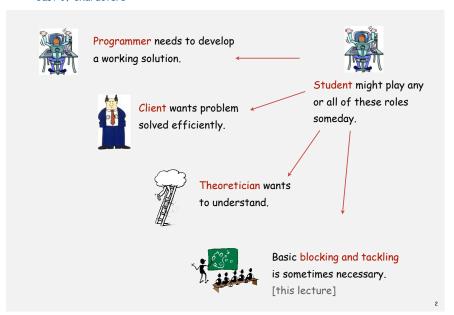
1.4 Analysis of Algorithms

- > estimating running time
- ▶ mathematical analysis
- ▶ order-of-growth hypotheses
- **▶** input models
- ▶ measuring space

Reference: Intro to Programming in Java, Section 4.1

Algorithms in Java, 4th Edition • Robert Sedgewick and Kevin Wayne • Copyright © 2009 • January 22, 2010 10:11:28 AM

Cast of characters



Running time

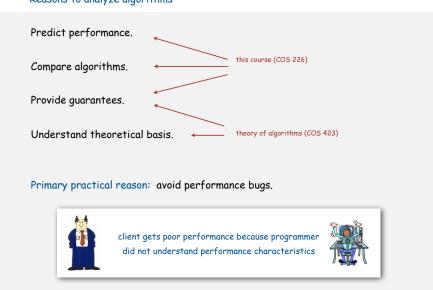
"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise—By what course of calculation can these results be arrived at by the machine in the shortest time?" — Charles Babbage

Charles Babbage (1864)

how many times do you have to turn the crank?

Analytic Engine

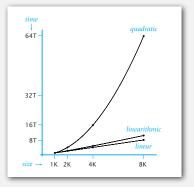
Reasons to analyze algorithms



Some algorithmic successes

Discrete Fourier transform.

- Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N² steps.
- FFT algorithm: N log N steps, enables new technology.

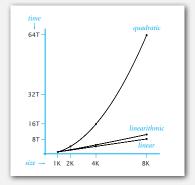


Some algorithmic successes

N-body Simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: N² steps.
- Barnes-Hut: N log N steps, enables new research.

PU '81



Scientific analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

- Observe some feature of the universe.
- Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- · Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- · Hypotheses must be falsifiable.

Universe = computer itself.

→ estimating running time

Experimental algorithmics

Every time you run a program you are doing an experiment!

First step. Debug your program!

Second step. Choose input model for experiments.

Third step. Run and time the program for problems of increasing size.

Example: 3-sum

3-sum. Given N integers, find all triples that sum to exactly zero.

```
% more input8.txt
8
30 -30 -20 -10 40 0 10 5
% java ThreeSum < input8.txt
4
30 -30 0
30 -20 -10
-30 -10 40
-10 0 10</pre>
```

Context. Deeply related to problems in computational geometry.

10

3-sum: brute-force algorithm

Empirical analysis

Run the program for various input sizes and measure running time.

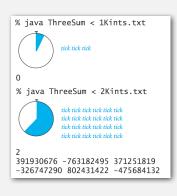
ThreeSum.java

N	time (seconds) †	
1000	0.26	
2000	2.16	
4000	17.18	
8000	137.76	

† Running Linux on Sun-Fire-X4100

Measuring the running time

Q. How to time a program? A. Manual.



Measuring the running time

Q. How to time a program?

A. Automatic.

```
Stopwatch stopwatch = new Stopwatch();
ThreeSum.count(a);
double time = stopwatch.elapsedTime();
StdOut.println("Running time: " + time + " seconds");
```

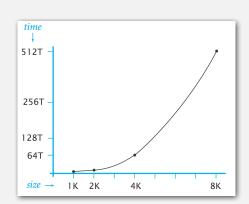
client code

```
public class Stopwatch
   private final long start = System.currentTimeMillis();
  public double elapsedTime()
     long now = System.currentTimeMillis();
     return (now - start) / 1000.0;
```

implementation (part of stdlib.jar, See http://www.cs.princeton.edu/introcs/stdlib)

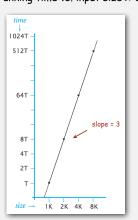
Data analysis

Plot running time as a function of input size N.



Data analysis

Log-log plot. Plot running time vs. input size N on log-log scale.



Regression. Fit straight line through data points: $a N^{b}$. Hypothesis. Running time grows with the cube of the input size: aN^3 .

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power law hypothesis.

Run program, doubling the size of the input.

N	time (seconds) †	ratio	lg ratio
500	0.03	-	
1,000	0.26	7.88	2.98
2,000	2.16	8.43	3.08
4,000	17.18	7.96	2.99
8,000	137.76	7.96	2.99

seems to converge to a constant $b \approx 3$

Hypothesis. Running time is about $a N^b$ with $b = \lg$ ratio.

Caveat. Can't identify logarithmic factors with doubling hypothesis.

Prediction and verification

Hypothesis. Running time is about $a N^3$ for input of size N.

- Q. How to estimate a?
- A. Run the program!

N	time (seconds)	
4,000	17.18	
4,000	17.15	
4,000	17.17	

 $17.17 = a \times 4000^{3}$ $\Rightarrow a = 2.7 \times 10^{-10}$

Refined hypothesis. Running time is about $2.7 \times 10^{-10} \times N^3$ seconds.

Prediction. $1{,}100$ seconds for $N = 16{,}000$.

Observation.

N	time (seconds)
16384	1118.86

validates hypothesis!

18

Experimental algorithmics

Many obvious factors affect running time:

- · Machine.
- Compiler.
- · Algorithm.
- Input data.

More factors (not so obvious):

- · Caching.
- Garbage collection.
- · Just-in-time compilation.
- CPU use by other applications.

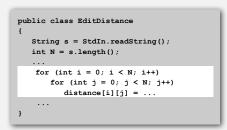
 $\ensuremath{\mathsf{Bad}}$ news. It is often difficult to get precise measurements.

Good news. Easier than other sciences.

e.g., can run huge number of experiments

War story (from COS 126)

Q. How long does this program take as a function of N?



Jenny. $\sim c_1 N^2$ seconds.

Kenny. $\sim c_2 N$ seconds.

Ν	time	ш
1,000	0.11	П
2,000	0.35	П
4,000	1.6	П
8,000	6.5	

N	time	
250	0.5	
500	1.1	
1,000	1.9	
2,000	3.9	

estimating running time

→ mathematical analysis

- order-of-growth hypotheses
- → input models
- measuring space

21

Mathematical models for running time

Total running time: sum of $cost \times frequency$ for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

THE CLASSIC WORK
NEWLY ITERATION OF BETWEEN

THE ACT Of
Computer
Programming
VACUARY:
Productorial Algorithms
The dation
The Act of Computer
Programming
VACUARY:
Productorial Algorithms
The dation
The Act of Computer
Programming
VACUARY:
DONALD E. KNUTH

Donald Knuth 1974 Turing Award

In principle, accurate mathematical models are available.

. . .

Cost of basic operations

operation	example	nanoseconds †
integer add	a + b	2.1
integer multiply	a * b	2.4
integer divide	a / b	5.4
floating point add	a + b	4.6
floating point multiply	a * b	4.2
floating point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math.atan2(y, x)	129.0

 \dagger Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Cost of basic operations

operation	example	nanoseconds †
variable declaration	int a	<i>C</i> 1
assignment statement	a = b	C2
integer compare	a < b	C 3
array element access	a[i]	C4
array length	a.length	C 5
1D array allocation	new int[N]	c ₆ N
2D array allocation	new int[N][N]	C7 N ²
string length	s.length()	C8
substring extraction	s.substring(N/2, N)	C 9
string concatenation	s + t	c10 N

Novice mistake. Abusive string concatenation.

2.

Example: 1-sum

Q. How many instructions as a function of N?

operation	frequency
variable declaration	2
assignment statement	2
less than compare	N + 1
equal to compare	N
array access	N
increment	≤ 2 N

between N (no zeros) and 2N (all zeros)

Example: 2-sum

Q. How many instructions as a function of N?

operation	frequency	$0 + 1 + 2 + \dots + (N - 1) = \frac{1}{2}N(N - 1)$ (N)
variable declaration	N + 2	$= \binom{N}{2}$
assignment statement	N + 2	
less than compare	1/2 (N + 1) (N + 2)/	
equal to compare	1/2 N (N – 1)	4-4:44
array access	N (N - 1)	tedious to count exactly
increment	≤ N ²	

Tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

Ex 1.
$$6N^3 + 20N + 16$$
 $\sim 6N^3$

Ex 2.
$$6N^3 + 100N^{4/3} + 56 \sim 6N^3$$

Ex 3.
$$6N^3 + 17N^2 \lg N + 7N \sim 6N^3$$

discard lower-order terms (e.g., N = 1000: 6 billion vs. 169 million)

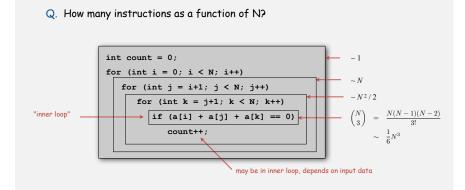
Technical definition.
$$f(N) \sim g(N)$$
 means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$

Example: 2-sum

Q. How long will it take as a function of N?

operation	frequency	time per op	total time
variable declaration	~ N	<i>C</i> 1	~ c ₁ N
assignment statement	~ N	C2	~ c ₂ N
less than comparison	~ 1/2 N ²	6	~ c ₃ N ²
equal to comparison	~ 1/2 N ²	C3	~ 13 10 2
array access	~ N ²	C4	~ C4 N ²
increment	≤ N ²	<i>C</i> 5	≤ C ₅ N ²
total			~ c N ²
depends on input data			

Example: 3-sum



Remark. Focus on instructions in inner loop; ignore everything else!

Bounding the sum by an integral trick

- Q. How to estimate a discrete sum?
- A1. Take COS 340.
- A2. Replace the sum with an integral, and use calculus!

$$\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x \, dx \sim \frac{1}{2} N^2$$

Ex 2.
$$1 + 1/2 + 1/3 + ... + 1/N$$
.
$$\sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x} dx = \ln N$$

$$\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=i}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} dz \, dy \, dx \sim \frac{1}{6} N^{3}$$

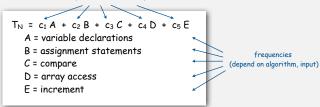
Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,

- · Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.

costs (depend on machine, compilee)t



Bottom line. We use approximate models in this course: $T_N \sim c N^3$.

▶ order-of-growth hypotheses

Common order-of-growth hypotheses

To determine order-of-growth:

- Assume a power law $T_N \sim a \, N^{\,b}$.
- ullet Estimate exponent b with doubling hypothesis.
- Validate with mathematical analysis.

EX. ThreeSumDeluxe.java

Food for precept. How is it implemented?

N	time (seconds)
1,000	0.26
2,000	2.16
4,000	17.18
8,000	137.76

ThreeSum.java

N	time (seconds)
1,000	0.43
2,000	0.53
4,000	1.01
8,000	2.87
16,000	11.00
32,000	44.64
64,000	177.48

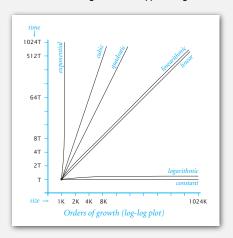
ThreeSumDeluxe.java

Common order-of-growth hypotheses

Good news. the small set of functions

1, $\log N$, N, $N \log N$, N^2 , N^3 , and 2^N

suffices to describe order-of-growth of typical algorithms.



3

Common order-of-growth hypotheses

growth rate	name	typical code framework	description	example	T(2N) / T (N)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	<pre>for (int i = 0; i < N; i++) {</pre>	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++)</pre>	double loop	check all pairs	4
N³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all possibilities	T(N)

Practical implications of order-of-growth

growth name		effect on a program that runs for a few seconds		
	description	time for 100x more data	size for 100x faster computer	
1	constant	independent of input size	-	-
log N	logarithmic	nearly independent of input size	-	-
N	linear	optimal for N inputs	a few minutes	100×
N log N	linearithmic	nearly optimal for N inputs	a few minutes	100×
N ²	quadratic	not practical for large problems	several hours	10×
N³	cubic	not practical for medium problems	several weeks	4-5x
2 ^N	exponential	useful only for tiny problems	forever	1×

- ▶ estimating running time
- ▶ mathematical analysis
 - order-of-growth hypotheses
- ▶ input models
 - measuring space

37

Types of analyses

Best case. Lower bound on cost.

- Determined by "easiest" input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides guarantee for all inputs.

Average case. "Expected" cost.

- Need a model for "random" input.
- Provides a way to predict performance.

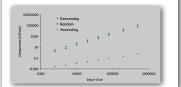
Ex 1. Array accesses for brute-force 3-sum.

- Best: ~ ½N³
- Average: ~ ½N³
- Worst: ~ ½N³

Ex 2. Compares for insertion sort.

- Best (ascending order): ~ N.
- Average (random order): ~ $\frac{1}{4}$ N²
- Worst (descending order): $\sim \frac{1}{2}N^2$

(details in Lecture 4)



38

Commonly-used notations

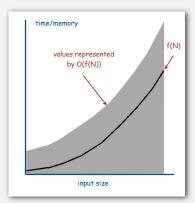
notation	provides	example	shorthand for	used to
Tilde	leading term	~ 10 N ²	10 N ² 10 N ² + 22 N log N 10 N ² + 2 N +37	provide approximate model
Big Theta	asymptotic growth rate	Θ(N²)	N ² 9000 N ² 5 N ² + 22 N log N+ 3N	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	O(N ²)	N ² 100 N 22 N log N+ 3 N	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	Ω(N ²)	9000 N ² N ⁵ N ³ + 22 N log N+ 3 N	develop lower bounds

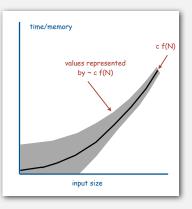
Common mistake. Interpreting big-Oh as an approximate model.

Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.

- Big-Oh notation suppresses leading constant.
- Big-Oh notation only provides upper bound (not lower bound).





→ measuring space

Typical memory requirements for primitive types in Java

Bit. 0 or 1. Byte. 8 bits. Megabyte (MB). 1 million bytes.

Gigabyte (GB). 1 billion bytes.

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

Typical memory requirements for arrays in Java

Array overhead. 16 bytes.

type	bytes
char[]	2N + 16
int[]	4N + 16
double[]	8N + 16

type	bytes
char[][]	2N ² + 20N + 16
int[][]	4N ² + 20N + 16
double[][]	8N ² + 20N + 16

one-dimensional arrays

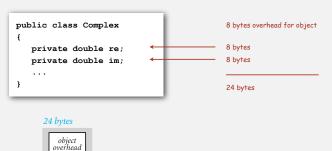
two-dimensional arrays

Ex. An N-by-N array of doubles consumes $\sim 8N^2$ bytes of memory.

Typical memory requirements for objects in Java

Object overhead. 8 bytes. Reference. 4 bytes.

Ex 1. A complex object consumes 24 bytes of memory.

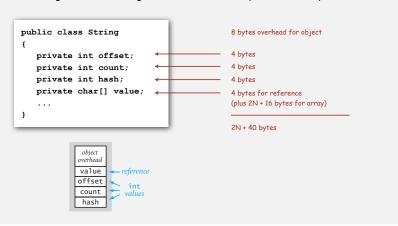


← double im

Typical memory requirements for objects in Java

Object overhead. 8 bytes. Reference. 4 bytes.

Ex 2. A virgin string of length N consumes ~ 2N bytes of memory.



Example 1

Q. How much memory does QuickUWPC use as a function of N?

```
public class QuickUWPC
{
   private int[] id;
   private int[] sz;

   public QuickUWPC(int N)
   {
      id = new int[N];
      sz = new int[N];
      for (int i = 0; i < N; i++) id[i] = i;
      for (int i = 0; i < N; i++) sz[i] = 1;
   }

   public boolean find(int p, int q)
   { ... }

   public void unite(int p, int q)
   { ... }
}</pre>
```

46

Example 2

Q. How much memory does this code fragment use as a function of N? A.

```
int N = Integer.parseInt(args[0]);
for (int i = 0; i < N; i++) {
   int[] a = new int[N];
   ...
}</pre>
```

Remark. Java automatically reclaims memory when it is no longer in use.

not always easy for Java to know /

Turning the crank: summary

In principle, accurate mathematical models are available.

In practice, approximate mathematical models are easily achieved.

Timing may be flawed?

- Limits on experiments insignificant compared to other sciences.
- · Mathematics might be difficult?
- Only a few functions seem to turn up.
- Doubling hypothesis cancels complicated constants.

Actual data might not match input model?

- Need to understand input to effectively process it.
- Approach 1: design for the worst case.
- Approach 2: randomize, depend on probabilistic guarantee.

