
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:57:56 AM

7.5 Reductions

‣ designing algorithms
‣ establishing lower bounds
‣ intractability

2

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.

Frustrating news. Huge number of problems have defied classification.

complexity order of growth examples

linear N min, max, median,
Burrows-Wheeler transform, ...

linearithmic N log N sorting, convex hull,
closest pair, farthest pair, ...

quadratic N2 ???

…

exponential cN ???

3

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata'.
Suppose we could (couldn't) solve problem X efficiently.
What else could (couldn't) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to
place it, and I shall move the world. ” — Archimedes

4

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Cost of solving X = total cost of solving Y + cost of reduction.

perhaps many calls to Y
on problems of different sizes

preprocessing and postprocessing

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

5

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Ex 1. [element distinctness reduces to sorting]
To solve element distinctness on N integers:

• Sort N integers.

• Check adjacent pairs for equality.

Cost of solving element distinctness. N log N + N

cost of sorting
cost of reduction

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

6

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Ex 2. [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:

• For each point, sort other points by polar angle.

- check adjacent triples for collinearity

Cost of solving 3-collinear. N2 log N + N2.

cost of sorting
cost of reduction

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

7

‣ designing algorithms
‣ establishing lower bounds
‣ intractability

8

Reduction: design algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

Design algorithm. Given algorithm for Y, can also solve X.

Ex.

• Element distinctness reduces to sorting.

• 3-collinear reduces to sorting.

• PERT reduces to topological sort. [see digraph lecture]

• h-v line intersection reduces to 1D range searching. [see geometry lecture]

• Burrows-Wheeler transform reduces to suffix sort. [see assignment 8]

Mentality. Since I know how to solve Y, can I use that algorithm to solve X?

programmer’s version: I have code for Y. Can I use it for X?

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points
of the convex hull (in counter-clockwise order).

Proposition. Convex hull reduces to sorting.
Pf. Graham scan algorithm.

Cost of convex hull. N log N + N.
9

Convex hull reduces to sorting

convex hull sorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213
34435312

cost of reduction
cost of sorting

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to
directed shortest path.

s

2

3

5

6 t5

10

12

15

9

12

10154

10

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to
directed shortest path.

Pf. Replace each undirected edge by two directed edges.

s

2

3

5

6 t5

10

12

15

9

12

10154

2

5

 10

12

15

9

12

 10

9

10

4

15 10

15

154

3 5 t

5

s

11

12125

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to
directed shortest path.

Cost of undirected shortest path. E log E + E.

s

2

3

5

6 t5

10

12

15

9

12

10154

12

cost of shortest
path in digraph

cost of reduction

Caveat. Reduction is invalid in networks with negative weights
(even if no negative cycles).

Remark. Can still solve shortest path problem in undirected graphs
(if no negative cycles), but need more sophisticated techniques.

13

Shortest path with negative weights

tva 7 -4

tvs 7 -4

reduction creates
negative cycles

reduces to weighted
non-bipartite matching (!)

7 -4

Some reductions involving familiar problems

14

linear
programming

element
distinctness

sorting

directed shortest paths
(nonnegative)

bipartite
matching

 maximum flow

convex hull
median

arbitrage

shortest paths
(no neg cycles)

Delaunay
triangulation

closest
pair 2d

Euclidean
MST 2d

furthest
pair 2d

undirected shortest paths
(nonnegative)

15

‣ designing algorithms
‣ linear programming
‣ establishing lower bounds
‣ establishing intractability
‣ classifying problems

16

Linear Programming

What is it? [see ORF 307]

• Quintessential tool for optimal allocation of scarce resources

• Powerful and general problem-solving method

Why is it significant?

• Widely applicable.

• Dominates world of industry.

• Fast commercial solvers available: CPLEX, OSL.

• Powerful modeling languages available: AMPL, GAMS.

• Ranked among most important scientific advances of 20th century.

Present context. Many important problems reduce to LP.

Ex: Delta claims that LP
saves $100 million per year.

17

Applications

Agriculture. Diet problem.
Computer science. Compiler register allocation, data mining.
Electrical engineering. VLSI design, optimal clocking.
Energy. Blending petroleum products.
Economics. Equilibrium theory, two-person zero-sum games.
Environment. Water quality management.
Finance. Portfolio optimization.
Logistics. Supply-chain management.
Management. Hotel yield management.
Marketing. Direct mail advertising.
Manufacturing. Production line balancing, cutting stock.
Medicine. Radioactive seed placement in cancer treatment.
Operations research. Airline crew assignment, vehicle routing.
Physics. Ground states of 3-D Ising spin glasses.
Plasma physics. Optimal stellarator design.
Telecommunication. Network design, Internet routing.
Sports. Scheduling ACC basketball, handicapping horse races.

Linear programming

Model problem as maximizing an objective function subject to constraints.

Input: real numbers aij, cj, and bi.

Output: real numbers xj.

Solutions. [see ORF 307]

• Simplex algorithm has been used for decades to solve practical LP instances.

• Newer algorithms guarantee fast solution.

18

maximize c1 x1 + c2 x2 + . . . + cn xn

subject to the
constraints

a11 x1 + a12 x2 + . . . + a1n xn ! b1subject to the
constraints a21 x1 + a22 x2 + . . . + a2n xn ! b2

...

am1 x1 + am2 x2 + . . . + amn xn ! bm

x1 , x2 ,... , xn ! 0

n variables

m
 e

qu
at

io
ns

maximize cT x

subject to the
constraints

A x ! bsubject to the
constraints x ! 0

matrix version

Linear programming

“Linear programming”

• Process of formulating an LP model for a problem.

• Solution to LP for a specific problem gives solution to the problem.

• Equivalent to “reducing the problem to LP.”

1. Identify variables.
2. Define constraints (inequalities and equations).
3. Define objective function.

Examples:

• Shortest paths

• Maximum flow.

• Bipartite matching.
 . . .

• [a very long list]
19

stay tuned (next)

Given. Weighted digraph, single source s.

Distance from s to v. Length of the shortest path from s to v .

Goal. Find distance (and shortest path) from s to every other vertex.

20

Single-source shortest-paths problem (revisited)

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

s

3

t

2

6

7

4

5

LP formulation.

• One variable per vertex, one inequality per edge.

• Interpretation: xi = length of shortest path
from s to i.

21

Single-source shortest-paths problem reduces to LP

maximize xt

subject xs + 9 ! x2subject
to the

constraints
xs + 14 ! x6

constraints xs + 15 ! x7

x2 + 24 ! x3

x3 + 2 ! x5

x3 + 19 ! xt

x4 + 6 ! x3

x4 + 6 ! xt

x5 + 11 ! x4

x5 + 16 ! xt

x6 + 18 ! x3

x6 + 30 ! x5

x6 + 5 ! x7

x7 + 20 ! x5

x7 + 44 ! xt

xs = 0

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

s

3

t

2

6

7

4
5

LP formulation.

• One variable per vertex, one inequality per edge.

• Interpretation: xi = length of shortest path
from s to i.

22

Single-source shortest-paths problem reduces to LP

maximize xt

subject xs + 9 ! x2subject
to the

constraints
xs + 14 ! x6

constraints xs + 15 ! x7

x2 + 24 ! x3

x3 + 2 ! x5

x3 + 19 ! xt

x4 + 6 ! x3

x4 + 6 ! xt

x5 + 11 ! x4

x5 + 16 ! xt

x6 + 18 ! x3

x6 + 30 ! x5

x6 + 5 ! x7

x7 + 20 ! x5

x7 + 44 ! xt

xs = 0

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

s

3

t

2

6

7

4
5

xs = 0
x2 = 9

x3 = 32
x4 = 45

solution

0

9 32

14

15 50

34

45

x5 = 34
x6 = 14
x7 = 15
xt = 50

3

3

23

Maxflow problem

Given: Weighted digraph, source s, destination t.

Interpret edge weights as capacities

• Models material flowing through network

• Ex: oil flowing through pipes

• Ex: goods in trucks on roads

• [many other examples]

Flow: A different set of edge weights

• flow does not exceed capacity in any edge

• flow at every vertex satisfies equilibrium
[flow in equals flow out]

Goal: Find maximum flow from s to t.

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

flow out of s is 3

flow in to t is 3

1 2

10

1 1

2 1

flow " capacity
in every edge

flow in
equals

flow out
at each
vertex

Maximum flow reduces to LP

24

maximize x3t + x4t

subject xs1 " 2subject
to the

constraints
xs2 " 3

constraints x13 " 3

x14 " 1

x23 " 1

x24 " 1

x3t " 2

x4t " 3

xs1 = x13 + x14

xs2 = x23 + x24

x13 + x23 = x3t

x14 + x24 = x4t

all xij ! 0

One variable per edge.
One inequality per edge, one equality per vertex.

interpretation:
xij = flow in edge i-j

3

3

1

2

2

3 4

s

t

3

1

2

1 1

1 2

3 4

s

t

add dummy
edge from

t to s

equilibrium
constraints

capacity
constraints

1

2 2

11

1

2 2

Maxflow problem reduces to LP

25

xs1 = 2
xs2 = 2
x13 = 1
x14 = 1

x23 = 1

x24 = 1
x3t = 2
x4t = 2

solution

One variable per edge.
One inequality per edge, one equality per vertex.

3

3

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

add dummy
edge from

t to s

maximize x3t + x4t

subject xs1 " 2subject
to the

constraints
xs2 " 3

constraints x13 " 3

x14 " 1

x23 " 1

x24 " 1

x3t " 2

x4t " 3

xs1 = x13 + x14

xs2 = x23 + x24

x13 + x23 = x3t

x14 + x24 = x4t

all xij ! 0

interpretation:
xij = flow in edge i-j

equilibrium
constraints

capacity
constraints

Maximum cardinality bipartite matching problem

Bipartite graph. Two sets of vertices; edges
connect vertices in one set to the other.

Matching. Set of edges with no vertex
appearing twice.

Goal. Find a maximum cardinality matching.

Interpretation. Mutual preference constraints.

• Ex: people to jobs.

• Ex: Medical students to residence positions.

• Ex: students to writing seminars.

• [many other examples]

26

A B C D E F

0 1 2 3 4 5

Alice
 Adobe, Apple, Google
Bob
 Adobe, Apple, Yahoo
Carol
 Google, IBM, Sun
Dave
 Adobe, Apple
Eliza
 IBM, Sun, Yahoo
Frank
 Google, Sun, Yahoo

job offers

Adobe
 Alice, Bob, Dave
Apple
 Alice, Bob, Dave
Google
 Alice, Carol, Frank
IBM
 Carol, Eliza
Sun
 Carol, Eliza, Frank
Yahoo
 Bob, Eliza, Frank

A B C D E F

0 1 2 3 4 5

Maximum cardinality bipartite matching reduces to LP

LP formulation.

• One variable per edge, one equality per vertex.

• Interpretation: an edge is in matching iff xi = 1.

Theorem. [Birkhoff 1946, von Neumann 1953]
All extreme points of the above polyhedron have integer (0 or 1) coordinates.
Corollary. Can solve bipartite matching problem by solving LP.

27

A B C D E F

0 1 2 3 4 5

maximize
xA0 + xA1 + xA2 + xB0 + x

+ xD0 + xD1 + xE3 + xE4 +
 + xB1 + xB5 + xC2 + xC3 + xC4

E4 + xE5 + xF2 + xF4 + xF5

xA0 + xA1 + xA2 = 1 xA0 + xB0 + xD0 = 1

xB0 + xB1 + xB5 = 1 xA1 + xB1 + xD1 = 1

subject
xC2 + xC3 + xC4 = 1 xA2 + xC2 + xF2 = 1

subject
to the constraints xD0 + xD1 = 1 xC3 + xE3 = 1to the constraints

xE3 + xE4 + xE5 = 1 xC4 + xE4 + xF4 = 1

xF2 + xF4 + xF5 = 1 xB5 + xE5 + xF5 = 1

all xij ! 0

constraints on top vertices (left)
and bottom vertices (right)

crucial point: not always so lucky!

Maximum cardinality bipartite matching reduces to LP

LP formulation.

• One variable per edge, one equality per vertex.

• Interpretation: an edge is in matching iff xi = 1.

28

A B C D E F

0 1 2 3 4 5

maximize
xA0 + xA1 + xA2 + xB0 + x

+ xD0 + xD1 + xE3 + xE4 +
 + xB1 + xB5 + xC2 + xC3 + xC4

E4 + xE5 + xF2 + xF4 + xF5

xA0 + xA1 + xA2 = 1 xA0 + xB0 + xD0 = 1

xB0 + xB1 + xB5 = 1 xA1 + xB1 + xD1 = 1

subject
xC2 + xC3 + xC4 = 1 xA2 + xC2 + xF2 = 1

subject
to the constraints xD0 + xD1 = 1 xC3 + xE3 = 1to the constraints

xE3 + xE4 + xE5 = 1 xC4 + xE4 + xF4 = 1

xF2 + xF4 + xF5 = 1 xB5 + xE5 + xF5 = 1

all xij ! 0

xA1 = 1

xB5 = 1

xC2 = 1

xD0 = 1

xE3 = 1

xF4 = 1

all other xij = 0

solution

A B C D E F

0 1 2 3 4 5

Linear programming perspective

Got an optimization problem?
Ex. Shortest paths, maximum flow, matching, ….

Approach 1. Use a specialized algorithm to solve it.

• Algorithms in Java.

• Vast literature on complexity.

• Performance on real problems not always well-understood.

Approach 2. Reduce to a LP model; use a commercial solver.

• A direct mathematical representation of the problem often works.

• Immediate solution to the problem at hand is often available.

• Might miss faster specialized solution, but might not care.

Got an LP solver? Learn to use it!

29

% ampl
AMPL Version 20010215 (SunOS 5.7)
ampl: model maxflow.mod;
ampl: data maxflow.dat;
ampl: solve;
CPLEX 7.1.0: optimal solution;
objective 4;

30

‣ designing algorithms
‣ establishing lower bounds
‣ intractability

31

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. "(N log N) lower bound for sorting.

Bad news. Very difficult to establish lower bounds from scratch.

Good news. Can spread "(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction
is not too high

argument must apply to all
conceivable algorithms

1251432
2861534
3988818
4190745
13546464
89885444
43434213

32

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:

• Linear number of standard computational steps.

• Constant number of calls to Y.

Ex. Almost all of the reductions we've seen so far. [Which one wasn't?]

Establish lower bound:

• If X takes "(N log N) steps, then so does Y.

• If X takes "(N2) steps, then so does Y.

Mentality.

• If I could easily solve Y, then I could easily solve X.

• I can’t easily solve X.

• Therefore, I can’t easily solve Y.

33

Lower bound for convex hull

Proposition. In quadratic decision tree model, any algorithm for sorting
N integers requires "(N log N) steps.

Proposition. Sorting linear-time reduces to convex hull.
Pf. [see next slide]

Implication. Any ccw-based convex hull algorithm requires "(N log N) ccw's.

allows quadratic tests of the form:
 xi < xj or (xj - xi) (xk - xi) - (xj) (xj - xi) < 0

a quadratic test

convex hullsorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213

Proposition. Sorting linear-time reduces to convex hull.

• Sorting instance: x1, x2, ... , xN.

• Convex hull instance: (x1 , x12), (x2, x22), ... , (xN , xN2).

Pf.

• Region {x : x2 # x} is convex $ all points are on hull.

• Starting at point with most negative x, counter-clockwise order of hull
points yields integers in ascending order.

34

Sorting linear-time reduces to convex hull

f (x) = x2

(xi , xi2)

x

y

35

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane,
are there 3 that all lie on the same line?

3-collinear

recall Assignment 3

3-sum

1251432
-2861534
3988818
-4190745
13546464
89885444
-43434213

36

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane,
are there 3 that all lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
Pf. [see next 2 slide]

Conjecture. Any algorithm for 3-SUM requires "(N2) steps.
Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.

your N2 log N algorithm was pretty good

37

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance: x1, x2, ... , xN .

• 3-COLLINEAR instance: (x1 , x13), (x2, x23), ... , (xN , xN3).

Lemma. If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), and (c, c3) are collinear.

(1, 1)

(2, 8)

(-3, -27) -3 + 2 + 1 = 0

f (x) = x3

38

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance: x1, x2, ... , xN .

• 3-COLLINEAR instance: (x1 , x13), (x2, x23), ... , (xN , xN3).

Lemma. If a, b, and c are distinct, then a + b + c = 0

if and only if (a, a3), (b, b3), and (c, c3) are collinear.

Pf. Three distinct points (a, a3), (b, b3), and (c, c3) are collinear iff:

0 =

������

a a3 1
b b3 1
c c3 1

������

= a(b3 − c3)− b(a3 − c3) + c(a3 − b3)

= (a− b)(b− c)(c− a)(a + b + c)

More linear-time reductions and lower bounds

39

Delaunay

 3-sum
(conjectured N2 lower bound)

convex hull 2d

sorting 3-collinear

element distinctness
(N log N lower bound)

Euclidean MST 2d

closest pair 2d

3-concurrent

dihedral
rotation

min area triangle

Establishing lower bounds through reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself no linear-time convex hull algorithm exists?
A1. [hard way] Long futile search for a linear-time algorithm.
A2. [easy way] Linear-time reduction from sorting.

Q. How to convince yourself no sub-quadratic 3-COLLINEAR algorithm exists.
A1. [hard way] Long futile search for a sub-quadratic algorithm.
A2. [easy way] Linear-time reduction from 3-SUM.

Establishing lower bounds: summary

40

41

‣ designing algorithms
‣ establishing lower bounds
‣ intractability

42

Bird's-eye view

Def. A problem is intractable if it can't be solved in polynomial time.
Desiderata. Prove that a problem is intractable.

Two problems that require exponential time.

• Given a constant-size program, does it halt in at most K steps?

• Given N-by-N checkers board position, can the first player force a win?

Frustrating news. Few successes.

input size = c + lg K

using forced capture rule

43

Literal. A boolean variable or its negation.

Clause. An or of 3 distinct literals.

Conjunctive normal form. An and of clauses.

3-SAT. Given a CNF formula % consisting of k clauses over n literals,
does it have a satisfying truth assignment?

Applications. Circuit design, program correctness, ...

3-satisfiability

xi or ¬xi

C1 = (¬x1 & x2 & x3)

! = (C1 ' C2 ' C3 ' C4 ' C5)

(¬T & T & F) ' (T & ¬T & F) ' (¬T & ¬T & ¬F) ' (¬T & ¬T & T) ' (¬T & F & T)

x1 x2 x3 x4

T T F T
yes instance

! = (¬x1 & x2 & x3) ' (x1 & ¬x2 & x3) ' (¬x1 & ¬x2 & ¬x3) ' (¬x1 &¬ x2 & x4) ' (¬x2 & x3 & x4)

3-satisfiability is believed intractable

Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2n truth assignments.

Q. Can we do anything substantially more clever?

Conjecture (P # NP). 3-SAT is intractable (no poly-time algorithm).

44

45

Polynomial-time reductions

Def. Problem X poly-time (Cook) reduces to problem Y if X can be solved with:

• Polynomial number of standard computational steps.

• Polynomial number of calls to Y.

Establish intractability. If 3-SAT poly-time reduces to Y, then Y is intractable.
(assuming 3-SAT is intractable)

Mentality.

• If I could solve Y in poly-time, then I could also solve 3-SAT in poly-time.

• 3-SAT is believed to be intractable.

• Therefore, so is Y.

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

Def. An independent set is a set of vertices, no two of which are adjacent.

IND-SET. Given a graph G and an integer k, find an independent set of size k.

Applications. Scheduling, computer vision, clustering, ...
46

Independent set

k = 9

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance ! of 3-SAT, create an instance G of IND-SET:

• For each clause in !, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.

47

3-satisfiability reduces to independent set

! = (x1 & x2 & x3) ' (¬x1 & ¬x2 & x4) ' (¬x1 & x3 & ¬x4) ' (x1 & x3 & x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance ! of 3-SAT, create an instance G of IND-SET:

• For each clause in !, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.

• G has independent set of size k $! satisfiable.

48

3-satisfiability reduces to independent set

set literals corresponding to vertices in independent to true;
set remaining literals in consistent manner

! = (x1 & x2 & x3) ' (¬x1 & ¬x2 & x4) ' (¬x1 & x3 & ¬x4) ' (x1 & x3 & x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance ! of 3-SAT, create an instance G of IND-SET:

• For each clause in !, create 3 vertices in a triangle.

• Add an edge between each literal and its negation.

• G has independent set of size k $! satisfiable.

• ! satisfiable $ G has independent set of size k.

49

3-satisfiability reduces to independent set

for each clause, take vertex corresponding to one true literal

! = (x1 & x2 & x3) ' (¬x1 & ¬x2 & x4) ' (¬x1 & x3 & ¬x4) ' (x1 & x3 & x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

Proposition. 3-SAT poly-time reduces to IND-SET.

Implication. Assuming 3-SAT is intractable, so is IND-SET.

50

3-satisfiability reduces to independent set

! = (x1 & x2 & x3) ' (¬x1 & ¬x2 & x4) ' (¬x1 & x3 & ¬x4) ' (x1 & x3 & x4)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

ILP. Given a system of linear inequalities, find an integral solution.

Context. Cornerstone problem in operations research.
Remark. Finding a real-valued solution is tractable (linear programming).

51

Integer linear programming

3x1 + 5x2 + 2x3 + x4 + 4x5 " 10

5x1 + 2x2 + 4x4 + 1x5 # 7

x1 + x3 + 2x4 # 2

3x1 + 4x3 + 7x4 # 7

 x1 + x4 # 1

 x1 + x3 + x5 # 1

all xi = { 0, 1 }

linear inequalities

integer variables

Proposition. IND-SET poly-time reduces to ILP.
Pf. Given an instance G, k of IND-SET, create an instance of ILP as follows:

Intuition. xi = 1 if and only if vertex vi is in independent set.

52

Independent set reduces to integer linear programming

x1 + x2 + x3 + x4 + x5 = 3

x1 + x2 # 1

x2 + x3 # 1

x1 + x3 # 1

 x1 + x4 # 1

 x3 + x5 # 1

all xi = { 0, 1 }

number of vertices
selected

at most one vertex
selected from each edge

v2 v3 v5

v4v1

binary variables

is there an independent set of size 3 ?

is there a feasible solution?

Proposition. 3-SAT poly-time reduces to IND-SET.
Proposition. IND-SET poly-time reduces to ILP.

Transitivity. If X poly-time reduces to Y and Y poly-time reduces to Z,
then X-poly-time reduces to Z.

Implication. Assuming 3-SAT is intractable, so is ILP.

53

3-satisfiability reduces to integer linear programming

54

More poly-time reductions from 3-satisfiability

3-SAT

VERTEX COVER

HAM-CYCLECLIQUE

IND-SET3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

Dick Karp
'85 Turing award3-SA

T reduces to ILP

TSP

BIN-PACKING

Conjecture. 3-SAT is intractable.
Implication. All of these problems are intractable.

Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself that a new problem is (probably) intractable?
A1. [hard way] Long futile search for an efficient algorithm (as for 3-SAT).
A2. [easy way] Reduction from 3-SAT.

Caveat. Intricate reductions are common.

55 56

Search problems

Search problem. Problem where you can check a solution in poly-time.

Ex 1. 3-SAT.

Ex 2. IND-SET.

x1 = true, x2 = true, x3 = true, x4 = true

v2 v3 v5

v4v1

! = (x1 & x2 & x3) ' (¬x1 & ¬x2 & x4) ' (¬x1 & x3 & ¬x4) ' (x1 & x3 & x4)

{ v2 , x4, v5 }

k = 3

57

P vs. NP

P. Set of search problems solvable in poly-time.
Importance. What scientists and engineers can compute feasibly.

NP. Set of search problems.
Importance. What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion. No.
58

Cook’s theorem

Def. An NP is NP-complete if all problems in NP poly-time to reduce to it.

Cook's theorem. 3-SAT is NP-complete.
Corollary. 3-SAT is tractable if and only if P = NP.

Two worlds.

NP

P NPC

P # NP

P = NP

P = NP

59

Implications of Cook’s theorem

3-SAT

IND-SET VERTEX COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

Stephen Cook
'82 Turing award

All of these problems (and many, many more)
poly-time reduce to 3-SAT

60

Implications of Karp + Cook

3-SAT

VERTEX COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

All of these problems are NP-complete; they are
manifestations of the same really hard problem.

IND-SET

ILP

+

61

Implications of NP-completeness

62

Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

Frustrating news. Huge number of problems have defied classification.

complexity order of growth examples

linear N min, max, median,
Burrows-Wheeler transform, ...

linearithmic N log N sorting, convex hull.
closest pair, farthest pair, ...

quadratic N2 ???

…

exponential cN ???

63

Birds-eye view: revised

Desiderata. Classify problems according to computational requirements.

Good news. Can put problems in equivalence classes.

complexity order of growth examples

linear N min, max, median,
Burrows-Wheeler transform, ...

linearithmic N log N sorting, convex hull.
closest pair, farthest pair, ...

3-SUM complete probably N2 3-SUM, 3-COLLINEAR,
3-CONCURRENT, ...

…

NP-complete probably cN 3-SAT, IND-SET, ILP, ...

64

Summary

Reductions are important in theory to:

• Establish tractability.

• Establish intractability.

• Classify problems according to their computational requirements.

Reductions are important in practice to:

• Design algorithms.

• Design reusable software modules.

- stack, queue, priority queue, symbol table, set, graph
- sorting, regular expression, Delaunay triangulation

- minimum spanning tree, shortest path, maximum flow, linear programming

• Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems

- use heuristics for intractable problems

