6.3 Geometric Search

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:49:21 AM

→ range search

- space partitioning trees
- intersection search

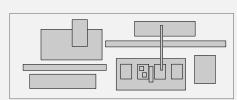
Overview

Geometric objects. Points, lines, intervals, circles, rectangles, polygons, ... This lecture. Intersection among N objects.

Example problems.

- 1D range search.
- 2D range search.
- Find all intersections among h-v line segments.
- Find all intersections among h-v rectangles.





1d range search

Extension of ordered symbol table.

- Insert key-value pair.
- Search for key k.
- Rank: how many keys less than k?
- Range search: find all keys between k1 and k2.

Application. Database queries.

Geometric interpretation.

- Keys are point on a line.
- How many points in a given interval?

..

	insert H	АВ
	insert F	AВ
	insert P	АВ
	count G to K	2
•••	search G to K	ні

insert B

insert D

insert A

insert I

в

вD

ABD

ABDT

B D H I B D F H I B D F H I P

▶ range search

space partitioning

Intersection search

1d range search: implementations

Ordered array. Slow insert, binary search for 10 and hi to find range. Hash table. No reasonable algorithm (key order lost in hash).

data structure	insert	rank	range count	range search
ordered array	Ν	log N	log N	R + log N
hash table	1	Ν	Ν	Ν
BS⊤	log N	log N	log N	R + log N

N = # keys

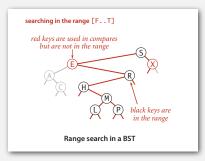
R = # keys that match

BST. All operations fast.

1d range search: BST implementation

Range search. Find all keys between 10 and hi?

- Recursively find all keys in left subtree (if any could fall in range).
- Check key in current node.
- Recursively find all keys in right subtree (if any could fall in range).



Worst-case running time. R + log N (assuming BST is balanced).

2d orthogonal range search

Extension of ordered symbol-table to 2d keys.

- Insert a 2d key.
- Search for a 2d key.
- Range search: find all keys that lie in a 2d range?

Applications. Networking, circuit design, databases.

rectangle is axis-aligned

Geometric interpretation.

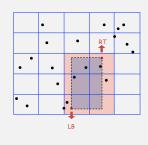
- Keys are point in the plane.
- How many points in a given h-v rectangle.



2d orthogonal range search: grid implementation

Grid implementation.

- Divide space into M-by-M grid of squares.
- Create list of points contained in each square.
- Use 2d array to directly index relevant square.
- Insert: add (x, y) to list for corresponding square.
- Range search: examine only those squares that intersect 2d range query.



2d orthogonal range search: grid implementation costs

Space-time tradeoff.

- Space: M² + N.
- Time: 1 + N / M² per square examined, on average.

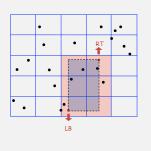
Choose grid square size to tune performance.

- Too small: wastes space.
- Too large: too many points per square.
- Rule of thumb: JN-by-JN grid.

Running time. [if points are evenly distributed]

M ~ √N

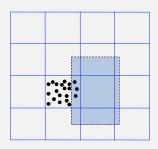
- Initialize: O(N).
- Insert: 0(1).
- Range: O(1) per point in range.



11

Clustering

Grid implementation. Fast, simple solution for well-distributed points. Problem. Clustering a well-known phenomenon in geometric data.

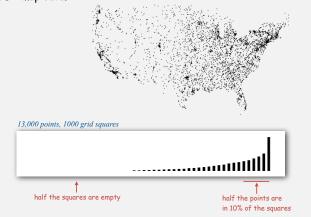


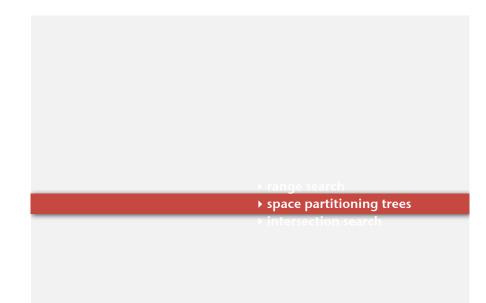
Lists are too long, even though average length is short. Need data structure that gracefully adapts to data.

Clustering

Grid implementation. Fast, simple solution for well-distributed points. Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.

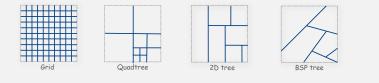




Space-partitioning trees

Use a tree to represent a recursive subdivision of 2D space.

Quadtree. Recursively divide space into four quadrants. 2d tree. Recursively divide space into two halfplanes. BSP tree. Recursively divide space into two regions.

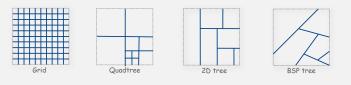


13

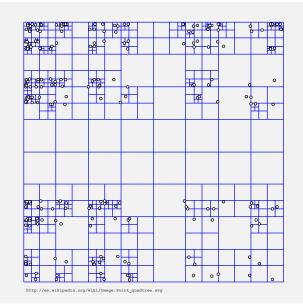
Space-partitioning trees: applications

Applications.

- Ray tracing.
- 2d range search.
- Flight simulators.
- N-body simulation.
- Collision detection.
- Astronomical databases.
- Nearest neighbor search.
- Adaptive mesh generation.
- Accelerate rendering in Doom.
- Hidden surface removal and shadow casting.

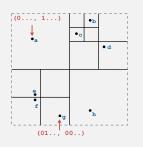


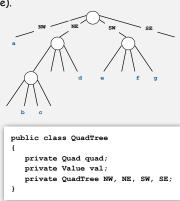
Quadtree: larger example



Quadtree

Idea. Recursively divide space into 4 quadrants. Implementation. 4-way tree (actually a trie).





Benefit. Good performance in the presence of clustering. Drawback. Arbitrary depth!

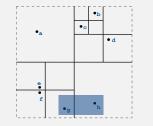
15

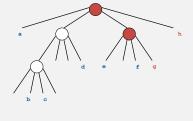
16

Quadtree: 2d range search

Range search. Find all keys in a given 2D range.

- Recursively find all keys in NE quad (if any could fall in range).
- Recursively find all keys in NW quad (if any could fall in range).
- Recursively find all keys in SE quad (if any could fall in range).
- Recursively find all keys in SW quad (if any could fall in range).



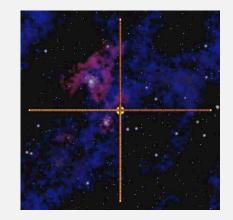


Typical running time. R + log N.

,

N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.



Brute force. For each pair of particles, compute force.

 $F = \frac{G m_1 m_2}{r^2}$

Subquadratic N-body simulation

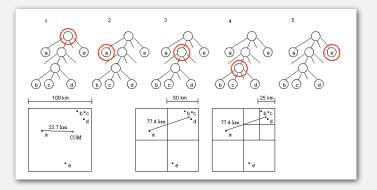
Key idea. Suppose particle is far, far away from cluster of particles.

- Treat cluster of particles as a single aggregate particle.
- Compute force between particle and center of mass of aggregate particle.

Barnes-Hut algorithm for N-body simulation.

Barnes-Hut.

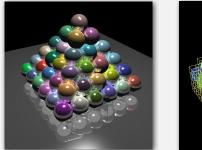
- Build quadtree with N particles as external nodes.
- Store center-of-mass of subtree in each internal node.
- To compute total force acting on a particle, traverse tree, but stop as soon as distance from particle to quad is sufficiently large.

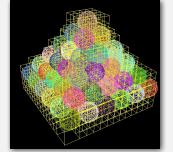


Curse of dimensionality

Range search / nearest neighbor in k dimensions? Main application. Multi-dimensional databases.

3d space. Octrees: recursively divide 3d space into 8 octants. 100d space. Centrees: recursively divide 100d space into 2¹⁰⁰ centrants???





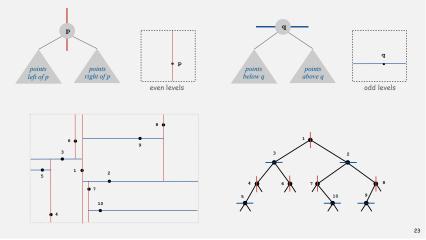
Raytracing with octrees http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.html

21

2d tree

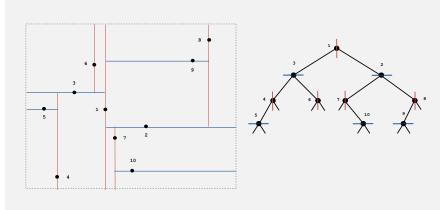
Implementation. BST, but alternate using x- and y-coordinates as key.

- Search gives rectangle containing point.
- Insert further subdivides the plane.



2d tree

Recursively partition plane into two halfplanes.



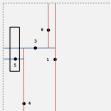
2d tree: 2d range search

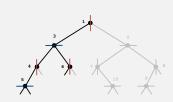
Range search. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/top subdivision (if any could fall in rectangle).
- Recursively search right/bottom subdivision (if any could fall in rectangle).

Typical case. R + log N

Worst case (assuming tree is balanced). $R + \int N$.



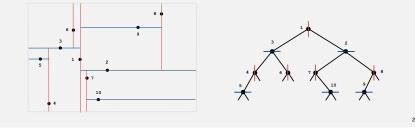


2d tree: nearest neighbor search

Nearest neighbor search. Given a query point, find the closest point.

- Check distance from point in node to query point.
- Recursively search left/top subdivision (if it could contain a closer point).
- Recursively search right/bottom subdivision (if it could contain a closer point).
- Organize recursive method so that it begins by searching for query point.

Typical case. log N Worst case (even if tree is balanced). N

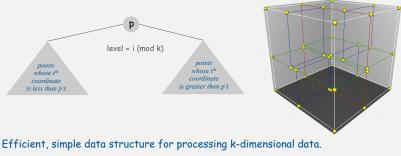


intersection search

Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

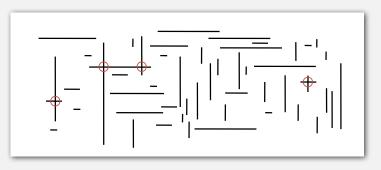


- Widely used.
- Discovered by an undergrad in an algorithms class!
- Adapts well to high-dimensional and clustered data.

Search for intersections

Problem. Find all intersecting pairs among N geometric objects. Applications. CAD, games, movies, virtual reality.

Simple version. 2D, all objects are horizontal or vertical line segments.

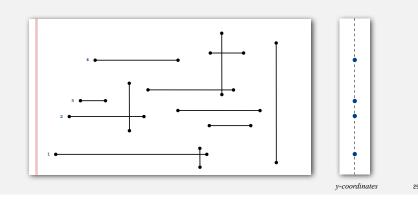


Brute force. Test all $\Theta(N^2)$ pairs of line segments for intersection.

Orthogonal segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.

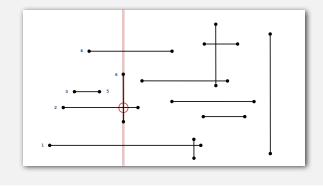
- x-coordinates define events.
- Left endpoint of h-segment: insert y-coordinate into ST.

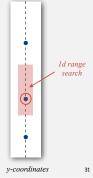


Orthogonal segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.

- x-coordinates define events.
- Left endpoint of h-segment: insert y-coordinate into ST.
- Right endpoint of h-segment: remove y-coordinate from ST.
- v-segment: range search for interval of y endpoints.

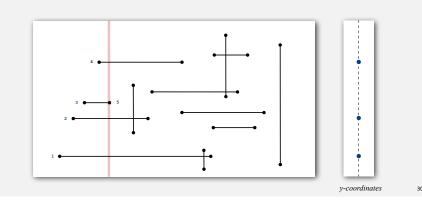




Orthogonal segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.

- x-coordinates define events.
- Left endpoint of h-segment: insert y-coordinate into ST.
- Right endpoint of h-segment: remove y-coordinate from ST.



Orthogonal segment intersection search: sweep-line algorithm

Reduces 2D orthogonal segment intersection search to 1D range search!

Running time of sweep line algorithm.

- Put x-coordinates on a PQ (or sort).
- Insert y-coordinate into ST.
 - O(N log N)
- N = # line segments R = # intersections

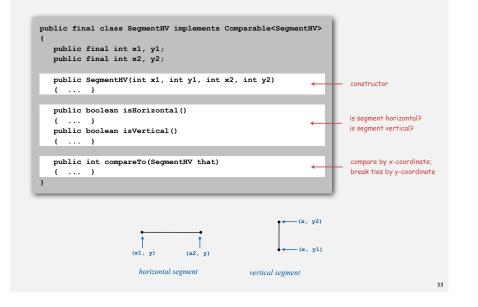
- Delete y-coordinate from ST.
- Range search.
- $O(N \log N)$
 - $O(R + N \log N)$

O(N log N)

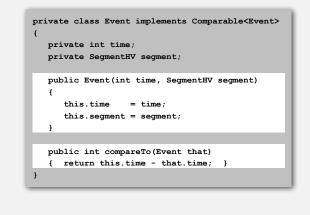
Efficiency relies on judicious use of data structures.

Remark. Sweep-line solution extends to 3D and more general shapes.

Immutable h-v segment data type



Sweep-line event subclass



Sweep-line algorithm: initialize events



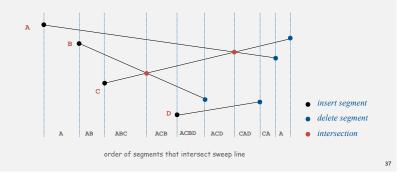
Sweep-line algorithm: simulate the sweep line

SEI	<pre>ICSegmentHV> set = new SET<segmenthv>();</segmenthv></pre>
	<pre>ile (!pq.isEmpty())</pre>
	<pre>Event event = pq.delMin();</pre>
	<pre>int sweep = event.time;</pre>
	<pre>SegmentHV segment = event.segment;</pre>
	if (segment.isVertical())
	{
	SegmentHV seg1, seg2;
	<pre>seg1 = new SegmentHV(-INF, segment.y1, -INF, segment.y1); seg2 = new SegmentHV(+INF, segment.y2, +INF, segment.y2);</pre>
	for (SegmentHV seg : set.range(seg1, seg2))
	StdOut.println(segment + " intersects " + seg);
	}
	<pre>else if (sweep == segment.x1) set.add(segment);</pre>
	<pre>else if (sweep == segment.x2) set.remove(segment);</pre>

General line segment intersection search

Extend sweep-line algorithm

- Maintain segments that intersect sweep line ordered by y-coordinate.
- Intersections can only occur between adjacent segments.
- Add/delete line segment \Rightarrow one new pair of adjacent segments.
- Intersection \Rightarrow swap adjacent segments.



Line segment intersection: implementation

Efficient implementation of sweep line algorithm.

- Maintain PQ of important x-coordinates: endpoints and intersections.
- Maintain set of segments intersecting sweep line, sorted by y.
- O(R log N + N log N).

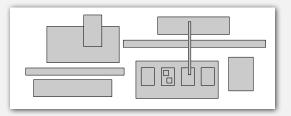
to support "next largest" and "next smallest" queries

Implementation issues.

- Degeneracy.
- Floating point precision.
- Use PQ, not presort (intersection events are unknown ahead of time).

Rectangle intersection search

Goal. Find all intersections among h-v rectangles.



Application. Design-rule checking in VLSI circuits.

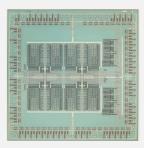
Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.

- Very Large Scale Integration (VLSI).
- Computer-Aided Design (CAD).

Design-rule checking.

- Certain wires cannot intersect.
- Certain spacing needed between different types of wires.
- Debugging = rectangle intersection search.



Algorithms and Moore's law

"Moore's law." Processing power doubles every 18 months.

- 197x: need to check N rectangles.
- 197(x+1.5): need to check 2N rectangles on a 2x-faster computer.

Bootstrapping. We get to use the faster computer for bigger circuits.

But bootstrapping is not enough if using a quadratic algorithm:

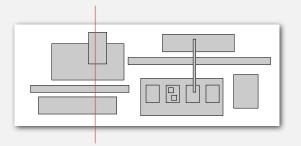
- 197x: takes M days.
- 197(x+1.5): takes (4M)/2 = 2M days. (!)

2x-faster quadratic / algorithm

Rectangle intersection search

Sweep vertical line from left to right.

- x-coordinates of rectangles define events.
- Maintain set of y-intervals intersecting sweep line.
- Left endpoint: search set for y-interval; insert y-interval.
- Right endpoint: delete y-interval.



Bottom line. Linearithmic CAD algorithm is necessary to sustain Moore's Law.

41

43

Interval search trees

operation	brute	interval search tree	best in theory
insert interval	1	log N	log N
delete interval	N	log N	log N
find an interval that intersects (lo, hi)	N	log N	log N
find all intervals that intersects (lo, hi)	N	R log N	R + log N

N = # intervals augmented red-black tree R = # intersections

Rectangle intersection search: costs summary

Reduces 2D orthogonal rectangle intersection search to 1D interval search!

Running time of sweep line algorithm.

- Put x-coordinates on a PQ (or sort).
- Insert y-interval into ST.
- Delete y-interval from ST. O(N log N)

O(N log N)

O(N log N)

N = # rectangles R = # intersections

• Interval search. $O(R + N \log N)$

Efficiency relies on judicious use of data structures.

44

Geometric search summary: algorithms of the day

1D range search		BST
kD range search		kD tree
1D interval intersection search	≝	interval search tree
2D orthogonal line intersection search		sweep line reduces to 1D range search
2D orthogonal rectangle intersection search		sweep line reduces to 1D interval intersection search

45