patt’"’“ern

5.3 Substring Search

st

pointer s+t

Q. Q- Substring

eas

characterﬁs. o

» brute force
» Knuth-Morris-Pratt
» Boyer-Moore

—
~match » Rabin-Karp
o tposition
implementation
2 brute-force
hashistat
Algorithms in Java, 4" Edition Robert Sedgewick and Kevin Wayne - Copyright © 2009 January 26, 2010 8:28:00 AM

Applications

Parsers.

Spam filters.

Digital libraries.

Screen scrapers.

Word processors.

Web search engines.

Electronic surveillance.

Natural language processing.
Computational molecular biology.
FBIs Digital Collection System 3000.

Feature detection in digitized images.

pe

Ie's how you know™

Substring search

Goal. Find pattern of length M in a text of length N.

typically N> M

pattern—N E E D L E

text—1 N A H A Y S T A C K N E E D L E I N A

match

Computer forensics. Search memory or disk for signatures,
e.g., all URLs or RSA keys that the user has entered.

http://citp.princeton.edu/memory

Application: Spam filtering

Identify patterns indicative of spam.
® PROFITS

® LOSE WE1GHT

® herbal Viagra

® There is no catch.

® LOW MORTGAGE RATES

® This is a one-time mailing.

® This message is sent in compliance with
spam regulations.
® You're getting this message because you

registered with one of our marketing partners.




Application: Electronic surveillance

Need to monitor all
internet traffic.
(security)

No way! \
(privacy)
R ()
Well, we're mainly
interested in -
"ATTACK AT DAWN",
OK. Build a

machine that JUST
looks for' that.

“ATTACK AT DAWN”
substring search
machine

found O

Screen scraping: Java implementation

Java library. The indexof () method in Java's string library returns the index
of the first occurrence of a given string, starting at a given offset.

public class StockQuote
{
public static void main(String[] args)
{
String name = "http://finance.yahoo.com/q?s=";
In in = new In(name + args[0]);
String text = in.readAll();
int start = text.indexOf ("Last Trade:", 0);
int from = text.indexOf ("<b>", start);
int to = text.indexOf ("</b>", from) ;
String price = text.substring(from + 3, to);
StdOut.println(price) ;
}
}
% java StockQuote goog

256.44

% java StockQuote msft
19.68

Application: Screen scraping
Goal. Extract relevant data from web page.

Ex. Find string delimited by <b> and </b> after first occurrence of
pattern Last Trade:.

Google Inc. (GOOG) 110 T 256.44 & 599 (226%) e
More On GOOG <tr>
<td class= "yfnc_ tableheadl"

» Summery Google Inc. (Nessaqss: 6006) 00 2 st:10m vy 4 =

R0 coue e Reame 843 357 (1574 e width= "48%">

istori i - 260

Historical Prices. Last Trade: 256.44 DaysRange: 2602626995 2% /Ww Last Trade:

TodeTme  ALISAMET  SowkRange: 26730-72480 L[|

</td>
<td class= "yfnc_tabledatal">

Interactve olume: Toaw
Basic Chart Change: 4599 (226%) Vol 3800804
Basic Tech. Analysis  prey Close: 26243 Avg Vol @i 7334210

00D open 26065 Market Cap: B067B | 4 AddGOOG toYour Portoi

i & Sot At 500G 1 .
bsssreo i Bio: 25631100 ::S » ::: st <big><b>452.92</b></big>
‘Company Events. Ask: 256.57 x 100 (um . % Download Annual Report

<td class= "yfnc_tableheadl"
width= "48%">

Trade Time:

</ta>

<td class= "yfnc_tabledatal">

http://finance.yahoo.com/q?s=goog




Brute-force substring search

Check for pattern starting at each text position.

i j i+ 0 1 2 3 4 5 6 7 8 910
txt—A B A C A D A B R A C
0 2 2 A B R <~ pat
1 0 1 A entries in red are
2 1 3 A B / mismatches
entries in gray are
3 0 3 / A for reference only
4 1 > entries in black B
5 0 5 match the text
6 4 10 A B R A
™~ return i when j isM
match

Brute-force substring search

Brute-force substring search: worst case

Brute-force algorithm can be slow if text and pattern are repetitive.

i 4§ i+ 0 1 2 3 4 5 6 7
txt— A A A A A A A A
0 4 4 A A A A B-«—npat
1 4 5 A A A A B
2 4 6 A A A AB
3 4 7 A A A A B
4 4 8 A A A A
5 4 9 A A A

Brute-force substring search (worst case)

Worst case. ~ M N char compares.

Brute-force substring search: Java implementation

Check for pattern starting at each text position.

public static int search(String pat, String txt)

{

int M = pat.length();
int N = txt.length();
for (int i = 0; i <= N - M; i++)
{

int j;

for (j = 0; j < M; j++)

if (txt.charAt(i+j) '= pat.charAt(j))
break;

if (j == M) return i;
}

return N; <«— not found

index in text where
pattern starts

Backup

In typical applications, we want to avoid backup in text stream.

* Treat input as stream of data.
* Abstract model: stdin.

Brute-force algorithm needs backup for every mismatch

matched chars

V
AAA
AAA

> >

/

shift pattern right one position

mismatch

AAA
B

AA
/ backup

Approach 1. Maintain buffer of size M (build backup into stdarn)

Approach 2. Stay tuned.



Brute-force substring search: alternate implementation Algorithmic challenges in substring search

Same sequence of char compares as previous implementation. Brute-force is often not good enough.
+ i points to end of sequence of already-matched chars in text.
+ j stores humber of already-matched chars (end of sequence in pattern). Theoretical challenge. Linear-time guarantee. ~ <«<— fundamental algorithmic problem

Practical challenge. Avoid backup in text stream. <— oftenno room or time to save text

public static int search(String pat, String txt)
{ Now is the time for all people to come to the aid of their party. Now is the time for all good people to
N = txt.length(); come to the aid of their party. Now is the time for many good pecple to come to the aid of their party.

. g Now is the time for all good people to come to the aid of their party. Now is the time for a lot of good
int j, M = pat.length(); people to come to the aid of their party. Now is the time for all of the good people to come to the aid of
. . . . . their party. Now is the time for all good people to come to the aid of their party. Now is the time for
for (1 =0, j =0; i <N & j <M itt) each good person to come to the aid of their party. Now is the time for all good people to come to the aid
{ of their party. Now is the time for all good Republicans to come to the aid of their party. Now is the
. . . . time for all good people to come to the aid of their party. Now is the time for many or all good people to
if (txt.charAt(i) == pat.charAt(j)) j++; come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
else { i -= 3 J =0; } T buckup is the time for all good Democrats to come to the aid of their party. Now is the time for all people to
come to the aid of their party. Now is the time for all good people to come to the aid of their party. Now
} is the time for many good people to come to the aid of their party. Now is the time for all good people to
if (j == M) return i - M; come to the aid of their party. Now is the time for a lot of good people to come to the aid of their

party. Now is the time for all of the good people to come to the aid of their party. Now is the time for
else return N; all good people to come to the aid of their attack at dawn party. Now is the time for each person to come
} to the aid of their party. Now is the time for all good pecple to come to the aid of their party. Now is
the time for all good Republicans to come to the aid of their party. Now is the time for all good people
to come to the aid of their party. Now is the time for many or all good people to come to the aid of their
party. Now is the time for all good people to come to the aid of their party. Now is the time for all good
Democrats to come to the aid of their party.

int i,

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern Baaaaaaaaa.
* Suppose we match 5 chars in pattern, with mismatch on 6™ char.
* We know previous 6 chars in text are BAAAAB.

» Don't need to back up text pointer! ot ), E e

i
text l
_\BAAAABAAAAAAAAA
after mismatch
onsixthchar—B A A A A A ~— pattern
» Knuth-Morris-Pratt br;ﬁ;;(f)o;_c;%iks/'l% .
mxdthis/ B
and this /B
and this BAAAAAAAGAA
and this
hutrmbm‘kup/' A AAAAAAAA

is needed

Remark. It is always possible to avoid backup (!)



KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on match?
A. Easy: compare next pattern char to next text char.

current char

matched chars .
is match

ABABAC
ABABAC
pat.charAt(6)
j 01 2 3 45
pat.charAt(j) A B A B A C
A 1 3 5 current text char: c
dfa[1[j] B 2 4 current pattern index: j
c @ next pattern index: dfa[e] [3]

table giving pattern char to compare to the next text char

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left to right.

matched chars cirrenijchap

L is mismatch
ABABAB
x ABABAC
x A
vABAB
pat.charAt (4)
j 01 2 3 45
pat.charAt(j) A B A B A C
A 1
dfal1(i] B ®
C 6

table giving pattern char to compare to the next text char

KMP substring search preprocessing (concept)

Q. What pattern char do we compare to the next text char on mismatch?
A. Check each position, working from left fo right.

matched chars cunrentichan

l is mismatch
ABABAA
x ABABAC
x A
XABAB
x A
X AB
v A
j 01 2 3 45 \\
pat.charAt(j) A B A B A C pat.charAt (1)
A ©,
dfa[][j] B
C 6

table giving pattern char to compare to the next text char

KMP substring search preprocessing (concept)

Fill in table columns by doing computation for each possible mismatch position.

i pat. dfa[1[3]  text (pattern itself) i pat. dfa[1[j]  text (pattern itself)
charAt(j) A B C ABABAC charat(j) A B C ABABAC
0 A 1 A
B 3 B 4 ABAB
0 ABAA
c 1 A
0 ABAC
0
1 B 2 AB
AA 4 A 5 ABABA
1 A / ABABB
AC 0
0 match (move to next char) ABABC
set dfa[pat.charAt(1)1[i] 0
2 A 3 ABA ’
ABB 5 C 6 ABABAC known text rh}m'&
o ABABAA < O mismatch
ABC 1 A
0 i [, ABABAB
(back up in pattern) 1
backup is length of max overlap
ufbt’gnmmg of pattern
with known text chars

Pattern backup for ABABA C in KMP substring search




Deterministic finite state automaton (DFA)

DFA is abstract string-searching machine.

* Finite number of states (including start and halt).

* Exactly one transition for each char in alphabeft.

* Accept if sequence of transitions leads to halt state.

internal representation

il o 1 2 3 4 5
pat.charAt(j) A B A B A C
A1l 1 3 1 5 1
dfafjfjijs 0 2 0 /4 0 4
c 0 0 0/0 0 6
mismatch \
transition match
(back up) transition

graphical representation (increment)

halt state

DFA corresponding to the string A B A B A C

KMP search: Java implementation

If in state j reading char c:
halt if § is 6
else move to state dfa[c] [j]

KMP implementation. Build machine for pattern, simulate it on text.

Key differences from brute-force implementation.
e Text pointer i never decrements.
* Need to precompute dafa[][] table from pattern.

public int search(String txt)

{
int i, j, N = txt.length();
for (i =0, j=0; i <N && j < M; i++)

j = dfa[txt.charAt(i)][j];

if (j == M) return i - M;
else return N;

}

Running time.

e Simulate DFA: at most N character accesses.

* Build DFA: at most MR character accesses (stay tuned for better method).

23

KMP substring search: trace

o oRr »o

O N R mk

A <— txt.charAt(i)

cowxn

o s mw

[SESRVEEN

[N a4

01 2 3 45 7 8 91011 12 13 14 15 16 ~— 1
read thischar—~8 C B A A B A C A A B A B A C A
inthisstate—0 0 0 0 1 1 301 1 2 3 4 5 6 ~—7]
go to this state A
found
A returni - M = 9
A
A .
J
B pat.charAt(j)
B A
A dfa[1[jl|B
C
match: B
set j to dfa[txt.charAt(i)][j] A
= dfa[pat.charAt(j)1[j]
) B
B
A
mismatch: B
set j to dfa[txt.charAt(i)]1[j] A
implies pattern shift to align
pat.charAt(3) with C

txt.charAt(i+1) A B A B A C

Trace of KMP substring search (DFA simulation) forA B A B A C

KMP search: Java implementation

Key differences from brute-force implementation.
 Text pointer i never decrements.

* Need to precompute dfa[][] table from pattern.
* Could use input stream.

public int search(In in)

{
int i, j;
for (i =0, j = 0; 'in.isEmpty() && j < M; i++)
j = dfa[in.readChar()][j];
if (J == M) return i - M;
else return i;
}




Efficiently constructing the DFA for KMP substring search

Q. What state X would the DFA be in if it were restarted to correspond to
shifting the pattern one position to the right?

matched chars

> |

A B
A B

A. Use the (partially constructed) DFA to find X!

BAB
001

Consequence.

B A
B A

next char

\

X

¢ We want the same transitions as X for the next state on mismatch.

copy dfa[] [X] to dfa[][3j]

* But a different transition (o j+1) on match.

set dfa[pat.charAt(j)1[j] to j+1

j 012 3 435

pat.charAt(j) A B ABAC
A1 1 315 7

dfaf][j]|B 0 2 0 4 0 7

C 00 0[O0 O ?

j 012 3 435

pat.charAt(j) A B A B A C
A1 1 3 1 5 1

dfa[][j1[B 0 2 0 4 0 4

C 000 0 06

Constructing the DFA for KMP substring search: example

i 0
pat.charAt(j) A
Al
dfa[1[j1|B8 0
c o
X
'
j 0 1
pat.charAt(j) A B
Al 1
dfa[]fjl{s 0 2
c 0 o0
X
}
j 0 1 2
pat.charAt(j) A B A
Al 1 3
dfafl(jljB 0 2 o0
c o0 0 o0
X
!
j 0 1 2 3
pat.charAt(j) A B A B
Al 1 3 1
dfaf](jljs 0 2 0 4
c o0 0 0 o0

o

C@\TC@/J—’CD

,

<‘ac
e
R_/M

@ Ch

NS

copy dfa[][X] todfa[][]]

dfa[pat.charAt(1D1[j] = j+1;

X = dfa[pat.charAt(3)1[X1];

A—

@A;» s—»@

"

Constructing the DFA for KMP substring searchforA B A B A C

25

27

Efficiently constructing the DFA for KMP substring search

Build table by finding answer to Q for each pattern position.

Observation. No need to restart DFA.
* Remember last restart state in X.

* Use DFA to update X.

* X = dfa[pat.charAt(j)][X]

Constructing the DFA for KMP substring search:

]
pat.charAt(j)
A
dfa[1[j1|B
C

i)
pat.charAt(j)
A
dfa[][j]|B
C

i)
pat.charAt(j)
A
dfa[][j]|B
C

ocor »lo o or »o

o or »o

oON R ®mF O N R TR ~—Xx

oN R mK

cowxN

OO w B[N w—x

cow»N

(SN SN

O N R Bw—Xx

cou>a

SRRV SN

/

Q. What state X would the DFA be in if it were restarted to
correspond to shifting the pattern one position fo the right?

)

w

IS

v

bl 0O 1 2 3 4 5
pat.charAt(j) A B A B A C
A1l 1 3 1 5 1
dfaflf1]B 0 2 0 4 0 4
c 0 0 0 0 0 6
o
restart
B states
0 0
B A fa['A'][0]
o 0 1
fa['B'][1
B A B dfa['B'][1]
0o 0 1
dfa['A'][2]
B A B s
o o0 1 2 3
DFA simulations to compute
restart statesfor A B A B A C

example

Constructing the DFA for KMP substring searchnforA B A B A C




Constructing the DFA for KMP substring search: Java implementation

For each j3:
* Copy dfa[][X] to dfa[][3] for mismatch case.

e Set dfa[pat.charat(j)][j] To j+1 for match case.

* Update x.

public KMP(String pat)
{
this.pat = pat;
M = pat.length();
dfa = new int[R] [M];
dfa[pat.charAt(0)][0] = 1;
for (int X =0, j =1; j < M; j++)
{
for (int ¢ = 0; c < R; ct+)

dfa[c] [j] = dfa[c][X]; T
dfa[pat.charAt(j)]1[j] = j+1; <«—
X = dfa[pat.charAt(j)][X]; —

}

Running time. M character accesses.

Knuth-Morris-Pratt: brief history

Brief history.
* Inspired by esoteric theorem of Cook.

—— copy mismatch cases
— set match case
— update restart state

29

* Discovered in 1976 independently by two theoreticians and a hacker.

- Knuth: discovered linear-time algorithm

- Pratt: made running time independent of alphabet

- Morris: tfrying to build a text editor
* Theory meets practice.

L\\>A

d ' Rl
Stephen Cook ~ Don Knuth Jim Morris Vaughan Pratt

KMP substring search analysis

Proposition. KMP substring search accesses no more than M + N chars
to search for a pattern of length M in a text of length N.

Pf. We access each pattern char once when constructing the DFA,
and each text char once (in the worst case) when simulating the DFA.

Remark. Takes time and space proportional o R M to construct afafi1,
but with cleverness, can reduce time and space to M.

Robert Boyer J. Strother Moore



Boyer-Moore: mismatched character heuristic Boyer-Moore: mismatched character heuristic

Intuition. Intuition.
 Scan characters in pattern from right to left. * Scan characters in pattern from right to left.
* Can skip M text chars when finding one not in the pattern. * Can skip M fext chars when finding one not in the pattern.

not in pattern
q 3j 01 2 3 4 5 6 7 8 91011 12 13 14 15 16 ext[]
X
fet—H A Y S T A CK N EEDLE i j 0 1 2 3 4\5 6 7 8 91011 12 13 14 15 16 17
0 s B ~—pattern AAABBAAGBAGBAAATBTEBAG.Y
6 5 E 5 6 v
8 5 N E E DL E 11 6 v
8 0 15 3 Y G Y
returni = 8 AN
returni = 18 (no match)
33
Boyer-Moore: mismatched character heuristic Boyer-Moore: mismatched character heuristic
Q. How much to skip? Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in pat[]. A. Compute right[c] = rightmost occurrence of character c in patg].
N E E L E
< 0 1 2 3 4 5 rightlc] basic idea i 14§
A -1 -1 { {
rohe intR] B -1 -1 N L
rigl = new in ;
for (int ¢ = 0; ¢ < R; c++) c -1 -1 D L
right[c] = -1; D -1 3 3 t
o (et g = 07 g < L g E -1 12 > 5 ’ could do better with
right[pat.charAt(j)] = j; . -1 incrementi by j - right[’N’] i KMP-like table
L -1 4 4 to line up text with N in pattern } /
-1 -1
N 10 0 resetj to M-1 4
-1 j
Boyer-Moore skip table computation

35



Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Compute right[e] = rightmost occurrence of character c in pat[].

[y

(SN« R R
-
m m

; could do better with
KMP-like table
increment i by j+1 v / e tabie

reset j to M-1 ?
J

Mismatched character heuristic (mismatch not in pattern)

Easy fix. Set right[c] to -1 for characters not in pattern.

Boyer-Moore: Java implementation

public int search(String txt)
{
int N = txt.length() ;
int M = pat.length();
int skip;
for (int i = 0; i <= N-M; i += skip)
{

skip = 0;
for (int j = M-1; j >= 0; j--)
if (pat.charAt(j) !'= txt.charAt(i+j))

{
skip = Math.max (1, j - right[txt.charAt(i+]j)]);
break;
}
if (skip == 0) return i;
}

return N;

37

— compute skip value

— match

39

Boyer-Moore: mismatched character heuristic

Q. How much to skip?
A. Compute right[c] = rightmost occurrence of character c in patg].

heuristic is no help X -
i i+j
' v
E L E
D E
t
il
lining up text with rightmost E
would shift pattern left
could do better with
i KMP-like table
so increment i by 1 | /
reset j to M-1 ?
J

Boyer-Moore: analysis
Property. Substring search with the Boyer-Moore mismatched character
heuristic takes about ~ N/M character compares fo search for a pattern of

length M in a text of length l\vl\ affigan

Worst-case. Can be as bad as ~ M N.

i skip 012 3 456 7 89
txt— B B B B B B B B B B

0o 0 A B B B B <~—npat

1 1 A B B B B

2 1 A B B B B

3 1 A B B B B

4 1 A B B B B

5 1 A B B B B

Boyer-Moore variant. Can improve worst case to ~ 3 N by adding a
KMP-like rule to guard against repetitive patterns.

40



Rabin-Karp fingerprint search

Basic idea.

» Compute a hash of pattern characters O to M-1.

* For each i, compute a hash of text characters i to M+i-1.
* If pattern hash = text substring hash, check for a match.

pat.charAt(i)
i 01 2 3 4
2 6 5 3 5 %997 =613

txt.charAt(i)

5 6 7 8 91011 12 13 14 15
9 2 6 53 5 8 9 7 9 3
% 997 = 508

9 % 997 = 201

2 %997 = 715

% 997 = 971

6

6 5 % 997 = 442

6 match
’d

6

o

s

» Rabin-Karp

I NN NN
RoR R R R W
[T R R RV VS

9
9
9
9 5 3 %997 = 929

5 3 5 % 997 = 613

~— returni = 6 2

Michael Rabin, Turing Award ‘76 Basis for Rabin-Karp substring search
and Dick Karp, Turing Award '85

4

Efficiently computing the hash function Efficiently computing the hash function

Modular hash function. Using the notation # for txt.charat(i), Challenge. How to efficiently compute xi.1 given that we know x;.

we wish to compute
Xi=t RM1 + iy RM2 + |+ tip1 RO
Xi =t RM1 4+ £y RM2 + .+ tizm RO (mod Q)
Xivl = tisl RMV + g RM2 +  + tiym RO

Infuition. M-digit, base-R integer, modulo Q. Key property. Cando it in constant timel!

Xie1 = (x; = ti RMY) R + tiem
Horner's method. Linear-time method to evaluate degree-M polynomial.

i ... 2 3 45 6 7 ..
pat. charAt(i) // Compute hash for M-digit key current value 4 1 5 9 2 = et
% private int hash(String key) new value 15 9 2 6
0 2 %997 =2 R Q ¢ int h = 0; 4 1 5 9 2 currentvalue
1 2 6 %997 = (2¥10 + 6) % 997 = 26 for (int i = 0; i < M; i++) - 4000 0
2 2 6 5 %997 = (26%10 + 5) % 997 = 265 h = (R * h + key.charAt(j)) % Q; 1 S5 9 2 subtract leading digit
3 2 6 5 3 %997 = (26510 + 3) % 997 = 659 return h; ® 1 0  multiply by radix
4 2 6 5 3 5 %997 = (651%10 + 5) % 997 = 613 } 15920
+ 6 addnew trailing digit
Computing the hash value for the pattern with Horner’s method 159 2 6 new value

43



Rabin-Karp: Java implementation

public class RabinKarp {

private String pat; // the pattern

private int patHash; // pattern hash value

private int M; // pattern length

private int Q = 8355967; // modulus <«———+— alarge prime, but small enough
private int R; // radix to avoid 32-bit integer overflow
private int RM; // R*(M-1) % Q

public RabinKarp(String pat) {
this.R = 256;
this.pat = pat;
this.M = pat.length;

Rabin-Karp: Java implementation (continued)

public int search(String txt)
{
int N = txt.length();
if (N < M) return N;
int offset = hashSearch (txt);
if (offset == N) return N;

for (int i = 0; i < M; i++)

if (pat.charAt(i) != txt.charAt(offset + i)) «—

return N;
return offset;

private int hashSearch(String txt)

check if hash collision
corresponds to a match

RM = 1; <——t— precompute R"! (mod Q) {
for (int i = 1; i <= M-1; i++) int N = txt.length();
RM = (R * RM) % Q; : i
atHash i hash()at)? int txtHash = hash(txt);
B B - if (patHash == txtHash) return 0;
! for (int i = M; i < N; i++) | check for hash collision
{ using rolling hash function
rivate int hash(String ke
? . :/ ) g ¥) txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;
txtHash = (txtHash*R + txt.charAt(i)) % Q;
EEbilAE Sm copmen(EEtng ) , if (patHash == txtHash) return i - M + 1;
{ /* see next slide */ } N N
return 7
}

45 46

Rabin-Karp substring search example Rabin-Karp analysis
Proposition. Rabin-Karp substring search is extremely likely to be linear-time.

Worst-case. Takes time proportional to MN.

) * Inworst case, all substrings hash to same value.
i 01 2 3 456 7 8 9101112131415
3141509 26535897 9 3 * Then, need to check for match at each text position.
0 3 %997 =3 N
1 3 1 %997 = (3*10 + 1) % 997 = 31
; Yef ; 2
2 3 1 4 %0957 — (31%10 + 4) % 997 — 314 Theory. If Qs a sufficiently large random prime (about MN?2), then
303 1 4 1 %997 = (314%10 + 1) % 997 = 150 probability of a false collision is about 1/N = expected running time is linear.
4 3 1 4 1 5 %997 = (150%10 + 5) % 997 = 508 " R
5 1 4 1 5 9 %997 = ((508 + 3%(997 - 30))*10 + 9) % 997 = 201
6 4 1 5 9 2 %997 = ((201 + 1¥(997 - 30))*10 + 2) % 997 = 715 Practice. Choose Q to avoid integer overflow. Under reasonable assumptions,
’ L3902 6 w997 = (715 + 4n(997 = 3000710 + 6) % 997 = 971 probability of a collision is about 1/Q = linear in practice.
8 5 9 2 6 5 %997 = ((971 + 1#(997 - 30))*10 + 5) % 997 = 442 .
9 9 2 6 5 3 %997 = ((442 + 5%(997 - 30))*10 + 3) % 997 = 929
10 «— return i-w1 = 6 2 6 5 3 5 %997 = ((929 + 9%(997 - 30))*10 + 5) % 997 = 613
Rabin-Karp substring search example

47 48



Rabin-Karp fingerprint search

Advantages.
» Extends to 2D patterns.
 Extends fo finding multiple patterns.

Disadvantages.

* Arithmetic ops slower than char compares.
* Poor worst-case guarantee.

* Requires backup.

Q. How would you extend Rabin-Karp to efficiently search for any one of P
possible patterns in a text of length N?

v
<

Substring search cost summary

Cost of searching for an M-character pattern in an N-character text.

algorithm operation count backup space
(data structure) . in input? grt?ws
guarantee typical with
brute force MN 1IN yes 1
Knuth-Morris-Pratt
.
(full DEA ) 2N 1.IN no MR
.Knuth-Marrt'sthtt 3N LIN o M
(' mismatch transitions only )
Boyer-Moore 3N N/M yes R
Boyer-Moore
(mismatched character heuristic only ) MN N/M res R
Rabin-Karp" 7N* 7N no 1

# probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations

49



