
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 22, 2010 10:56:33 PM

3.5 Symbol Tables Applications

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

2

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

3

Set API

Mathematical set. A collection of distinct keys.

Q. How to implement?

 public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>>

SET() create an empty set

void add(Key key) add the key to the set

boolean contains(Key key) is the key in the set?

void remove(Key key) remove the key from the set

int size() return the number of keys in the set

Iterator<Key> iterator() iterator through keys in the set

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

4

Exception filter

% more list.txt
was it the of

% java WhiteList list.txt < tinyTale.txt
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of

% java BlackList list.txt < tinyTale.txt
best times worst times
age wisdom age foolishness
epoch belief epoch incredulity
season light season darkness
spring hope winter despair

list of exceptional words

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

5

Exception filter applications

application purpose key in list

spell checker identify misspelled words word dictionary words

browser mark visited pages URL visited pages

parental controls block sites URL bad sites

chess detect draw board positions

spam filter eliminate spam IP address spam addresses

credit cards check for stolen cards number stolen cards

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

6

Exception filter: Java implementation

public class WhiteList
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (set.contains(word))
 StdOut.println(word);
 }
 }
}

create empty set of strings

read in whitelist

print words in list

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

7

Exception filter: Java implementation

public class BlackList
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (!set.contains(word))
 StdOut.println(word);
 }
 }
}

create empty set of strings

read in blacklist

print words not in list

8

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 1. DNS lookup.

9

% more ip.csv
www.princeton.edu,128.112.128.15
www.cs.princeton.edu,128.112.136.35
www.math.princeton.edu,128.112.18.11
www.cs.harvard.edu,140.247.50.127
www.harvard.edu,128.103.60.24
www.yale.edu,130.132.51.8
www.econ.yale.edu,128.36.236.74
www.cs.yale.edu,128.36.229.30
espn.com,199.181.135.201
yahoo.com,66.94.234.13
msn.com,207.68.172.246
google.com,64.233.167.99
baidu.com,202.108.22.33
yahoo.co.jp,202.93.91.141
sina.com.cn,202.108.33.32
ebay.com,66.135.192.87
adobe.com,192.150.18.60
163.com,220.181.29.154
passport.net,65.54.179.226
tom.com,61.135.158.237
nate.com,203.226.253.11
cnn.com,64.236.16.20
daum.net,211.115.77.211
blogger.com,66.102.15.100
fastclick.com,205.180.86.4
wikipedia.org,66.230.200.100
rakuten.co.jp,202.72.51.22
...

% java LookupCSV ip.csv 0 1
adobe.com
192.150.18.60
www.princeton.edu
128.112.128.15
ebay.edu
Not found

% java LookupCSV ip.csv 1 0
128.112.128.15
www.princeton.edu
999.999.999.99
Not found

URL is key IP is value

IP is key URL is value

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 2. Amino acids.

10

% more amino.csv
TTT,Phe,F,Phenylalanine
TTC,Phe,F,Phenylalanine
TTA,Leu,L,Leucine
TTG,Leu,L,Leucine
TCT,Ser,S,Serine
TCC,Ser,S,Serine
TCA,Ser,S,Serine
TCG,Ser,S,Serine
TAT,Tyr,Y,Tyrosine
TAC,Tyr,Y,Tyrosine
TAA,Stop,Stop,Stop
TAG,Stop,Stop,Stop
TGT,Cys,C,Cysteine
TGC,Cys,C,Cysteine
TGA,Stop,Stop,Stop
TGG,Trp,W,Tryptophan
CTT,Leu,L,Leucine
CTC,Leu,L,Leucine
CTA,Leu,L,Leucine
CTG,Leu,L,Leucine
CCT,Pro,P,Proline
CCC,Pro,P,Proline
CCA,Pro,P,Proline
CCG,Pro,P,Proline
CAT,His,H,Histidine
CAC,His,H,Histidine
CAA,Gln,Q,Glutamine
CAG,Gln,Q,Glutamine
CGT,Arg,R,Arginine
CGC,Arg,R,Arginine
...

% java Lookup amino.csv 0 3
ACT
Threonine
TAG
Stop
CAT
Histidine

codon is key name is value

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 3. Class list.

11

% more classlist.csv
13,Berl,Ethan Michael,P01,eberl
11,Bourque,Alexander Joseph,P01,abourque
12,Cao,Phillips Minghua,P01,pcao
11,Chehoud,Christel,P01,cchehoud
10,Douglas,Malia Morioka,P01,malia
12,Haddock,Sara Lynn,P01,shaddock
12,Hantman,Nicole Samantha,P01,nhantman
11,Hesterberg,Adam Classen,P01,ahesterb
13,Hwang,Roland Lee,P01,rhwang
13,Hyde,Gregory Thomas,P01,ghyde
13,Kim,Hyunmoon,P01,hktwo
11,Kleinfeld,Ivan Maximillian,P01,ikleinfe
12,Korac,Damjan,P01,dkorac
11,MacDonald,Graham David,P01,gmacdona
10,Michal,Brian Thomas,P01,bmichal
12,Nam,Seung Hyeon,P01,seungnam
11,Nastasescu,Maria Monica,P01,mnastase
11,Pan,Di,P01,dpan
12,Partridge,Brenton Alan,P01,bpartrid
13,Rilee,Alexander,P01,arilee
13,Roopakalu,Ajay,P01,aroopaka
11,Sheng,Ben C,P01,bsheng
12,Webb,Natalie Sue,P01,nwebb
...

% java Lookup classlist.csv 4 1
eberl
Ethan
nwebb
Natalie

% java Lookup classlist.csv 4 3
dpan
P01

login is key
first name
is value

login is key
precept
is value

public class LookupCSV
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int keyField = Integer.parseInt(args[1]);
 int valField = Integer.parseInt(args[2]);

 ST<String, String> st = new ST<String, String>();
 while (!in.isEmpty())
 {
 String line = in.readLine();
 String[] tokens = database[i].split(",");
 String key = tokens[keyField];
 String val = tokens[valField];
 st.put(key, val);
 }

 while (!StdIn.isEmpty())
 {
 String s = StdIn.readString();
 if (!st.contains(s)) StdOut.println("Not found");
 else StdOut.println(st.get(s));
 }
 }
}

12

Dictionary lookup: Java implementation

process input file

build symbol table

process lookups
with standard I/O

13

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Goal. Index a PC (or the web).

File indexing

14

Goal. Given a list of files specified as command-line arguments, create an
index so that can efficiently find all files containing a given query string.

Solution. Key = query string; value = set of files containing that string.
15

File indexing

% ls *.txt
aesop.txt magna.txt moby.txt
sawyer.txt tale.txt

% java FileIndex *.txt
freedom
magna.txt moby.txt tale.txt

whale
moby.txt

lamb
sawyer.txt aesop.txt

% ls *.java

% java FileIndex *.java
BlackList.java Concordance.java
DeDup.java FileIndex.java ST.java
SET.java WhiteList.java

import
FileIndex.java SET.java ST.java

Comparator
null

public class FileIndex
{
 public static void main(String[] args)
 {
 ST<String, SET<File>> st = new ST<String, SET<File>>();

 for (String filename : args) {
 File file = new File(filename);
 In in = new In(file);
 while !(in.isEmpty())
 {
 String word = in.readString();
 if (!st.contains(word))
 st.put(s, new SET<File>());
 SET<File> set = st.get(key);
 set.add(file);
 }
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 StdOut.println(st.get(query));
 }
 }
}

File indexing

16

for each word in file,
add file to
corresponding set

list of file names
from command line

process queries

symbol table

Book index

Goal. Index for an e-book.

17

Concordance

Goal. Preprocess a text corpus to support concordance queries: given a word,
find all occurrences with their immediate contexts.

18

% java Concordance tale.txt
cities
tongues of the two *cities* that were blended in

majesty
their turnkeys and the *majesty* of the law fired
me treason against the *majesty* of the people in
of his most gracious *majesty* king george the third

princeton
no matches

public class Concordance
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 String[] words = StdIn.readAll().split("\\s+");
 ST<String, SET<Integer>> st = new ST<String, SET<Integer>>();
 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<Integer>());
 SET<Integer> pages = st.get(s);
 set.put(i);
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 SET<Integer> set = st.get(query);
 for (int k : set)
 // print words[k-5] to words[k+5]
 }
 }
}

Concordance

19

read text and
build index

process queries
and print

concordances

20

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Matrix-vector multiplication (standard implementation)

21

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

...
double[][] a = new double[N][N];
double[] x = new double[N];
double[] b = new double[N];
...
// initialize a[][] and x[]
...
for (int i = 0; i < N; i++)
{
 sum = 0.0;
 for (int j = 0; j < N; j++)
 sum += a[i][j]*x[j];
 b[i] = sum;
}

nested loops
N2 running time

Problem. Sparse matrix-vector multiplication.
Assumptions. Matrix dimension is 10,000; average nonzeros per row ~ 10.

Sparse matrix-vector multiplication

22

 A * x = b

1D array (standard) representation.

• Constant time access to elements.

• Space proportional to N.

Symbol table representation.

• key = index, value = entry

• Efficient iterator.

• Space proportional to number of nonzeros.

23

Vector representations

 0 .36 0 0 0 .36 0 0 0 0 0 0 0 0 .18 0 0 0 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 1 .36 5 .36 14 .18

key value
st

24

Sparse vector data type

public class SparseVector
{
 private HashST<Integer, Double> v;

 public SparseVector()
 { v = new HashST<Integer, Double>(); }

 public void put(int i, double x)
 { v.put(i, x); }

 public double get(int i)
 {
 if (!v.contains(i)) return 0.0;
 else return v.get(i);
 }

 public Iterable<Integer> indices()
 { return v.keys(); }

 public double dot(double[] that)
 {
 double sum = 0.0;
 for (int i : indices())
 sum += that[i]*this.get(i);
 return sum;
 }
}

empty ST represents all 0s vector

a[i] = value

return a[i]

dot product is constant
time for sparse vectors

HashST because order not important

2D array (standard) representation: Each row of matrix is an array.

• Constant time access to elements.

• Space proportional to N2.

Sparse representation: Each row of matrix is a sparse vector.

• Efficient access to elements.

• Space proportional to number of nonzeros (plus N).

25

Matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

Sparse matrix-vector multiplication

26

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

 ..
 SparseVector[] a;
 a = new SparseVector[N];
 double[] x = new double[N];
 double[] b = new double[N];
 ...
 // Initialize a[] and x[]
 ...
 for (int i = 0; i < N; i++)
 b[i] = a[i].dot(x);

one loop
linear running time
for sparse matrix

27

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors
‣ challenges

Searching challenge 2A:

Problem. IP lookups in a web monitoring device.
Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

28

Searching challenge 2A

Problem. IP lookups in a web monitoring device.
Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

29

total cost of insertions is c*10000002 =
c*1,000,000,000,000 (way too much)

!

Searching challenge 2B

Problem. IP lookups in a web monitoring device.
Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

30

Searching challenge 2B

Problem. IP lookups in a web monitoring device.
Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

31

total cost of insertions is
c1*10002 = c1*1000000

and dominated by c2*1000000000
cost of lookups

!

Searching challenge 4

Problem. Spell checking for a book.
Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

32

Searching challenge 4

Problem. Spell checking for a book.
Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

33

easy to presort dictionary total cost
of lookups is optimal c2*1,500,000!

Searching challenge 1A

Problem. Maintain symbol table of song names for an iPod.
Assumption A. Hundreds of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

34

Searching challenge 1A

Problem. Maintain symbol table of song names for an iPod.
Assumption A. Hundreds of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

35

1002 = 10,000!

Searching challenge 1B

Problem. Maintain symbol table of song names for an iPod.
Assumption B. Thousands of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

36

Searching challenge 1B

Problem. Maintain symbol table of song names for an iPod.
Assumption B. Thousands of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

37

maybe, but 10002 = 1,000,000 so user
might wait for complete rebuild of index

!

Searching challenge 3

Problem. Frequency counts in “Tale of Two Cities.”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

38

Searching challenge 3

Problem. Frequency counts in “Tale of Two Cities.”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

39

total cost of searches:
c2*1,350,000,000

maybe, but total cost of
insertions is c1*100,000,000!

Problem. Frequency counts in “Tale of Two Cities”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.
5) BSTs.

Searching challenge 3 (revisited):

40

insertion cost < 10000 * 1.38 * lg 10000 < .2 million
lookup cost < 135000 * 1.38 * lg 10000 < 2.5 million

!

Problem. Index for a PC or the web.
Assumptions. 1 billion++ words to index.

Which searching method to use?

• Hashing

• Red-black-trees

• Doesn’t matter much.

Searching challenge 5

41

Problem. Index for a PC or the web.
Assumptions. 1 billion++ words to index.

Which searching method to use?

• Hashing

• Red-black-trees

• Doesn’t matter much.

Solution. Symbol table with:

• Key = query string.

• Value = set of pointers to files.

Searching challenge 5

42

!
too much space

sort the (relatively few) search hits

Searching challenge 6

Problem. Index for an e-book.
Assumptions. Book has 100,000+ words.

Which searching method to use?
1. Hashing
2. Red-black-tree
3. Doesn’t matter much.

43

Searching challenge 6

Problem. Index for an e-book.
Assumptions. Book has 100,000+ words.

Which searching method to use?
1. Hashing
2. Red-black-tree
3. Doesn’t matter much.

Solution. Symbol table with:

• Key = index term.

• Value = ordered set of pages on which term appears.

44

!
need ordered

iteration

