll'. 19U>J ©
0 ®
of O F®
®®
exch(l, 9) e

sink(1, 8)
® D
@ W d®
™ s
sad B ®
0. B
@ O d®

R

S 8 ©
0 ga
@ © 4

and: 8

ETeH

<
& 0

exch(1, 5)
sink(l, 41®/®\®

h(1, 4)
ke n
® ®

L

exch(l,

3)
sink(1, 2)
& ¢

net, 2)
Shka ®

a[i]
4 5 6 7 8 91011

N k 0 1 2 3
initial values S 0 R
1 5
11 4
1 3 X
1 2 T
1 1 X T S
heap-ordered X T S
10 1 T P S
9 1 S P R
8 1 R P E
7 1 P 0 E
6 1 0 M E
5 1 M L E
4 1 L E E
3 1 E A E
2 1 E A E
1 1 A E
sorted result A E E

—>»>» > =
=ZEmr o
o

L MOPRSTX

Heapsort trace (array contents just after each sink)
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Heapsort: Java implementation

public class Heap
{
public static void sort(Comparable[] pq)
{
int N = pq.length;
for (int k = N/2; k >= 1; k--)
sink(pgq, k, N);
while (N > 1)
{
exch(pq, 1, N);
sink(pq, 1, --N);

}

private static void sink(Comparable[] pqg, int k, int N)
{ /* as before */ }

private static boolean less(Comparable[] pq, int i, int j)
{ /* as before */ }

private static vo exch (Comparable[] pg, int i, int j)
{ /* as before */

but use 1-based indexing

Heapsort: mathematical analysis

Proposition Q. At most 2 N Ig N compares and exchanges.

Significance. Sort in N log N worst-case without using extra memory.
* Mergesort: no, linear extra space. <«— in-place merge possible, not practical
* Quicksort: no, quadratic time in worst case. <— Nlog N worst-case quicksort possible,
not practical

* Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, buft:
¢ Inner loop longer than quicksort's.

* Makes poor use of cache memory.

* Not stable.



Heapsort animation

50 random elements

A

http://www.sorting-algorithms.com/heap-sort

Sorting algorithms: summary

selection

=
(73
®
3
=

STub'e)
X

X X
X
X
X

X
X
X X

N2/2

N2/2

N2/2

N2/2

Nlig N

2NIgN

Nlig N

N2/2

N2/4

2NInN

2NInN

Nlig N

2NIgN

Nlig N

N2/2

N

N

Nlig N

Nlig N

Nlg N

Nlig N

N exchanges
use for small N or partially ordered

tight code, subquadratic

Nlog N probabilistic guarantee
fastest in practice

improves quicksort in presence
of duplicate keys

Nlog N guarantee, stable
Nlog N guarantee, in-place

holy sorting grail

ell
3-way quick
algorithm position 272
in order
not in order
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Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave
according to the laws of elastic collision.

» event-based simulation

31
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Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave

according to the laws of elastic collision.

Hard disc model.

* Moving particles interact via elastic collisions with each other and walls.

* Each particle is a disc with known position, velocity, mass, and radius.

* No other forces.

temperature, pressure,

/ diffusion constant

motion of individual

/ atoms and molecules

Significance. Relates macroscopic observables to microscopic dynamics.

* Maxwell-Boltzmann: distribution of speeds as a function of temperature.

* Einstein: explain Brownian motion of pollen grains.

Warmup: bouncing balls

public class Ball

{
private double rx, ry; // position
private double vx, vy; // velocity
private final double radius; // radius
public Ball()
{ /* initialize position and velocity */ }

public void move (double dt)
{

check for collision with walls

/

if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }

rx = rx + vx*dt;
ry = ry + vy*dt;
}
public void draw()
{ StdDraw.filledCircle(rx, ry, radius); }

Missing. Check for balls colliding with each other.
* Physics problems: when? what effect?

* CS problems: which object does the check? too many checks?

33
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Warmup: bouncing balls

Time-driven simulation. N bouncing balls in the unit square.

public class BouncingBalls

{

public static void main(String[] args)

{

int N = Integer.parselnt(args[0]);

Ball balls[] = new Ball[N];

for (int i = 0; i < N; i++)
balls[i] = new Ball();

while (true)
{
StdDraw.clear() ;

for (int i = 0; i < N; i++)

{

balls[i] .move(0.5) ;

balls[i] .draw() ;
}
StdDraw.show (50) ;

main simulation loop

% java BouncingBalls 100

. .. * °
A )
.o . ..
.
. . °
IR
o o .o
et
XY . W L4
o: . Les e
.
" '.0 . .
. Lo o o
e %o *
H o

Time-driven simulation

* Discretize time in quanta of size dt.

* Update the position of each particle after every dt units of time,

and check for overlaps.

* If overlap, roll back the clock to the time of the collision, update the

velocities of the colliding particles, and continue the simulation.

'7”’

»

t t+dt

t+2dt
(collision detected)

T+ AT
(roll back clock)



Time-driven simulation

Main drawbacks.

» ~N2/2 overlap checks per time quantum.
 Simulation is too slow if dt is very small.

* May miss collisions if dt is too large.

(if colliding particles fail to overlap when we are looking)

dt too small: excessive computation

“>o

dt too large: may miss collisions

Particle-wall collision

Collision prediction and resolution.
* Particle of radius s at position (rx, ry).

* Particle moving in unit box with velocity (vx, vy).
e Will it collide with a vertical wall? If so, when?

prediction (at time t)
dt = time to hit wall
= distance/velocity
= =s=r)lv,

resolution (at time t + dt)
velocity after collision = (—v,,v,)
position after collision = (1 s, r,+v,dt)

Predicting and resolving a particle-wall collision

wall at
x=1
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Event-driven simulation

Change state only when something happens.

* Between collisions, particles move in straight-line trajectories.
* Focus only on times when collisions occur.

* Maintain PQ of collision events, prioritized by time.

* Remove the min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle,
when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according

to laws of elastic collisions.

prediction (at time t)
particles hit unless one passes \
intersection point before the other N Ve
arrives (see Exercise 3.6.X) ~ -
resolution (at time t +dt)
velocities of both particles
change after collision

Particle-particle collision prediction

Collision prediction.

* Particle i+ radius s;, position (rxi, ry:), velocity (vxi, vyi).
* Particle: radius s;, position (1, ry)), velocity (vx, vy).
 Will particles i and j collide? If so, when?

(i, W)
," vx;', Vi
@ % ,'( ', V)
x 0, )
(i, 1) @)
i T P

i ’I

time = t time =t + At

Lo, w)

N

J
40



Particle-particle collision prediction

Collision prediction.

* Particle it radius s;, position (rxi, ry), velocity (vxi, ).
e Particle: radius s;, position (r, ry)), velocity (vx;, vy).
 Will particles i and j collide? If so, when?

o if Av-Ar=0
At =1 = ifd <0
Av-Ar + d .
- —————— otherwise
Av-Av

d =(Av-Ar) - (Av-Av) (Ar-Ar - ©%)  0=0;+0;,

Av=(Avx, Avy) = (vx;—vx;, vy, =vy;) Av - Av = (Avx)* + (Avy)®

b 2 2
Ar=(Arx, Ary) = (rx;—rx;, ry;=ry;) Ar - Ar = (Arx)” + (Ary)

Av - Ar = (Avx)(Arx)+ (Avy)(Ary)

Important note: This is high-school physics, so we won't be testing you on it!

Particle data type skeleton

public class Particle

{
private double rx, ry; // position
private double vx, vy; // velocity
private final double radius; // radius
private final double mass; // mass
private int count; // number of collisions
public Particle(...) { }
public void move (double dt) { }
public void draw() {1
public double timeToHit (Particle that) {1}
public double timeToHitVerticalWall () {1} 1
public double timeToHitHorizontalWall() { }
public void bounceOff (Particle that) {1}
public void bounceOffVerticalWall () {1}
public void bounceOffHorizontalWall () {1}
}

predict collision with
particle or wall

resolve collision with
particle or wall

41
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Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

v, = vx; + Jx/my
vioo= vy dylm Newton's second law
vx// = ;- Jx/ m; (momentum form)
vyj' = W - Jyl/m;
2m.m;(Av-Ar
Ir = JArx’ Iy = JAry’ 7= ;i ( )
o o o(m;+m;)

impulse due to normal force
(conservation of energy, conservation of momentum)

Important note: This is high-school physics, so we won't be testing you on it!

Particle-particle collision and resolution implementation

public double timeToHit (Particle that)

{

}

if (this == that) return INFINITY;
double dx = that.rx - this.rx, dy
double dvx = that.vx - this.vx; dvy
double dvdr = dx*dvx + dy*dvy;

if ( dvdr > 0) return INFINITY; ¢«———————— 1o collision
double dvdv = dvx*dvx + dvy*dvy;
double drdr = dx*dx + dy*dy;
double sigma = this.radius + that.radius;
double d = (dvdr*dvdr) - dvdv * rdr - sigma*sigma) ;
if (d < 0) return INFINITY;
return - (dvdr + Math.sqrt(d)) / dvdv;

that.ry - this.ry;
that.vy - this.vy;

public void bounceOff (Particle that)

{

double dx = that.rx - this.rx, dy = that.ry - this.ry;

double dvx = that.vx - this.vx, dvy = that.vy - this.vy;

double dvdr = dx*dvx + dy*dvy;

double dist = this.radius + that.radius;

double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist);
double Jx * dx / dist;
double Jy * dy / dist;
this.vx += Jx / this.mass;
this.vy += Jy / this.mass;
that.vx -= Jx / that.mass;
that.vy -= Jy / that.mass;
this.count++;

that.countt+; Important note: This is high-school physics, so we won't be testing you on it!
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Collision system: event-driven simulation main loop

Initialization.

two particles on a collision course
N

* Fill PQ with all potential particle-wall collisions. ~
* Fill PQ with all potential particle-particle collisions. ><

\

“potential” since collision may not happen if
some other collision intervenes —~

@

An invalidated event

third particle interferes: no collision

Main loop.

« Delete the impending event from PQ (min priority = ¢).

o If the event has been invalidated, ignore it.

* Advance dll particles to time ¢, on a straight-line trajectory.

* Update the velocities of the colliding particle(s).

* Predict future particle-wall and particle-particle collisions involving the
colliding particle(s) and insert events onto PQ.

45

Collision system implementation: skeleton

public class CollisionSystem

{
private MinPQ<Event> pq; // the priority queue
private double t = 0.0; // simulation clock time
private Particle[] particles; // the array of particles

public CollisionSystem(Particle[] particles) { }

private void predict(Particle a)

f add to PQ all particle-wall and particle-

particle collisions involving this particle
if (a == null) return;

for (int i = 0; i < N; i++)
{
double dt = a.timeToHit (particles[i]);
Pg.insert(new Event(t + dt, a, particles[i]));
}
Pq.insert(new Event(t + a.timeToHitVerticalWall() , a, null));
Pq.insert(new Event(t + a.timeToHitHorizontalWall(), null, a));

private void redraw() { }

public void simulate() { /* see next slide */ '}

47

Event data type

Conventions.
* Neither particle nu11 = particle-particle collision.
* One particle nu11 = particle-wall collision.

* Both particles nul1 = redraw event.

private class Event implements Comparable<Event>

{
private double time; // time of event
private Particle a, b; // particles involved in event
private int countA, countB; // collision counts for a and b
public Event(double t, Particle a, Particle b) { } <«
public int compareTo (Event that)
{ return this.time - that.time; }
public boolean isValid() ]
{ }

}

Collision system implementation: main event-driven simulation loop

public void simulate ()

{
P9 = new MinPQ<Event>() ;
for(int i = 0; i < N; i++) predict(particles[i]);
Pq.insert(new Event (0, null, null));

while (!'pqg.isEmpty())
{
Event event = pg.delMin();

if ('event.isValid()) continue; <«

Particle a = event.a;
Particle b = event.b;

for(int i = 0; i < N; i++)

particles[i] .move (event.time - t); <«

t = event.time;

if (a '= null && b '= null) a.bounceOff (b) ; «—

else if (a '= null && b == null) a.bounceOffVerticalWall()
else if (a == null && b null) b.bounceOffHorizontalWall() ;
else if (a == null && b == null) redraw();

predict(a) ;
predict(b) ;

create event

ordered by time

invalid if intervening
collision

46

initialize PQ with
collision events and
redraw event

get next event

update positions
and time

process event

predict new events
based on changes

48



Simulation example 1

% java CollisionSystem 100
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Simulation example 3
% java CollisionSystem < brownian.txt
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Simulation example 2

% java CollisionSystem < billiards.txt

Simulation example 4

% java CollisionSystem < diffusion.txt

W 00000000000
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Symbol tables

Key-value pair abstraction.
e Insert a value with specified key.
* Given a key, search for the corresponding value.

Ex. DNS lookup.
* Insert URL with specified IP address.
» Given URL, find corresponding IP address.

URL IP address

WWW.CS.princeton.edu 128.112.136.11
WWWwW.princeton.edu 128.112.128.15
www.yale.edu 130.132.143.21
www.harvard.edu 128.103.060.55
WWW.Simpsons.com 209.052.165.60

T T

key value



Symbol table applications

dictionary find definition word definition
book index find relevant pages term list of page numbers
file share find song to download name of song computer ID
financial account process transactions account number transaction details
web search find relevant web pages keyword list of page names
compiler find properties of variables variable hame type and value
routing table route Internet packets destination best route
DNS find IP address given URL URL IP address
reverse DNS find URL given IP address IP address URL
genomics find markers DNA string known positions
file system find file on disk filename location on disk




Symbol table APT

Associative array abstraction. Associate one value with each key.

public class ST<Key, Value>

STO create a symbol table

put key-value pair into the table

void put(Key key, Value val) (remove key from table if value is null)

value paired with key
(nu11 if key is absent)

remove key (and its value) from table

Value get(Key key)

void delete(Key key)

boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?
int size() number of key-value pairs in the table
Iterable<Key> keys() all the keys in the table

API for a generic basic symbol table

<

—— alkey]

—— al[key]

val;



Conventions

* Values are not nuil.
* Method get () returns null if key not present.
 Method put () overwrites old value with new value.

Intended consequences.
» Easy to implement contains().

public boolean contains (Key key)
{ return get(key) !'= null; }

 Can implement lazy version of delete().

public void delete (Key key)
{ put(key, null); }




Keys and values

Value type. Any generic type.

Key type: several natural assumptions.

* Assume keys are comparable, USe compareTo ().

» Assume keys are any generic type, use equals() to test equality.

» Assume keys are any generic type, use equals() to test equality
and hashcode () to scramble key.

Best practices. Use immutable types for symbol table keys.
e Immutable in Java: String, Integer, Double, File, ...
e Mutable in Java: pate, StringBuilder, Url, ...



ST test client for traces

Build ST by associating value i with ith string from standard input.

public static void main(String[] args)
{
ST<String, Integer> st = new ST<String, Integer>();
String[] a = StdIn.readAll().split("\\s+");
for (int i = 0; i < a.length; i++)
st.put(a[i], 1i);
for (String s : st.keys())

] output
StdOut.println(s + " " + st.get(s));

12
keys S EARCHUEX AMP L E

values 0O 1 2 3 4 5 6 7 8 91011 12
11

10

X L O U == rTmanNn >




ST test client for analysis

Frequency counter. Read a sequence of strings from standard input

and print out one that occurs with highest frequency.

% more

it
it
it
it
it
it
it
it
it
it

was
was
was
was
was
was
was
was
was
was

% java

it

10

tinyTale. txt

the best of times

the worst of times

the age of wisdom

the age of foolishness
the epoch of belief
the epoch of incredulity
the season of light
the season of darkness
the spring of hope

the winter of despair

FrequencyCounter 1 < tinyTale. txt

% java FrequencyCounter 8 < tale.txt
business 122

% java FrequencyCounter 10 < leipziglM.txt «—

government 24763

“

—— tiny example (60 words, 20 distinct)

— real example (135,635 words, 10,769 distinct)

— real example (21,191,455 words, 534,580 distinct)




Frequency counter implementation

public class FrequencyCounter

{

public static void main(String[] args)

{
int minlen = Integer.parselnt(args[0]);
ST<String, Integer> st = new ST<String,
while (!StdIn.isEmpty())
{

String word = StdIn.readString(); ,_~ ignoreshortsirings

if (word.length() < minlen) continue;
if (!st.contains(word)) st.put(word,
else st.put (word,
}
String max = "";
st.put (max, 0);
for (String word : st.keys())
if (st.get(word) > st.get (max))
max = word;
StdOut.println(max + " " + st.get(max));

Integer>() ; DE——

(—
1);
st.get(word) + 1);

create ST

read string and
update frequency

print a string
with max freq



» sequential search
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Sequential search in a linked list

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.

Insert. Scan through all keys until find a match; if no match add to front.

keyvalue first

S

> X m T O X”™ > m
o

O 00 N O vi A W N B

v =<
=
o

L 11
E 12

red nodes

/ are new
| E | 1 |_>| S | 0 | black nodes
are accessed

[Al2f—~{E[1—~[s]o] e
[RI3[—~{Al2f—[E[1—~[s]0]

[Cl4—RI3~{A]2[—~[E[1~[S]0] | |

(5 F{c[e-[RBI-[Al}{e[T}~[s (o} vaber
(H[sJ~{c[a ~{R[3}~{A]2}-{E[E]

XL 7 =] s = c[4~[R][3~[A]2[~[E|6]—~[S]0]
X[7J~{H]sf~{c[a ~{R[3}{A[E] N—
(M9 = X[ 7 ~{H]5 =4 ~{R|3[—[A[8~{E|6[—[S]0]

[ PLL0f—{ M9 = X[ 7~ [H|5 F~{C|4]~[R[3[—~[A[8—[E[6/—[S]0]
L1t PJ10}—[M] O [ X| 7 [ H]| 5 |~ C| 4 [—~{R[3 —[A[8 ~[E|6 =S| 0]
[L[i—~{P [aof~{M] o (X[ 7 }~{H]5 |~{c[4 {R[3}~{A[ 8]~ [1]

Trace of linked-list ST implementation for standard indexing client

1



Elementary ST implementations: summary

worst case average case

ST implementation N y
N N N

sequential search

ordered operations

N/ 2 ho equals()
(unordered list)
—5000
e — 2246
—0
Costs for java FrequencyCounter 8 < tale.txt using LinkedListST

Challenge. Efficient implementations of both search and insert.

12



» binary search
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Binary search

Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k?

keys[]

successful search for P O 1 2 3 4 5 6 7 8 9

To hi m
0 9 4

5
5

9
6

7
5

6 6 6

unsuccessful search for Q

To hi m

4
7
5
6

RN

A C E H L R S X entries in black

m IF; RS X/areaﬂo .hi]
M P
P

T

>~ entry in red is a[m]

™~ loop exits with keys[m] = P: return 6

=
T U U T
-
wn
<

loop exits with To > hi: return 7

Trace of binary search for rank in an ordered array
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Binary search: Java implementation

public Value get (Key key)
{
if (isEmpty()) return null;
int i = rank (key)
if (1 < N && keys[i].compareTo (key) == 0) return vals[i];

else return null;

private int rank (Key key) number of keys < key
{
int lo = 0, hi = N-1;
while (lo <= hi)
{
int mid = lo + (hi - lo) / 2;
int cmp = key.compareTo (keys[mid]) ;

if (cmp < 0) hi = mid - 1;
else if (cmp > 0) lo = mid + 1;
else return mid;

}

return lo;

15



Binary search: mathematical analysis
Proposition. Binary search uses ~lg N compares to search any array of size N.

Def. T(N) = number of compares to binary search in a sorted array of size N.
< TN/2) + 1
t

left or right half

Binary search recurrence. T(N) < T(N/2) + 1 for N> 1, with T(1)=1.
* Not quite right for odd V.
e Same recurrence holds for many algorithms.

Solution. T(V) ~ IgN.

 For simplicity, we'll prove when N is a power of 2.
e True forall N. [see COS 340]

16



Binary search recurrence
Binary search recurrence. T(N)<T(N/2)+1 for N > 1, with T(1)=1.

Proposition. If Nis a power of 2, then T(NV) < IgN + 1.

P,
T(N) <TWN/2) + 1 given
<T(N/4) + 1+ 1 apply recurrence to first term
<TWN/8 +1+1+1 apply recurrence to first term
<TWN/N)y+1+1+ ..+1 stop applying, T(1) = 1
=IlgN + 1

17



Binary search: trace of standard indexing client

Problem. To insert, need to shift all greater keys over.

key value
S 0
E 1
A 2
R 3
cC 4
H 5
E 6
X 7
A 8
M 9
P 10
L 11
E 12

keys[]
O 1 2 3 4 5 6 7 8 9 N
S 1
E-S entries in red 2
A E S — wereinserted 3
R S 4
C BE RS entries in gray >
H R S /didnotmove 6
6
X 7
7
M R S X 8
P R S X 9

A C E H

,_
=
o
s
wn
<

SRS

vals[]
0O 1 2 3 4 5 6 7 8 9
0
1 0 entries in black
moved to the right
210
3 0
4 1 3 O
5 3 0 circled entries are
@ —— changed values
7
9 3 0
10 3 V4

8

@)

4 12

511 910 3 0 7

18



Elementary ST implementations: summary

: : aver'age case or‘dered operations
ST implementation 5

sequential segrch N N N/ 2 equals ()
(unordered list)
binary search log N N log N N/?2 yes compareTo ()
(ordered array)
—5000
—484
e —0
Costs for java FrequencyCounter 8 < tale.txt using OrderedArrayST

Challenge. Efficient implementations of both search and insert.



» ordered operations

20



Ordered symbol table APT

keys

values

min(O—>-09:00:00 Chicago
09:00:03

09:00:
get(09:00:13) 9:00:

:01:
:03:

09

floor(09:05:00)—09

09

select(7)—-09

keys(09:15:00, 09:25:00)—

09
09
09
09
09
09
09

ceiling(09:30:00)—= 09

09

max()—>09

size(09:15:00, 09:25:00) is 5

rank(09:10:25) is 7

:10:
:10:
:14:
:19:
:19:
:21:
143
122
:25:
:35:
:36:
144

122

:37

Phoenix
Houston

59 Chicago

10
13
11
25
25
32
46
05

54
52
21
14

Houston
Chicago
Seattle
Seattle
Phoenix
Chicago
Chicago
Chicago
Seattle
Seattle
Chicago
Chicago
Seattle
Phoenix

Examples of ordered symbol-table operations

21



Ordered symbol table APT

public class ST<Key extends Comparable<Key>, Value>

void

Value

void

boolean
boolean

int

Key

Key

Key

Key

int

Key

void

void

int
Iterable<Key>
Iterable<Key>

STO

put (Key key, Value val)

get(Key key)

delete(Key key)
contains(Key key)
isEmpty ()

size()

min()

max ()

floor(Key key)
ceiling(Key key)
rank (Key key)
select(int k)
deleteMin()
deleteMax()

size(Key 1o, Key hi)
keys(Key 1o, Key hi)

keys ()

create an ordered symbol table
put key-value pair into the table
(remove key from table if value is null)

value paired with key
(null if key is absent)

remove key (and its value) from table
is there a value paired with key?

is the table empty?

number of key-value pairs

smallest key

largest key

largest key less than or equal to key
smallest key greater than or equal to key
number of keys less than key

key of rank k

delete smallest key

delete largest key

number of keys in [10. .hi]

keys in [10o..hi], in sorted order

all keys in the table, in sorted order

API for a generic ordered symbol table

22



Binary search: ordered symbol table operations summary

sequential binary
search search

search N Ig N

insert 1 N

min / max N 1

floor / ceiling N Ig N

rank N lg N

select N 1

ordered iteration N log N N

worst-case running time of ordered symbol table operations

23



3.2 Binary Search Trees

Z
c

«keys

get right _Section

nodetgble

value »
method :

time Exercise = » BSTs
implemcgntations

S » ordered operations
valuesﬁgiven

random } dGlEtiOn

implementation

s tree2use

sstsearch

sa|qel
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Binary search frees

Definition. A BST is a binary tree in symmetric order.

A binary free is either:
* Empty.
* Two disjoint binary trees (left and right).

Symmetric order.

Each node has a key, and every node’s key is:

 Larger than all keys in its left subtree.
* Smaller than all keys in its right subtree.

root

a left link /
a subtree >
% right child
w/ of root
null links

Anatomy of a binary tree

parent ofA and R o

left link
Of E \

d T~ value
@ m associated
with R

keys smaller thanE  keys larger than E

Anatomy of a binary search tree



BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:
* A Key and a value.
* A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node
{
private Key key;
private Value val;
private Node left, right;
public Node (Key key, Value val)

{
this.key = key;

this.val = wval;

}

Key and Value are generic types; Key is Comparable

BST

Node———| key | val

Teft right
BST with smaller keys BST with larger keys

Binary search tree



BST implementation (skeleton)

private Node root; root of BST




BST search

Get. Return value corresponding to given key, or null if no such key.

successful search for R

R is less than S
so look to the left

black nodes could
match the search key

®

gray nodes cannot

_ match the search key
R is greater than E

so look to the right

®\ found R
(search hit)

so return value

unsuccessful search for T

T is greater than S
so look to the right

R
\

T is less than X
so look to the left

link is null
so T 1s not in tree
(search miss)




BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

public Value get (Key key)
{
Node x = root;
while (x '= null)
{
int cmp = key.compareTo (x.key) ;
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;

}

return null;

Running time. Proportional o depth of node.



BST insert

Put. Associate value with key.

inserting L
Search for key, then two cases:
e Key in tree = reset value.
Y search for L ends e
 Key not in tree = add new node. at this null link

create new node —» Q
N
/7

reset links
on the way up

Insertion into a BST




BST insert: Java implementation

Put. Associate value with key.

concise, but tricky,
recursive code;

public void put(Key key, Value val) read carefully!

{ root = put(root, key, wval); } r

private Node put(Node x, Key key, Value val)
{
if (x == null) return new Node (key, val)
int cmp = key.compareTo (x.key) ;
if (cmp < 0)
x.left = put(x.left, key, val);
else if (cmp > 0)
x.right = put(x.right, key, wval);
else if (cm (
x.val = val;
return x;

Running time. Proportional to depth of node.



BST tfrace: standard indexing client

key value key value
s 0 (Q A8 B ®
(A8
changed /

value

e M 9
A 2 G black nodes
e are accessed
/ in search
(S

R 3 red nodes
e — are new
(S) P 10
C 4 (E)
0 ™. gray nodes
@ are untouched

H 5
L 11
changed
value .
6
E 6
changed
value \
E 12




Tree shape

* Many BSTs correspond to same set of keys.
» Cost of search/insert is proportional o depth of node.

best case

worst case

Remark. Tree shape depends on order of insertion.

10



BST insertion: random order
Observation. If keys inserted in random order, tree stays relatively flat.

N = 255

max = 16
avg = 9.1
opt=7.0

e p—
—_—

1



BST insertion: random order visualization

Ex. Insert keys in random order.

N = 255

max = 16
avg = 9.1
opt=7.0

e

12



Correspondence between BSTs and quicksort partitioning

QUICKSORTEXAMPLE

E[R[a[T[E[s[L[P[U[I[M[Q[c[X[O]K
E[c[a[I[E[K|L[P[U[T[M[Q[R][X[O[S

Alc(®1[E
2(©
®
E(D)
®
LPORMOQ(EXUT
L PO MQR
L(M)o P
@
®
©
®
OLIE:
®
©

ACEEIKLMOPQRSTTUX

Remark. Correspondence is 1-1 if no duplicate keys.



BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of
compares for a search/insert is ~ 2 In N.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order,
expected height of free is ~ 4.311 In N.

But.. Worst-case for search/insert/height is N.
(exponentially small chance when keys are inserted in random order)

14



ST implementations: summary

uarantee average case .
9 9 ordered operations

implementation ons? on kevs
N N/2 N

sequential search

1
(unordered list) no equals()

N

binary search

T
(ordered array) lgN N Ig N N/2 yes compareTo ()
BST N N 1.391gN 1.391g N ? compareTo ()
—20

O,

Costs for java FrequencyCounter 8 < tale.txt using BST

15



» ordered operations
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Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

max

Q. How to find the min / max.

17



Floor and ceiling

Floor. Largest key < to a given key.
Ceiling. Smallest key > to a given key.

floor(D)

Q. How to find the floor /ceiling.

18



Computing the floor

Case 1. [k equals the key at root]
The floor of k is k.

Case 2. [k is less than the key at root]
The floor of k is in the left subtree.

Case 3. [k is greater than the key at root]
The floor of k is in the right subtree

(if there is any key < k in right subtree);
otherwise it is the key in the root.

finding f1oor (G)

G is less than S so
m floor (G) must be
on the left

G is greater than E so
floor (G) could be
on the right

®

/
e
floor (G)in left
subtree is nul

®

result

19



Computing the floor

public Key floor (Key key)

{

}

Node x = floor (root, key):;
if (x == null) return null;
return x.key;

private Node floor (Node x, Key key)

{

if (x == null) return null;
int cmp = key.compareTo (x.key) ;

if (cmp == 0) return x;

if (cmp < 0) return floor(x.left,
Node t = floor(x.right, key):
if (t '= null) return t;

else return x;

key) ;

finding f1oor (G)

G is less than S so
m floor (G) must be
on the left

G is greater than E so
floor (G) could be
on the right

®

/
e
floor (G)in left
subtree is nul

®

result

20



Subtree counts

In each node, we store the number of nodes in the subtree rooted at that node.
To implement size(), return the count at the root.

node count N

Remark. This facilitates efficient implementation of rank() and select().

21



BST implementation: subtree counts

private class Node public int size()

{ { return size(root); }
private Key key;
private Value val; private int size (Node x)
private Node left; {
private Node right; if (x == null) return O0;
private int N; return x.N;

} '\ }

\

nodes in subtree

private Node put(Node x, Key key, Value val)
{

if (x == null) return new Node (key, val);

int cmp = key.compareTo (x.key) ;

if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else if x.val = val;

x.N =1 + size(x.left) + size(x.right);

return x;




Rank

Rank. How many keys < k?

. . node count N
Easy recursive algorithm (4 cases!)

public int rank (Key key)
{ return rank(key, root); }

private int rank (Key key, Node x)
{

if (x == null) return O;
int cmp = key.compareTo (x.key) ;
if (cmp < 0) return rank(key, x.left);

else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);

else return size(x.left);

23



Inorder traversal

* Traverse left subtree.
* Enqueue key.
e Traverse right subtree.

public Iterable<Key> keys ()

{
Queue<Key> q = new Queue<Key>() ;
inorder (root, queue) ;
return q;

private void inorder (Node x, Queue<Key> q)
{

if (x == null) return;

inorder (x.left, q);

g.enqueue (x.key) ;

inorder (x.right, q);

BST

key | val

/

Teft right

BST with smaller keys BST with larger keys

smaller keys, in order key larger keys, in order

™~

all keys, in order

Property. Inorder traversal of a BST yields keys in ascending order.

24



Inorder traversal

* Traverse left subtree.
* Enqueue key.
e Traverse right subtree.

inorder (S) S
inorder (E) S E S
inorder (A) S EA I
enqueue A A :
inorder (C) SEAC : : :
enqueue C C ' ' by
enqueue E E : I : I : : :
inorder (R) S ER I I I I I I I
inorder (H) SERH : : : : : : : :
enqueue H H A CEHMRSX
inorder (M) SERHM
enqueue M M
print R R
enqueue S S
inorder (X) S X
enqueue X X

recursive calls queue function call stack



BST: ordered symbol table operations summary

sequential binary BST
search search

search N lg N h
insert 1 N h ~_
min / max N ] h < |
floor / ceiling N lg N h 7
rank N lg N h
select N 1 h
ordered iteration N log N N N

worst-case running time of ordered symbol table operations

h = height of BST
(proportional to log N
if keys inserted in random order)

26
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ST implementations: summary

guarantee average case
: : ordered operations
implementation : o
search iteration: on keys
search | insert | delete hit insert delete
N N/2

sequential search

N N N N/2 1
(linked list) / o s
binary search g N N N Ig N N/2 N/2 yes compareTo ()
(ordered array)
BST N N N 1.39IgN 1.391IgN 277 yes compareTo ()

Next. Deletion in BSTs.



BST deletion: lazy approach

To remove a node with a given key:
* Set its value to nuil.

 Leave key in tree to guide searches (but don't consider it equal to search key).

delete I

>
>

Cost. O(log N') per insert, search, and delete (if keys in random order),
where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.

29



Deleting the minimum

To delete the minimum key:

* Go left until finding a node with a null left link.
» Replace that node by its right link.
e Update subtree counts.

public void deleteMin ()
{ root = deleteMin(root); }

private Node deleteMin (Node x)

{
if (x.left == null) return x.right;
X.left = deleteMin(x.left) ;
x.N =1 + size(x.left) + size(x.right);
return x;

go left until
reaching null

left link

\

return that
node’s right link

.
|

available for
garbage collection

update links and counts
after recursive calls

e

30



Hibbard deletion
To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

deleting C update counts after

recursive calls 7

@
1

replace with
null link

node to delete
available for

garbage
/ collection




Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

deleting R

(S
R

node to delete

®

update counts after

recursiv%—» 7
-

/ th
reglgilelly;zk available for
garbage
/ collection

32



Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]
* Find successor x of t.

* Delete the minimum in t's right subtree.

e Put xin t's spot.

deleting E

node to delete

N

search for key E

t

N

X
N

<« Successor

min(t.right)

go right, then /
go left until
reaching null

left link

X

X

t.left deleteMin(t.right)

<«<—— X has no left child
<«<——— but don't garbage collect x

<«———— stillaBST

7
CSD/O
update links and

node counts after
recursive calls

33



Hibbard deletion: Java implementation

public void delete (Key key)
{ root = delete(root, key); }

private Node delete (Node x, Key key) ({
if (x == null) return null;
int cmp = key.compareTo (x.key) ;

if (cmp < 0) x.left = delete(x.left, key); )

else if (cmp > 0) x.right = delete(x.right, key):;
else {

A

if (x.right == null) return x.left;

Node t = x;
x = min(t.right);

A

x.right = deleteMin(t.right);
x.left = t.left;

}

x.N = size(x.left) + size(x.right) + 1;

A

return x;

search for key

no right child

replace with
successor

update subtree
counts

34



Hibbard deletion: analysis

Unsatisfactory solution. Not symmeftric.

N =150

max = 16
avg = 9.3
opt = 6.4

Surprising consequence. Trees not random (I) = sqrt(N) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

35



ST implementations: summary

guarantee average case
: : ordered operations
implementation : :
iteration? on keys
search :
search delete hit insert delete
N N/2 N

sequential search N N N/2 1
(linked list) / e squats()
binary search lg N N N Ig N N/2 N/2 yes compareTo ()
(ordered array)
BST N N N 1.391gN 1.391Ig N VN yes compareTo ()
AN A\

N

other operations also become /N
if deletions allowed

Next lecture. Guarantee logarithmic performance for all operations.

36



3.3 Balanced Trees

bottom
2 3 three
transformatlons
new A

link .., @z
Tr@réosd <e
balance y » 2-3 trees

red-black
Ba'aﬂcedt re e » red-black trees

Ztleft &
codesearChmseﬂ':< » B-trees
middle
case ge
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use
e, FOOL
=
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Symbol table review

guarantee average case
: : ordered operations
implementation . :
iteration? on keys
search insert search hit
sequ.en'rial search N N N N/2 N N/2 no equals ()
(linked list)
binary search Ig N N N Ig N N/2 N/2 yes compareTo ()
(ordered array)
BST N N N 1.391Ig N 1.391g N ? yes compareTo ()
Goal log N log N log N log N log N log N yes compareTo ()

Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black frees, B-trees.

N

introduced to the world in
COS 226, Fall 2007






2-3 tree

Allow 1 or 2 keys per node.
e 2-node: one key, two children.
e 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

between E and J \null Zlnk




Search ina 2-3 tree

» Compare search key against keys in node.
 Find interval containing search key.
* Follow associated link (recursively).

successful search for H unsuccessful search for B

H is less than M so B is less than M so

look to the left ™\ m look to the left G m

H is between E and L so B is less than E

look in the middle so look to the left
N
CHOFORS ORO

f

found H so return value (search hit) B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

»




Insertion ina 2-3 tree

Case 1. Insert into a 2-node at bottom.
» Search for key, as usual.

* Replace 2-node with 3-node.

inserting K

(L)
™

search for K ends here

N replace 2-node with
new 3-node containing K




Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.
* Move middle key in 4-node into parent.

/

why middle key? inserting Z

(M)

search for Z ends
e / at this 3-node

replace 3-node with
temporary 4-node
/containing Z

replace 2-node
with new 3-node

~ containing

middle key

S @
N/

split 4-node into two 2-nodes
pass middle key to parent




Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.

* Move middle key in 4-node into parent.
* Repeat up the tree, as necessary.

inserting D

search for D ends

at this 3-node \

add new key D to 3-node
to make temporary 4-node

ACD

()

add middle key C to 3-node
to make temporary 4-node

\

ORO
N/

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node ~

o Q@

[/

split 4-node into two 2-nodes
pass middle key to parent




Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.

* Move middle key in 4-node into parent.
* Repeat up the tree, as necessary.

* If you reach the root and it's a 4-node, split it into three 2-nodes.

inserting D

search for D ends

at this 3-node \

add new key D to 3-node
to make temporary 4-node

Remark. Splitting the root increases height by 1.

add middle key C to 3-node
to make temporary 4-node

OR0
N/

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1




2-3 tree construction trace

Standard indexing client.

insert S

E

A

» Io) o

(>)
@

ks
V)

D o
-

S

10



2-3 tree construction trace

The same keys inserted in ascending order.

insert A @
:
. (C)
(A) (E)
' (©
L
(L)
.

1



Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

b cd
less between\ /between\ /between\ /between greater
than a aandb b and c candd dande than e
a C e

(b) ©

less between\ /between\ /between\ /between greater
than a aandb b and c candd ) | dande than e

12



Global properties ina 2-3 free

Invariant. Symmetric order.
Invariant. Perfect balance.

Pf. Each transformation maintains order and balance.

root . @

parentis a 2-node

——

(a)

——

(b @)
(©)
(b)

(d)

parentis a 3-node

ffe @
middle (a e)
b cd
right (@ B)
(c de)

!

(a)

:

l

(b d e
(<)

(b)  (d)

(el

13



2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
 Worst case:
e Best case:

14



2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
e Worst case: Ig N. [all 2-nodes]
e Best case: logs N = .631Ig N. [all 3-nodes]

e Between 12 and 20 for a million nodes.
e Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

15



ST implementations: summary

implementation

sequential search
(linked list)

binary search
(ordered array)

BST

2-3 tree

search

clgN

guarantee average case

delete | search hit delete
N N N/2 N N/2
N N lg N N/2 N/2
N N 1.391gN  1.391g N ?
clgN clgN clgN clgN clgN

ordered
iteration?

no

yes

yes

yes

operations
on keys

equals ()

compareTo ()

compareTo ()

compareTo ()

TS

constants depend upon
implementation

16



2-3 tree: implementation?

Direct implementation is complicated, because:

* Maintaining multiple node types is cumbersome.
* Need multiple compares to move down tree.

* Need to move back up the tree to split 4-nodes.
 Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

17



» red-black trees

18



Left-leaning red-black trees (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3-nodes.

3-node e 'D -

less between greater greater
than a aandb than b than b

less between
than a aandb

red links "glue"
nodes within a 3-node

red-black tree

larger key is root

black links connect
2-nodes and 3-nodes

19



An equivalent definition

A BST such that:
* No node has two red links connected to it.

» Every path from root to null link has the same number of black links.
+ Red links lean left. AN

"perfect black balance"

20



Left-leaning red-black trees: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red—black tree

2-3 tree

21



Search implementation for red-black trees

Observation. Search is the same as for elementary BST (ignore color).

I

but runs faster because of better balance

public Val get (Key key)
{
Node x = root;
while (x '= null)
{

int cmp = key.compareTo (x.key) ;

if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else if (cmp == 0) return x.val;

}

return null;

Remark. Many other ops (e.g., ceiling, selection, iteration) are also identical.

22



Red-black tree representation

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node

{
Key key;
Value val;
Node left, right;
boolean color; // color of parent link

private boolean isRed(Node x)

{

if (x == null) return false;

return x.color == RED;
}

null links are black

h
h.left.color Ve :
is RED G h.right.color

Q / is BLACK
(A, D) (C]
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Elementary red-black tree operations

Left rotation. Orient a (femporarily) right-leaning red link to lean left.

could be right or left,

h «— red or black - X
™~ h
e AN
less greater
than E between greater less between than S
EandS than S than E EandS

private Node rotateLeft (Node h)
{
assert (h !'= null) && isRed(h.right);
Node x = h.right;
h.right = x.left;
x.left = h;
x.color = h.color;
h.color = RED;
return x;

Invariants. Maintains symmetric order and perfect black balance.
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Elementary red-black tree operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

X

h N\

< h
X\ Ve
greater ) hleSS
less between than 5 than £ between greater
than E SandE SandE than S

private Node rotateRight (Node h)
{
assert (h '= null) && isRed(h.left);
Node x = h.left;
h.left = x.right;
x.right = h;
x.color = h.color;
h.color = RED;
return x;

Invariants. Maintains symmetric order and perfect black balance.

25



Elementary red-black tree operations

Color flip. Recolor to split a (temporary) 4-node.

red link attaches
middle node
to parent

h - could be left
~ or right link

N
black links split

to 2-nodes

less between\ /between greater less between\ /between\ / greater
than A Aand E EandS than S than A AandE )\ EandS than S

private void flipColors (Node h)

{
assert !'isRed(h) && isRed(h.left) && isRed(h.right) ;

h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

Invariants. Maintains symmetric order and perfect black balance.
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Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black tree operations

insert C

(E)
(A XS)
(R)

add new
node here

right link red
so rotate left

PO
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Insertion ina LLRB tree

Warmup 1. Insert into a tfree with exactly 1 node.

left root
/

I

™ search ends
at this null link

root
o

@ red link to
new node
e ™ containing a
converts 2-node
to 3-node

right root

e
search ends
«~at this null link

e attached new node
<~ with red link

root
/

rotated left

9 ™\ to make a
legal 3-node
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Insertion in a LLRB tree

Case 1. Insert into a 2-node at the bottom.
e Do standard BST insert; color new link red.
* If new red link is a right link, rotate left.

insert C

(E)
(A) IS
(R

add new
node here

right link red
so rotate left

I B
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Insertion in a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

larger

@ search ends
— at this

e null link

attached new

@ e node with

d link
e G re

colors flipped
@ «— to black

smaller

N search ends
at this null link

(c)
(b)
attached
e ™ noéleewilzzw

red link

tated
(bY . right
(@) (o)

colors flipped
@ «— to black

(@l o)

between

search ends
at this null link

e

attached new

node with
Q red link

O

()

rotated left

rotated

" right
()

colors flipped
@ «— to black

()
()

8;
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Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.

« Do standard BST insert; color new link red.
» Rotate to balance the 4-node (if needed).

* Flip colors to pass red link up one level.

« Rotate to make lean left (if needed).

inserting H two lefts in a row

G so rotate right

ol
LN —
& ® o

add new

node here /

right link red
so rotate left
both children red l
G so flip colors
(Q) (R)

(A) (H) (S)
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Insertion in a LLRB free: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

* Do standard BST insert; color new link red.
Rotate to balance the 4-node (if needed).

Flip colors to pass red link up one level.

Rotate to make lean left (if needed).

Repeat Case 1 or Case 2 up the tree (if needed).

inserting P

(R)

(E) (S)

QI

OEEOSEN

add new

node here

/ two lefts in a row
right link red so rotate right \

so rotate left
N

both children red
so flip colors

both children red
so flip colors
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LLRB tree construction trace

Standard indexing client.

insert S

2
o8

™)

()

[S)
(R)
(E)
Q)

E R

red black tree

2-3 tree
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LLRB tree construction trace

Standard indexing client (continued).

red black tree

2-3 tree
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Insertion in a LLRB free: Java implementation

Same code for both cases.
 Right child red, left child black: rotate left,

» Left child, left-left grandchild red: rotate right.

* Both children red: flip colors.

private Node put(Node h, Key key, Value val)

{

if (h == null) return new Node (key, val, RED);
int cmp = key.compareTo (h.key) ;

N\ right

rotate

h
left "
h ;g‘im fate %

flip
% colors

if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);

else h.val = val;

if (isRed(h.right) && '!'isRed(h.left)) h =
if (isRed(h.left) && isRed(h.left.left)) h =
if (isRed(h.left) && isRed(h.right)) h =

return h; .
’ only a few extra lines of code

o provide near-perfect balance

rotateLeft (h) ;

rotateRight (h) ;

flipColors (h) ;

<——

<
<—

—— insert at bottom

—— lean left
—— balance 4-node
— split 4-node
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Insertion in a LLRB tree: visualization

50 random insertions

38



Insertion in a LLRB tree: visualization

N = 255

max = 10
avg = 7.3
opt=7.0

s B gl ’Y o

J A 'l"x ]
“” Simsvivsiiwg il il

255 random insertions



Balance in LLRB trees

Proposition. Height of tree is <2 Ig N in the worst case.
Pf.

» Every path from root to null link has same number of black links.

* Never two red links in-a-row.

| t‘t t‘
QA A i ‘,ﬂ

Property. Height of tree is ~ 1.00 Ig N in typical applications.
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ST implemen

implementation

N N N/2 N N/2 no equals ()

tations: summary

guarantee average case ordered operations
iteration? on keys

compareTo ()

sequential search N
(linked list)
binary search
e ) Ig N N N Ig N N/2 N/2 yes
BST N N N 1.391g N 1.391g N ? yes compareTo ()
2-3 tree clgN clgN clgN clgN clgN clgN yes compareTo ()
red-black tree 2IgN  2IgN  2IgN  100IgN * 100IgN * 100IgN * yes compareTo ()
* exact value of coefficient unknown but extremely close to 1

. ~'-—~\

Costs for java FrequencyCounter 8 < tale.txt using RedBlackBST
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Why left-leaning trees?

old code (that students had to learn in the past)

private Node put(Node x, Key key, Value val, boolean sw)
{
if (x == null)
return new Node (key, value, RED)
int cmp = key.compareTo (x.key) ;

if (isRed(x.left) && isRed(x.right))
{

Algorithms
INJava

x.color = RED;
x.left.color = BLACK;
x.right.color = BLACK;
}
if (cmp < 0)
{
x.left = put(x.left, key, val, false);
if (isRed(x) && isRed(x.left) && sw)
X = rotateRight (x) ;
if (isRed(x.left) && isRed(x.left.left))
{
x = rotateRight (x) ;
x.color = BLACK; x.right.color = RED;
}
}
else if (cmp > 0)
{
x.right = put(x.right, key, val, true);
if (isRed(h) && isRed(x.right) && !sw)
x = rotateleft (x);
if (isRed(h.right) && isRed(h.right.right))
{
x = rotateleft (x);
x.color = BLACK; x.left.color = RED;

) ™N

else x.val = val;
return x;

new code (that you have to learn)

public Node put(Node h, Key key, Value val)
{
if (h == null)
return new Node (key, val, RED) ;
int cmp = kery.compareTo (h.key) ;
if (cmp < 0)
h.left = put(h.left,
else if (cmp > 0)
h.right = put(h.right, key, val);
else h.val = val;

key, val);

if (isRed(h.right) && 'isRed(h.left))
h = rotateleft (h);

if (isRed(h.left) && isRed(h.left.left))
h = rotateRight (h) ;

if (isRed(h.left) && isRed(h.right))
h = flipColors(h) ;

return h;
) |

|
straightforward

(if you've paid attention)

a extremely tricky
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Why left-leaning trees?

Simplified code.
 Left-leaning restriction reduces number of cases.
e Short inner loop.

Same ideas simplify implementation of other operations.
* Delete min/max.

2008
* Arbitrary delete. 1978
Improves widely-used algorithms.

e AVL trees, 2-3 trees, 2-3-4 trees.

» Red-black trees. 1972

Bottom line. Left-leaning red-black trees are the simplest balanced BST
to implement and the fastest in practice.
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File system model

Page. Contiguous block of data (e.g., a file or 4096-byte chunk).
Probe. First access to a page (e.g., from disk fo memory).

fast

Model. Time required for a probe is much larger than time to access
data within a page.

Goal. Access data using minimum number of probes.

45



B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up fo M-1 key-link pairs per node.

» At least 2 key-link pairs at root. N

* At least M/2 key-link pairs in other nodes. Thafmsniém ﬁa:ifzgsaagzlp:;%f%ezsiooo
» External nodes contain client keys.

» Internal nodes contain copies of keys to guide search.

L2 node

sentinel ke)’ / \mt@rnﬂl 3-node
each red key is a copy __

of min key in subtree > KIQ|U

external
3- node / \\ external 5- n0d€ (fV Nﬂllé@ node

B ||DEF ICIEE IIKMNOP |[QRTT | [U W XY

client keys (black) all nodes except the root are 3-, 4- or 5-nodes
are in external nodes

Anatomy of a B-tree set (M = 6)
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Searching in a B-tree

e Start at root.
* Find interval for search key and take corresponding link.
e Search terminates in external node.

searching for E

follow this link because

E is between * any

.':DH

follow this link because

_—E isbetween D and H

ID EF |
search for E in v

this external node

Searching in a B-tree set (M = 6)
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Insertion in a B-tree

» Search for new key.
e Insert at bottom.
 Split nodes with M key-link pairs on the way up the tree.

inserting A *THIKIQ|U
[* B CEFL [HTI?J [[KMNOP J[QRT [ LUlW X
[*/A B CEF|
new key (A) causes *CIHIK|Q U] ~—— 1mew key (C) causes
overflow and split / overflow and split
[* AB [[CEF |

/ \\

root split causes — ,[xiqQlu
a new root to be created

/\\ N\ T

Inserting a new key into a B-tree set




Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys
requires between logm-1N and logm/2N probes.

Pf. All internal nodes (besides root) have between M/2 and M-1 links.

M = 1000; N = 62 billion

In practice. Number of probes is at most 4. <—— | """ ",

Optimization. Always keep root page in memory.
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Building a large B free

full page, about to split

il
i

external nodes
(line segment of length proportional

m
E%%Eggii______
o

I

i i

L T
it i

m i
e L T
s

i L i i
ity
s A __

to number of keys in that node)

i i
e L
T e :
i
e

g
il

I
il
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Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.

e C++ STL: map, multimap, multiset.

* Linux kernel: completely fair scheduler, 1inux/rbtree.n.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
e Windows: HPFS.

* Mac: HFS, HFS+.

e Linux: ReiserFS, XFS, Ext3FS, JFS.

* Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.
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Red-black trees in the wild

O |
THUY L. Y

Common sense. Sixth sense.
Together they're the
FBI's newest team.
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Red-black trees in the wild

ACT FOUR
FADE IN:
48 INT. FBI EQ - NICHT
Antonio is at TEE COMPUTER as Jess explains herself to Nicole

and Pollock. The CONFERENCE TABLE is covered with OPEN
REFERENCE BOOKS, TOURIST CUIDES, MAPS and REAMS OF PRINTOUTS.

JESS
It was the red door again.

POLLOCK
I thought the red door was the storage
container.

JESS
But it wasn't red anymore. It was
black.

ANTONIO
So red turning to black means...
what?

POLLOCK
Budget deficits? Red ink, black
ink?

NICOLE

Yes. I'm sure that's what it is.
But maybe we should come up with a
couple other options, just in case.

Antonio refers to his COMPUTER SCREEN, which is filled with
mathematical equations.

ANTONIO
It could be an algorithm from a binary
search tree. A red-black tree tracks
every simple path from a node to a
descendant leaf with the same number
of black nodes.

JESS
Does that help you with girls?

Nicole is tapping away at a computer keyboard. She finds
something.

48
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3.4 Hash Tables

example o

indexS 3
lntdlfferentg 3

LQ'<o
h

performance se a rc

costas _type
:

3 used
T
o
-3 3
method Q S

° & need
function 2
3

h a Sh ' n g integer

valuesH "stSh
5" chaining a

strin empty  _ implement
value hashCodelise

prime
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Optimize judiciously

“ More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason—
including blind stupidity. > — William A. Wulf

“ We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. > — Donald E. Knuth

“We follow two rules in the matter of optimization:
Rule 1: Don't do it.
Rule 2 (for experts only). Don't do it yet - that is, not until
you have a perfectly clear and unoptimized solution. > — M. A. Jackson

Reference: Effective Java by Joshua Bloch



ST implementations: summary

guarantee average case
ordered operations

LT iteration? on keys
search insert delete search hit insert delete
N N N N/2 N N/2

sequential search

equals ()
(linked list) o =
binary search Ig N N N Ig N N/2 N/2 yes compareTo ()
(ordered array)
BST N N N 1.381g N 1.38Ig N ? yes compareTo ()
red-black tree 2IgN 2IgN 2IgN 1.00Ig N 1.00Ig N 1.00Ig N yes compareTo ()

Q. Can we do better?
A. Yes, but with different access to the data.



Hashing: basic plan
Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key. 0

hash("it") = 3
\ 3 llit"

4
Issues.
5

e Computing the hash function.
* Equality tfest: Method for checking whether two keys are equal.



Hashing: basic plan
Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key. 0

hash("it") = 3

\ 3 nign

27 4
Issues. hash("times") = 3 /
e Computing the hash function.

* Equality tfest: Method for checking whether two keys are equal.
 Collision resolution: Algorithm and data structure
to handle two keys that hash to the same array index.

Classic space-time tradeoff.

* No space limitation: trivial hash function with key as index.

* No time limitation: frivial collision resolution with sequential search.
 Limitations on both time and space: hashing (the real world).
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Equality fest

Needed because hash methods do not use compareTo ().

All Java classes inherit a method equails ().

Java requirements. For any references x, y and z:

» Reflexive: x.equals (x) iS true.

. . equivalence
e Symmetric: x.equals(y) iff y.equals (x). relation
e Transitive: if x.equals(y) and y.equals(z), then x.equals(z).
* Non-null: x.equals (null) IS false.

do x and y refer to

/ the same object?
Default implementation. (x == y)

Customized implemen‘ra‘rions. Integer, Double, String, File, URL, Date, ...
User-defined implementations. Some care needed.



Implementing equals for user-defined types

Seems easy

Record that = y;
return (this.val == that.wval) &&
(this.name.equals (that.name)) ;

check that all significant
fields are the same




Implementing equals for user-defined types

Seems easy, but requires some care.

/ no safe way to use equals () with inheritance

public final class Record

{

private final String name;
private final long val;

/

public boolean equals (Object y)

{
if (y == this) return true; D
if (y == null) return false; <«
if (y.getClass() '= this.getClass())

return false;

Record that = (Record) y;
return (this.val == that.val) &é&
(this.name.equals (that.name)) ;

| must be Object.
Why? Experts still debate.

——  optimize for frue object equality

— check for null

E—  objects must be in the same class

check that all significant
fields are the same




Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.
« Efficiently computable.
» Each table index equally likely for each key.

\ thoroughly researched problem,
still problematic in practical applications

Ex 1. Phone numbers.
e Bad: first three digits. T::;i
e Better: last three digits.

Ex 2. Social Security numbers. <—— 573 = cdlifornia, 574 = Alaska
. .. (assigned in chronological order within geographic region)
e Bad: first three digits.

o Betfter: last three digits.

Practical challenge. Need different approach for each key type.

10



Java's hash code conventions

All Java classes inherit a method hashcode (), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If !'x.equals(y), then (x.hashCode() !'= y.hashCode()).

} |

x.hashCode () y .-hashCode ()

Default implementation. Memory address of x.
Customized implementations. Integer, Double, String, File, URL, Date, ...
User-defined types. Users are on their own.

1



Implementing hash code: integers and doubles

public final class Integer
{

private final int wvalue;

public int hashCode ()
{ return value; }

public final class Double

{

private final double value;

public int hashCode ()

{
long bits = doubleToLongBits (value) ;

return (int) (bits * (bits >>> 32));

3 |

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

12



Implementing hash code: strings

Unicode

int hash = 0;

for (int i = 0; i < length(); i++)
hash = s[i] + (31 * hash);

return hash;

* Horner's method to hash string of length L: L multiplies/adds.
 Equivalent to h=31+1-5% +  +312-8-3 + 31!.g42 4+ 310. 641,

EX String s = "call";
int code = s.hashCode(); <«——— 3045982 =99-31°+ 97317 + 108-31' + 108:31°

= 108 + 31- (108 + 31 - (97 + 31 - (99)))

13



A poor hash

code

Ex. Strings (in Java 1.1).
* For long strings: only examine 8-9 evenly spaced characters.

» Benefit: saves time in performing arithmetic.

public int hashCode ()

{

int hash = 0;

int skip = Math.max (1, length() / 8);
for (int i = 0; i < length(); i += skip)
hash = s[i] + (37 * hash);

return hash;

* Downside: great potential for bad collision patterns.

http
http
http
http
http

://www.cs
://www.cs
://www.cs
://www.cs
://www.cs

.princeton.
.princeton.
.princeton.
.princeton.
.princeton.

edu/introcs/13loop/Hello.
edu/introcs/13loop/Hello.
.html
edu/introcs/13loop/index.
.html

edu/introcs/13loop/Hello

edu/introcs/12type/index

Jjava
class

html
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Implementing hash code: user-defined types

public final class Record

{

private String name;
private int id;
private double value;

public Record(String name, int id, double value)
{ /* as before */ }

public boolean equals (Object y)
{ /* as before */ }

public int hashCode ()

{ "’——”___,,—f nonzero constant
int hash = 17;
hash = 31l*hash + name.hashCode () ;
hash = 31*hash + id;

hash = 31*hash + Double.valueOf (value) .hashCode () ;

return hash;

typically a small prime

15



Hash code design

"Standard" recipe for user-defined types.

e Combine each significant field using the 31x +y rule.
» If field is a primitive type, use built-in hash code.

» If field is an array, apply to each element.

» If field is an object, apply rule recursively.

In practice. Recipe works reasonably well; used in Java libraries.

In theory. Need a theorem for each type to ensure reliability.

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

16



Modular hashing

Hash code. An int between -23t and 23:-1.
Hash function. An int between o and M-1 (for use as array index).

typically a prime or power of 2

private int hash (Key key)
{ return key.hashCode() % M; }

bug
private int hash (Key key)
{ return Math.abs (key.hashCode()) % M; }

1-in-a-billion bug

private int hash (Key key)
{ return (key.hashCode() & Ox7fffffff) % M;

}

correct

17



Uniform hashing assumption
Assumption J (uniform hashing hashing assumption).

Each key is equally likely to hash to an integer between O and M-1.

Bins and balls. Throw balls uniformly at random into M bins.

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Birthday problem. Expect two balls in the same bin after ~/a M / 2 tosses.
Coupon collector. Expect every bin has = 1 ball after ~ M In M tosses.

Load balancing. After M fosses, expect most loaded bin has
O(log M / log log M) balls.

18



Uniform hashing assumption

Assumption J (uniform hashing hashing assumption).
Each key is equally likely to hash to an integer between O and M-1.

Bins and balls. Throw balls uniformly at random into M bins.

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's string data uniformly distribute the keys of Tale of Two Cities

19



» separate chaining
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Collisions

Collision. Two distinct keys hashing to same index.
 Birthday problem = can't avoid collisions unless you have
a ridiculous amount (quadratic) of memory.

 Coupon collector + load balancing = collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

0

1
hash("it") = 3 )

\ 3 "it"
?? 4

hash("times") = 3 /

5

21



Separate chaining ST

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]
* Hash: map key to integer i between O and M-1.
 Insert: put at front of i chain (if not already there).
 Search: only need to search i chain.

key hash
S 2
first
E0 Al el
A O \
first
R4 St 1 Nl T independent
C 4 0 / SequentialSearchST
"4 1] S / objects
I irs
2 X s
E O 3]
X 2 4_\ first
] N
A O L[~ P]0]
M4 first
~N
P 3 Mo —{H] e R
L 3
E O

Hashing with separate chaining for standard indexing client




Separate chaining ST: Java implementation

public class SeparateChainingHashST<Key, Value>
{
private int N; // number of key-value pairs
private int M; // hash table size
private SequentialSearchST<Key, Value> [] st; // array of STs

public SeparateChainingHashST() <«——— array doubling code omitted
{ this(997); }

public SeparateChainingHashST (int M)
{
this.M = M;
st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[M];
for (int 1 = 0; i1 < M; i++)
st[i] = new SequentialSearchST<Key, Value>() ;
}
private int hash (Key key)
{ return (key.hashCode() & Ox7fffffff) & M; }

public Value get (Key key)
{ return st[hash(key)].get(key); 1}

public void put(Key key, Value val)
{ st[hash(key)].put(key, val); }

23



Analysis of separate chaining

Proposition K. Under uniform hashing assumption, probability that the number
of keys in a list is within a constant factor of N/M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

_(10,.12511...)

| | | | -0
0 10 20 30

Binomial distribution (N = 104, M =103, a = 10)

equals () and hashCode ()

Consequence. Number of probes for search/insert is proportional to N/M.

* M too large = too many empty chains. T

e M too small = chains too long. U4 TS AR T
* Typical choice: M ~N/5 = constant-time ops.

sequential search

24



» linear probing
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Collision resolution: open addressing

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

st[0]

st[1]

st[2]

st[3]

st[30000]

jocularly

null

listen

suburban

null

browsing

linear probing (M = 30001, N = 15000)
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Linear probing

Use an array of size M > N.

* Hash: map key to integer i between O and M-1.

« Insert: put at table index i if free; if not try i+1, i+2, etc.

» Search: search table index i; if occupied but no match, try i+1, i+2, etc.

- - - S H _ _ A C E insert I
hash(T) = 11

0 1 2 3 4 5 6 7 8 9

- - - S H - - A C E insert N
hash(N) = 8




Linear probing: trace of standard indexing client

key hash value 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S 6 0 S
0
E 10 1 entries in red 8 ;:_ 1
are ne N A S E erries in g;lvlélc/l
— are untouc
A 4 2 5 0 T |
A S E R
R 14 3 5 0 T 3
C 5 4 keysin b:’a ck é‘ g 8 ]E_ I;
arelroue \A C S H E R
H 4 ’ 21 5/01]5 1 3
A|C|S|H E R
E 1000 2 570[5 (6) 3
Al C|S|H E R X
X 15 / 2/ 5/0]5 6 3.7
A|IC|S|H E R| X
Add (8 5 05 6 37
M 1 9 |\94 'g‘ g 8 I; E § >7( probe sequence
L wraps to 0
P 14 10 P M A|C|S|H E R X
10 9 81 5/10[5 6 317
Pl M AC S H L E Rl X
L6 10/ 9 8510511 |6 37
Pl M Al C|S|H|L E R | X | <=—— keys[]
E 100 10/ 9 8510511l (4D S 7~ vals[]




Linear probing ST implementation

public class LinearProbingHashST<Key, Value>

{

private int M = 30001;
private Value[] wvals = (Value[]) new Object[M];
private Key[] keys = (Key[]) new Object[M];

private int hash(Key key) { /* as before */ }

public void put (Key key, Value val)
{

int i;
for (i = hash(key); keys[i] '= null; i = (i+l) % M)
if (keys[i] .equals (key))

break;
keys[i] = key;
vals[i] = wval;

public Value get (Key key)
{
for (int i = hash(key); keys[i] !'= null; i = (i+l)
if (key.equals(keys[i]))
return vals[i];
return null;

% M)

array doubling
code omitted
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Clustering

Cluster. A contiguous block of items.

Observation. New keys likely to hash intfo middle of big clusters.

A

OOON B [ SaOEEn O [ /Gn

30



Knuth's parking problem

Model. Cars arrive at one-way street with M parking spaces.
Each desires a random space i: if space i is taken, try i+1, i+2, ...

Q. What is mean displacement of a car?

— displacement = 3

) ) ) ) ) ) L ) )

Empty. With M/2 cars, mean displacement is ~ 3/2.
Full.  With M cars, mean displacement is ~ /M / 8

31



Analysis of linear probing

Proposition M. Under uniform hashing assumption, the average number of
probes in a hash table of size M that contains N = a M keys is:

() o)

search hit search miss / insert

Pf. [Knuth 1962] A landmark in analysis of algorithms.

Parameters.

* M too large = too many empty array entries.
* M too small = search time blows up.

* Typical choice: a = N/M ~ 3.

\ # probes for search hit is about 3/2
# probes for search miss is about 5/2
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ST implementations: summary

guarantee average case
ordered operations

[ESES e iteration? on keys
search insert delete search hit insert delete
N N N N/2 N N/2

sequential search n equals ()
(linked list) 0
binary search la N N N la N N/2 N/2 s compareTo ()
(ordered array) 9 9 ye
BST N N N 1.38 Ig N 138 Ig N ? yes compareTo ()
red-black tree 21gN 21gN 21g N 100IgN  100IgN  1.00IgN yes compareTo ()
hashing Ig N * Ig N * Ig N * 3-5* 3-5* 3-5* no equals ()

* under uniform hashing assumption
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Algorithmic complexity attacks
Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.

A. Surprising situations: denial-of-service attacks.

B.'(l."‘f

|

malicious adversary learns your hash function
(e.g., by reading Java API) and causes a big pile-up
in single slot that grinds performance to a halt

[ 1111

[P T .

Real-world exploits. [Crosby-Wallach 2003]

* Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

» Per| 5.8.0: insert carefully chosen strings into associative array.

 Linux 2.4.20 kernel: save files with carefully chosen names.
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Algorithmic complexity attack on Java

Goal. Find family of strings with the same hash code.

Solution. The base-31 hash code is part of Java's string API.

key

"Aa"

" BB "

hashCode ()

"AaAaAaBB"

"AaAaBBAa"

"AaAaBBBB"

"AaBBAaAa"

"AaBBAaBB"

"AaBBBBAa"

"AaBBBBBB"

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

"BBAaAaAa"

"BBAaAaBB"

"BBAaBBAa"

"BBAaBBBB"

"BBBBAaAa"

"BBBBAaBB"

"BBBBBBAa"

"BBBBBBBB"

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

2N strings of length 2N that hash to same value!
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Diversion: one-way hash functions

One-way hash function. Hard to find a key that will hash to a desired value,

or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-O, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.
— _

y

known to be insecure

String password = args|[0];
MessageDigest shal = MessageDigest.getInstance("SHAl") ;
byte[] bytes = shal.digest (password) ;

/* prints bytes as hex string */

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.
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Separate chaining vs. linear probing

Separate chaining.

 Easier to implement delete.

» Performance degrades gracefully.

* Clustering less sensitive to poorly-designed hash function.

Linear probing.
 Less wasted space.
» Better cache performance.
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Hashing: variations on the theme
Many improved versions have been studied.

Two-probe hashing. (separate chaining variant)
* Hash to two positions, put key in shorter of the two chains.
» Reduces average length of the longest chain to log log N.

Double hashing. (linear probing variant)

* Use linear probing, but skip a variable amount, not just 1 each time.
o Effectively eliminates clustering.

* Can allow table to become nearly full.
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Hashing vs. balanced trees

Hashing.

» Simpler to code.

* No effective alternative for unordered keys.

* Faster for simple keys (a few arithmetic ops versus log N compares).
* Better system support in Java for strings (e.g., cached hash code).

Balanced trees.
» Stronger performance guarantee.
» Support for ordered ST operations.

e Easier to implemen’r compareTo () cor'r'ec‘rly than equals () and hashCode ().

Java system includes both.
» Red-black trees: java.util.TreeMap, java.util.TreeSet.

® Hashing: java.util.HashMap, java.util.IdentityHashMap.
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» dictionary clients
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Set API

Mathematical set. A collection of distinct keys.

public class SET<Key extends Comparable<Key>>

SET () create an empty set
void add (Key key) add the key to the set
boolean contains (Key key) is the key in the set?
void remove (Key key) remove the key from the set
int size() return the number of keys in the set
Iterator<Key> iterator() iterator through keys in the set

Q. How to implement?



Exception filter

e Read in a list of words from one file.

* Print out all words from standard input that are { in, not in } the list.

% more
was it

% Java
it was
it was
it was
it was
it was

(o)

% Jjava

list. txt
the of

Whitelist
the of it
the of it
the of it
the of it
the of it

BlackList

best times worst

list.txt < tinyTale. txt
was the of
was the of
was the of
was the of
was the of

list.txt < tinyTale. txt
times

age wisdom age foolishness
epoch belief epoch incredulity
season light season darkness

spring hope winter despair

A

list of exceptional words



Exception filter applications

e Read in a list of words from one file.
* Print out all words from standard input that are { in, not in } the list.

spell checker identify misspelled words word dictionary words
browser mark visited pages URL visited pages
parental controls block sites URL bad sites
chess detect draw board positions
spam filter eliminate spam IP address spam addresses
credit cards check for stolen cards number stolen cards




Exception filter: Java implementation

e Read in a list of words from one file.
* Print out all words from standard input that are { in, not in } the list.

public class Whitelist
{
public static void main(String[] args)

{
SET<String> set = new SET<String>(); <«——F— create empty set of strings

In in = new In(args[0]);
while (!'in.isEmpty()) <«
set.add (in.readString()) ;

E—  read in whitelist

while (!StdIn.isEmpty())
{
String word = StdIn.readString();
if (set.contains (word)) <«<——F+— print words in list
StdOut.println (word) ;




Exception filter: Java implementation

e Read in a list of words from one file.
* Print out all words from standard input that are { in, not in } the list.

public class BlackList
{
public static void main(String[] args)

{
SET<String> set = new SET<String>(); <«——F— create empty set of strings

In in = new In(args[0]);
while (!'in.isEmpty()) <«
set.add (in.readString()) ;

—— read in blacklist

while (!StdIn.isEmpty())
{
String word = StdIn.readString();
if ('set.contains (word)) <«<———F+— print words not in list
StdOut.println (word) ;




» dictionary clients



Dictionary lookup

Command-line arguments.

» A comma-separated value (CSV) file.

* Key field.
e Value field.

Ex 1. DNS |00kUP- URL is key IPis value

N

% java LookupCSV ip.csv 0 1

[e)

adobe.com
192.150.18.60
www.princeton.edu
128.112.128.15
ebay.edu

Not found

o

128.112.128.15
Www.princeton.edu
999.999.999.99
Not found

IP is key URL is value

N/

% java LookupCSV ip.csv 1 0

% more ip.csv
www.princeton.edu,128.112.128.15
WWww.cs.princeton.edu,128.112.136.35
www.math.princeton.edu,128.112.18.11
www.cs.harvard.edu,140.247.50.127
www.harvard.edu,128.103.60.24
www.yale.edu,130.132.51.8
www.econ.yale.edu,128.36.236.74
www.cs.yale.edu,128.36.229.30
espn.com,199.181.135.201
yahoo.com,66.94.234.13
msn.com,207.68.172.246
google.com,64.233.167.99
baidu.com,202.108.22.33
yahoo.co.jp,202.93.91.141
sina.com.cn,202.108.33.32
ebay.com,66.135.192.87
adobe.com,192.150.18.60
163.com,220.181.29.154
passport.net,65.54.179.226
tom.com,61.135.158.237
nate.com,203.226.253.11
cnn.com,64.236.16.20
daum.net,211.115.77.211
blogger.com,66.102.15.100
fastclick.com,205.180.86.4
wikipedia.org,66.230.200.100
rakuten.co.jp,202.72.51.22




Dictionary lookup

Command-line arguments. :Tr;?:::;f;;;::alanme
» A comma-separated value (CSV) file. s o
) l TTG,Leu,L,Leucine

Key fleld. TCT,Ser,S,Serine
° Value fie|d. TCC, Ser,S,Serine

TCA,Ser,S,Serine
TCG, Ser,S,Serine
TAT,Tyr,Y,Tyrosine
TAC,Tyr,Y,Tyrosine
TAA,Stop,Stop,Stop

Ex 2. Amino acids.

codon is key name is value TAG, Stop, Stop, Stop
\ / TGT,Cys,C,Cysteine
TGC,Cys,C,Cysteine
% java Lookup amino.csv 0 3 M SEED, HiEE, DR
TGG, Trp,W, Tryptophan
ACT CTT,Leu,L,Leucine
Threonine CTC,Leu,L,Leucine
CTA,Leu,L,Leucine
TAG .
CTG,Leu,L,Leucine
Stop CCT,Pro,P,Proline
CCC,Pro,P,Proline
CAT =
CCA,Pro,P,Proline
Histidine CCG,Pro,P,Proline

CAT,His,H,Histidine
CAC,His, H,Histidine
CAA,Gln,Q,Glutamine
CAG,Gln,Q,Glutamine
CGT ,Arg,R,Arginine

CGC,Arg,R,Arginine




Dictionary lookup

Command-line arguments.
* A comma-separated value (CSV) file.

. Key field.

* Value field.

Ex 3. Class list. first name
login is key s value

NS

% java Lookup classlist.csv 4 1

eberl
Fthan
nwebb precept
Natalie login is key s value

| \ /

% java Lookup classlist.csv 4 3
dpan
POl

% more classlist.csv

13,Berl ,Ethan Michael,P0l,eberl
11,Bourque,Alexander Joseph, P01, abourque
12,Cao,Phillips Minghua,P01l,pcao
11,Chehoud,Christel, P01, cchehoud
10,Douglas,Malia Morioka,P0l,malia

12 ,Haddock,Sara Lynn,P01l,shaddock

12 ,Hantman,Nicole Samantha,P0l,nhantman
11 ,Hesterberg,Adam Classen,P0l,ahesterb
13,Hwang,Roland Lee,P0l,rhwang
13,Hyde,Gregory Thomas,P01l,ghyde
13,Kim,Hyunmoon, P01, hktwo
11,Kleinfeld,Ivan Maximillian,P01l,ikleinfe
12 ,Korac,Damjan,P01,dkorac

11 ,MacDonald,Graham David,P01l,gmacdona
10,Michal,Brian Thomas,P0l,bmichal

12 ,Nam, Seung Hyeon, P01, seungnam

11 ,Nastasescu,Maria Monica,P0l,mnastase
11,Pan,Di,P01,dpan

12 ,Partridge,Brenton Alan,P0l,bpartrid
13,Rilee,Alexander,P0l,arilee
13,Roopakalu,Ajay,P01l,aroopaka
11,Sheng,Ben C,P01,bsheng

12 ,Webb,Natalie Sue,P01l,nwebb

1



Dictionary lookup: Java implementation

public class LookupCSV
{
public static void main(String[] args)
{
In in = new In(args[0]);
int keyField = Integer.parselnt(args[l]);

int valField = Integer.parselnt(args[2]); process input file

ST<String, String> st = new ST<String, String>();
while (!'in.isEmpty())
{
String line = in.readLine() ;
String[] tokens = database[i].split(",");
String key = tokens[keyField]; <——F—— build symbol table
String val = tokens[valField];
st.put (key, val);

while (!StdIn.isEmpty())
{

String s StdIn.readString() ; process lookups
if (!st.contains(s)) StdOut.println("Not found"); with standard I/0
else StdOut.println(st.get(s)) ;

A

12



» indexing clients

13



File indexing

Goal. Index a PC (or the web).

Documents

Mail Messages

PDF Documents

Presentations

WU @8R searching challenge

Top Hit

" | Show All (200)
B 10Hashing

= mobydick.txt

= movies.txt

=| Papers/Abstracts

o

= score.card.txt

= Requests

|_*| Re: Draft of lecture on symb...
|_* SODA 07 Final Accepts

|_* SODA 07 Summary

| " Got-it

|_*| No Subject

77 08BinarySearchTrees.pdf
v 07SymbolTables.pdf
. 07SymbolTables.pdf
v 06PriorityQueues.pdf
== 06PriorityQueues.pdf

& 10Hashing
& 07SymbolTables
‘& 06PriorityQueues
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File indexing

Goal. Given a list of files specified as command-line arguments, create an

index so that can efficiently find all files containing a given query string.

% 1ls *.txt
aesop. txt magna. txt moby. txt
sawyer. txt tale. txt

% java FileIndex *.txt
freedom
magna. txt moby.txt tale.txt

whale
moby . txt

lamb
sawyer. txt aesop.txt

% 1ls *.java

% java FileIndex *.java
BlackList. java Concordance. java
DeDup.java FileIndex.java ST.java
SET.java Whitelist. java

import
FileIndex.java SET.java ST.java

Comparator
null

Solution. Key = query string; value = set of files containing that string.

15



File indexing

public class FileIndex
{
public static void main(String[] args)
{
ST<String, SET<File>> st = new ST<String,
for (String filename
File file =
In in =

args) {
new File(filename) ;
new In(file);
while ! (in.isEmpty())
{
String word = in.readString() ;
if (!'st.contains(word))
st.put (s, new SET<File>())
SET<File> set = st.get (key) ;

set.add(file) ;

while (!StdIn.isEmpty())

{
String query = StdIn.readString() ;
StdOut.println(st.get (query)) ;

SET<File>>() ; «——— symbol table

list of file names

h_ .
from command line
for each word in file,

—_— .
add file to
corresponding set

<€«——F— process queries
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Book index

Goal. Index for an e-book.

Index

Abstract data type (ADT), 127-

195

abstract classes, 163

classes, 129-136

collections of items, 137-139

creating, 157-164

defined, 128

duplicate items, 173-176

equivalence-relations, 159-162

FIFO queucs, 165-171

first-class, 177-186

generic operations, 273

index items, 177

insertfremove operations, 138-
139

modular programming, 135

polynomial, 188-192

priority queues, 375-376

pushdown stack, 138-156

stubs, 135

symbol table, 497-506

ADT interfaces

array (myArray), 274

complex number (Complex), 181

existence table (ET), 663

full priority queue (PQfull),
397

indirect priority queuc (PQi),
403

item (myItem), 273, 498

key (myKey), 498

polynomial {Poly), 189

point (Point), 134

priority queuc (PQ), 375

queue of int (intQueue), 166

stack of int (intStack), 140
symbol table (ST}, 503
text index (TI), 525
union=find (UF}, 159
Abstract in-place merging, 351-
Abstract operation, 10
Access control state, 131
Actual data, 31
Adapter class, 155-157
Adaptive sort, 268
Address, 84-85
Adjacency list, 120-123
depth-first search, 251-256
Adjacency matrix, 120-122
Ajtai, M., 464
Algorithm, 4-6, 27-64
abstract operations, 10, 31, 34-

analysis of, 6
average-hvorst-case perfor-
mance, 35, 60-62
big-Oh notation, 44-47
binary scarch, 56-59
computational complexity, 62-
64
cfficiency, 6, 30, 32
empirical analysis, 30-32, 58
exponential-time, 219
implementation, 28-30
logarithm function, 40-43
mathematical analysis, 33-36,
58
primary parameter, 36
probabilistic, 331
recurrences, 49-52, 57
recursive, 198
running time, 34-40
search, 53-56, 498
steps in, 22.23
See also Randomized algorithm
Amortization approach, 557, 627
Arithmetic operator, 177-179,
188, 191
Array, 12, 83
binary search, 57
dynamic allocation, 87

and linked lists, 92, 94-95
merging, 349-350
multidimensional, 117-118
references, 86-87, 89
sorting, 265-267, 273-276
and strings, 119
two-dimensional, 117-118, 120-
124
vectors, 87
visualizations, 295
See also Index, array
Array representation
binary tree, 381
FIFO queue, 168-169
linked lists, 110
polynomial ADT, 191-192
priority queue, 377-378, 403,
406
pushdown stack, 148-150
random queue, 170
symbol table, 508, 511-512,
521
Asymprotic expression, 45-46
Average deviation, 80-81
Average-case performance, 35, 60-
61
AVL tree, 583

B tree, 584, 692-704
externalfinternal pages, 695
4-5-6-7-8 tree, 693-704
Markov chain, 701
remove, 701-703
searchlinsert, 697-701
select/sort, 701
Balanced tree, 238, 555-598
B tree, 584
bottom-up, 576, 584-585
height-balanced, 583
indexed sequential access, 690-
692

performance, 575-576, 581-582,
595-598

randomized, 559-564

red-black, 577-585

skip lists, 587-594

splay, 566-571
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Concordance

Goal. Preprocess a text corpus to support concordance queries: given a word,
find all occurrences with their immediate contexts.

% java Concordance tale.txt
cities
tongues of the two *cities* that were blended in

majesty

their turnkeys and the *majesty* of the law fired

me treason against the *majesty* of the people in

of his most gracious *majesty* king george the third

princeton
no matches

18



Concordance

public class Concordance

{

public static void main(String[] args)

{

In in = new In(args[0]);
String[] words = StdIn.readAll() .split("\\s+");

ST<String, SET<Integer>> st = new ST<String,

for (int i = 0; i < words.length; i++)

{

String s = words[i];
if (!st.contains(s))

st.put (s, new SET<Integer>());
SET<Integer> pages = st.get(s);
set.put (i) ;

while (!StdIn.isEmpty())

{

String query = StdIn.readString() ;
SET<Integer> set = st.get(query)
for (int k : set)

// print words[k-5] to words[k+5]

SET<Integer>>() ;

A

A

read text and
build index

process queries
and print
concordances

19



» sparse vectors
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Matrix-vector multiplication (standard implementation)

all[] x[] b[]

[ 0.90 0 o o] [.05] [.036
0 .36 .36 .18 | .04 .297

o 0.9 o||.36] = [.333

9 0 0 o0 of]|.37 .045
47 0 .47 0 ol |.19 .192

7

double[][] a = new double[N] [N];
double[] x = new double[N];
double[] b = new double[N];

// initialize a[][] and x[]

nested loops

for (int i = 0; i < N; i++) <
{
sum = 0.0;
for (int j = 0; j < N; j++)
sum += a[i] [j]*x[]j];
b[i] = sum;

/ N2 running time

21



Sparse matrix-vector multiplication

Problem. Sparse matrix-vector multiplication.
Assumptions. Matrix dimension is 10,000; average nonzeros per row ~ 10.

>
*
%
]
o

22



Vector representations

1D array (standard) representation.
e Constant fime access to elements.
» Space proportional o N.

9 10 11 12 13 14 15 16 17 18 19
0 36| O 0 0 36| O 0 0 0 0 0 0 0 |.18] O 0 0 0 0
Symbol table representation.
 key = index, value = entry
» Efficient iterator.
» Space proportional fo number of nonzeros.
key value
\ /
T 7

.36

.36

14

.18

23



Sparse vector data type

public class SparseVector

{

private HashST<Integer, Double> v;

public SparseVector ()
{ v = new HashST<Integer, Double>();

public void put(int i, double x)
{ v.put(i, x); 1}

public double get(int i)

{
if (!v.contains(i)) return 0.0;
else return v.get(i);

public Iterable<Integer> indices ()
{ return v.keys(); }

public double dot(double[] that)

{
double sum = 0.0;
for (int i : indices())
sum += that[i]*this.get (i) ;
return sum;

}

HashST because order not important

empty ST represents all Os vector

af[i] = value

return a[i]

dot product is constant
time for sparse vectors

24



Matrix representations

2D array (standard) representation: Each row of matrix is an array.
e Constant fime access to elements.
* Space proportional to N2,

Sparse representation: Each row of matrix is a sparse vector.
» Efficient access to elements.
 Space proportional to number of nonzeros (plus N).

array of doub1e[]objects

array of SparseVector objects

0 1 2 3 4 ST

1
| 0.0] .90 ] 0.0]0.0]0.0| . Ky value
0 1 2 3 4 St : :

2] .36 ] | 3] .36||:1| .1§|

—/ «10.0]0.0].36] .36] .18 |
0_/ 0_/
1] 0 1 2 3 4 1] ot :
2| —{0.0]0.0]0.0] .9 | 0.0 | 2| | > [3] .90 ] O ;;gf;;jgfbnlg
3 3 objects
] 0 1 2 3 4 B
4—\*| 90] 0.0]0.0]0.0]0.0] 4—\“\ /
0 1 2 3 4
| .45]0.0] .45] 0.0 0.0 | ST

/
a[4][2]

o] .45 ] [2] .45]
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Sparse matrix-vector multiplication

all[] x[] b[]

[ 0.90 0 o o] [.05] [.036
0 .36 .36 .18| | .04 .297

o 0.9 of|.36| = |.333

9 0 0 0 of|.37 045
47 0 .47 0 ol |.19 .1927

SparseVector[] a;

a = new SparseVector[N];
double[] x = new double[N];
double[] b = new double[N];

// Initialize a[] and x[]

for (int i = 0; i < N; i++) <«—
b[i] = a[i] .dot(x);

one loop
linear running time
for sparse matrix

26
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Searching challenge 2A:

Problem. IP lookups in a web monitoring device.
Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.

28



Searching challenge 2A

Problem. IP lookups in a web monitoring device.
Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?
total cost of insertions is ¢*10000002 =

1) Sequem‘ial search in a linked list. «— ¢*1,000,000,000,000 (way too much)

2) Binary search in an ordered array.
v 3) Need better method, all too slow.
4) Doesn't matter much, all fast enough.
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Searching challenge 2B

Problem. IP lookups in a web monitoring device.
Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.
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Searching challenge 2B

Problem. IP lookups in a web monitoring device.
Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list. total cost of insertions is
v/ 2) Binary search in an ordered array. «—— ¢*1000" = ¢/*1000000
and dominated by c2*1000000000
3) Need better method, all too slow. cost of lookups
4) Doesn't matter much, all fast enough.
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Searching challenge 4

Problem. Spell checking for a book.
Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.
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Searching challenge 4

Problem. Spell checking for a book.

Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?
1) Sequential search in a linked list.
v/ 2) Binary search in an ordered array. «
3) Need better method, all too slow.
4) Doesn't matter much, all fast enough.

easy to presort dictionary total cost
of lookups is optimal c2*1,500,000
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Searching challenge 1A

Problem. Maintain symbol table of song hames for an iPod.
Assumption A. Hundreds of songs.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.

34



Searching challenge 1A

Problem. Maintain symbol table of song hames for an iPod.

Assumption A. Hundreds of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
/ 4) Doesn't matter much, all fast enough.

—

1002 = 10,000
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Searching challenge 1B

Problem. Maintain symbol table of song hames for an iPod.
Assumption B. Thousands of songs.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.
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Searching challenge 1B

Problem. Maintain symbol table of song hames for an iPod.

Assumption B. Thousands of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
v 3) Need better method, all too slow.
4) Doesn't matter much, all fast enough.

maybe, but 1000? = 1,000,000 so user
might wait for complete rebuild of index
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Searching challenge 3

Problem. Frequency counts in "Tale of Two Cities."
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.
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Searching challenge 3

Problem. Frequency counts in "Tale of Two Cities."
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
total cost of searches:
1) Sequential search in a linked list.<— ,*1 350,000,000

2) Binary search in an ordered array.
) 4 4 — maybe, but total cost of
v/ 3) Need better method, all too slow. insertions is ¢*100,000,000

4) Doesn't matter much, all fast enough.
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Searching challenge 3 (revisited):

Problem. Frequency counts in "Tale of Two Cities"
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?

1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.

v D) BSTs.
insertion cost < 10000 * 1.38 * Ig 10000 < .2 million
lookup cost < 135000 * 1.38 * Ig 10000 < 2.5 million
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Searching challenge 5

Problem. Index for a PC or the web.

Assumptions. 1 billion++ words to index.

Which searching method to use?
 Hashing

* Red-black-trees

e Doesn't matter much.

- | Show All (200)

Top Hit [§ 10Hashing

Documents =] mobydick.txt
= movies.txt

= Papers/Abstracts
= score.card.txt
= Requests

Mail Messages | ° Re: Draft of lecture on symb...
.| SODA 07 Final Accepts
. | SODA 07 Summary
| Got-it
"/ No Subject

PDF Documents T 08BinarySearchTrees.pdf
v 07SymbolTables.pdf
7 07SymbolTables.pdf
v 06PriorityQueues.pdf
= 06PriorityQueues.pdf

Presentations |g] 10Hashing
&) 07SymbolTables
&) O6PriorityQueues
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Searching challenge 5

Problem. Index for a PC or the web.
Assumptions. 1 billion++ words to index.

Which searching method to use?
s/ * Hashing
e Red-black-trees «—— +oomuch space

e Doesn't matter much.

Solution. Symbol table with:
e Key = query string.
* Value = set of pointers to files.

N

sort the (relatively few) search hits

| Show All (200)

Top Hit [§j 10Hashing

Documents  =| mobydick.txt
- movies.txt
= Papers/Abstracts

- score.card.txt
- Requests

Mail Messages ‘| Re: Draft of lecture on symb...
' SODA 07 Final Accepts
‘' SODA 07 Summary
‘| Got-it
‘' No Subject

PDF Documents .- 08BinarySearchTrees.pdf
v 07SymbolTables.pdf
77 07SymbolTables.pdf
v 06PriorityQueues.pdf
= 06PriorityQueues.pdf

Presentations E 10Hashing
' 07SymbolTables
&) O6PriorityQueues
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Searching challenge 6

Problem. Index for an e-book.
Assumptions. Book has 100,000+ words.

Which searching method to use?
1. Hashing
2.Red-black-tree

3. Doesn't matter much.

Index

Abstract data type (ADT), 127-

abstract classes, 163

classes, 129-136

collections of items, 137-139

creating, 157-164

defined, 128

duplicate items, 173-176

alence-relations, 159-162

5, 165-171

first-class, 177-186

generic operations, 273

index items, 177

insertiremove operations, 138-
139

modular programming, 135
polynomial, 188-192
priority queues, 375-376
pushdown stack, 138-156
stubs, 135
symbol table, 497-506
ADT interfaces
array (myArray), 274
complex number (Complex), 181
existence table (ET), 663
full priority queue (PQfull),
397

indircet priority queuc (PQi),
403

item (myItem), 273, 498

(myKey), 498

polynomial (Poly), 189

point (Point), 134

priority queuc (PQ), 375

queue of int (intQueue), 166

stack of int (intStack), 140
symbol table (ST), 503
text index (TI), 525
union-find (UF), 159
Abstract in-place merging, 351+
353

Abstract operation, 10
Access control state, 131
Actual data, 31

Adapter ¢l -157
Adaptive sort, 268
Address, 84-85
Adjacency list, 120-123

depth-first search, 251-256
Adjacency matrix, 120-122
Ajtai, M., 464
Algorithm, 4-6, 27-64
abstract operations, 10, 31, 34-
35
analysis of, 6
Avorst-case perfor-
mance, 60-6.
big-Oh notation, 44-47
binary scarch, 5
onal complexity, 62-

exponential-time, 219

implementation, 28-30

logarithm function, 40-43

mathematical analysis, 33-36,
5

primary parameter, 36
probabilistic, 331
recurrences, 49-52, 5
recursive, 198
running time, 34-40
search, 5$3-56, 498
steps in, 2
See also Randomized algorithm

Amortization approach,

Arithmetic operator, 1

88,1

v, 12, 83
ary search, 57
allocation, 87

sorting, 263-267, 273271
and strings, 119
two-dimensional, 117-118, 120-
124
vectors, 87
visualizations, 295
See also Index, array
Array representation
binary tree, 381

3 DT, 191-192
priority queue, 377-378, 403,
406
pushdown stack, 148-150
random queue, 170
symbol table, 508, 511-512,
521
Asymprotic expression, 45-46
Average deviation, 80-81
Average-case performance, 33, 60-
1

6
AVL tree, 583

B tree, 584, 692-704
externalfinternal pages, 695
4-5-6-7-8 tree, 693-704
Markov chain, 701
remove, 701-703
searchfinsert, 697-701
select/sort, 701

Balanced tree, 238, 5.
B tree, 584
bottom-up, 584-585
height-balanced, 583
indexed sequential access, 690-

692

5-598

performance, 575-576, 581-582,
595-598

randomized, 559-564

T 77-585
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Searching challenge 6

Problem. Index for an e-book.

Assumptions. Book has 100,000+ words.

Which searching method to use?

1. Hashing
2.Red-black-tree

3. Doesn't matter much.

need ordered
iteration

Solution. Symbol table with:

» Key = index term.

abstract classes, 163

classes, 129-136

collections of items, 137-139
i 164

duplicate items, 173-176
alence-relations, 159-162

first-clas:

generic operations, 273

index items, 177

insertlremove operations, 138-
139

modular programming, 135
polynomial, 188-192
priority queues, 375-376
pushdown stack, 138-156
stubs, 135
symbol table, 497-506
ADT interfaces
array (myArray), 274
complex number (Cozplex), 181
existence table (ET), 663
full priority queue (PQfull),
397

indircct priority queuc (PQi),
403

item (myItem), 273, 498
(myKey), 498

polynomial {Poly), 189

point (Point), 134

priority qucuc (PQ), 375
queue of int (intQueue), 166

stack of int (intStack), 140
symbol table (ST}, 503
text index (TI), 525
union-find (UF), 159
Abstract in-place merging, 351+
353

Abstract operation, 10
Access control state, 131
Actual data, 31
Adapter class,
Adaptive sort, 268
Address, 84-85
Adjacency list, 120-123
depth-first search, 251-256
Adjacency matrix, 120-122
Ajtai, M., 464
Algorithm, 4-6, 27-64
abstract operations, 10, 31, 34-
35
analysis of, 6
average-iworst-case perfor-
mance, 35, 2
big-Oh notation, 44-47
binary scarch, $6-59
al complexity, 62-

5 6

exponential-time, 219

implementartion, 28-30

garithm function, 40-43

mathematical analysis, 33-36,
58

primary parameter, 36
probabilistic, 331
recurrences, 49-52, 57
recursive, 198
running time, 34-40

3

See also Randomized algorithm
Amortization approach, 7
Arithmetic operator, 1

188, 191
Array, 12, 83

binary scarch, 57

dynamic allocation,

and linked lists, 92, 94-95
merging, 349-350
multidimensional, 117-118
references, 86-87, 89
sorting, 263-267, 273-276
and strings, 119
two-dimensional, 117-118, 120-
2.

vectors, 87
visualizations, 295
See also Index
Array represen
binary trec, 381
FIFO queuc, 168-169
linked lists, 110
polynomial ADT, 191-192
priority queuc, 377-378, 403,
406
pushdown stack, 148-150
random queue, 170
symbol table, 508, 511-512,
521
Asymprotic expression, 45-46
Average deviation, 80-81
Average-case performance, 33, 60-
61

6
AVL tree, 583

B tree, 584, 692-704
externalfinternal pag
4-5-6-7-8 tre

es, 695

Balanced tree, 238, 55
B trec, 584
bottom-up, 576, 584-585
height-balanced, 583
indexed sequential access, 690-

692

595-598
randomized, 559-564
3 585
94

* Value = ordered set of pages on which term appears.
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