
COS 226 Algorithms and Data Structures Fall 2005

Midterm Solutions

1. 8 sorting algorithms.

0 5 7 1 2 6 4 8 3 9

2. Algorithm Properties.

C Max height of a binary heap with N items.

C Max height of red black tree with N items.

C Max function call stack depth to mergesort N items.

D Max number of probes to search for a key in a double hash-
ing table with N key-value pairs.

C Max height of a WQUPC (weighted quick union with path
compression) tree with N items.

The only tricky one is WQUPC. The log∗ N running time per operation is an amortized
bound. We do know the height is O(log N) is for the same reason that it is for weighted quick
union (Sedgewick, Property 1.3).

3. Analysis of algorithms.

D C B

4. Priority queues.

a a

1



5. Red-black trees.

a

6. Longest common substring.

Our solution is very similar to finding the longest repeated substring, except that we must
be careful to find a substring that appears in each book.

Algorithm. Form the suffixes of the two text corpuses and sort them. Now, among all
adjacent suffixes in the sorted ordering such that one suffix is from each book, find the pair
that has the longest common prefix.

Correctness. Similar to the longest repeated substring problem from lecture. Sorting
brings the longest common substrings together.

Implementation detail. Before forming the suffixes, we append the character ’\1’ to the
end of the first corpus and ’\2’ to the end of the second corpus. Now, by looking at the last
character of a suffix, we can tell which book it came from. This enables us to easily implement
the such that one suffix is from each book part of the algorithm. (Alternatively, we could sort
the suffixes of each book independently, and then merge them together ala mergesort. While
merging, we could identify the longest common substring.)

Running time. Assuming the length of the longest common substring (and longest re-
peated substring in each book) is not too long, we sort using 3-way radix quicksort with
cutoff to insertion sort. We expect around 2N lnN character comparisons, where N is the to-
tal number of characters in the input. Forming the suffixes is efficient using Java’s substring
method.

Notes. As with longest repeated substring, it’s possible to solve the problem is linear time
using suffix trees. However this approach is likely to be slower in practice unless the length
of the longest common substring is relatively large.

2


