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COS 226 Algorithms and Data Structures Spring 2004

Final Solutions

1. Analysis of algorithms.

Answers may vary.

(a) Amortized: an amortized analysis provides a worst-case guarantee for a sequence of N
operations. Any individual operation can be slow, but there is a performance guarantee
for the sequence. For example, when inserting elements into an array, a common strategy
is to double the size of the array when needed. This doubling operation is very expensive.
But it can only happen after a long sequence of cheap insertions.

Array/stack/binary heap/hash table with repeated doubling, splay tree, union-find, Fi-
bonacci heap.

(b) Worst-case: a worst-case analysis provides a guarantee on the running time (in terms
of the size of the problem) for any possible input. This was the most common style of
analysis used in the course.

Mergesort, heapsort, red-black tree, Knuth-Morris-Pratt, Graham scan, rectangle inter-
section, Prim, Kruskal, Dijkstra, Bellman-Ford, Ford-Fulkerson with shortest augment-
ing path heuristic.

(c) Average case: an average case analysis provides a performance expectation assuming the
input comes from a (specific) random input distribution.

Hashing where keys are uniformly distributed, quicksort where input is a random per-
mutation, BST where input is a random permutation, brute force string search assuming
inputs are random bitstring, quick elimination assuming random points in plane.

(d) Randomized: a randomized analysis provides a performance expectation for any possible
input. The randomness occurs from the algorithm itself, not from any assumption on
the input.

Quicksort with random partition element, randomized BST, Karp-Rabin with random
hash function.

2. String searching and pattern matching.

(a)
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(b)

3. Convex hull.

A

AB

ABC

ABCD

ABCDE

ABF

ABFG

ABFH

ABFI

4. Discretized Voronoi diagram.

(a) create(R). Use a helper data type Pixel to manipulate pixels. Initialize an R-by-R grid
of pixels to null so that nearest[i][j] is the inserted pixel closest to (i, j).

(b) find(i, j). Return nearest[i][j].

(c) insert(x, y). Create a new Pixel object p with coordinates (x, y). For each i and j, check
whether (i, j) is closer to p than it is to nearest[i][j]. If it is, update nearest[i][j].

5. Undirected graphs.

(a) The preorder traversal order is: ABCDEGHF. The preorder numbers are 01234756.

(b) The postorder traveral order is: DFHGECBA. The postorder numbers are 76504132.

6. Minimum spanning tree.

(a) The key observation is that to compute an MST you only need to be able to compare
edge weights. The smallest value is e−24 and the biggest is e−9. If we run Kruskal’s
algorithm, we discover the edges in the following order

B-H F-H C-F A-F G-H E-F D-E
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(b) If −∞ ≤ x ≤ e−17 we obtain an MST by including B-D and deleting D-E.

7. Max flow, min cut.

(a) There are two possible shortest augmenting paths: s-3-2-5-t and s-3-2-6-t.

(b) The residual capacity of the shortest augmenting path is 1 in both cases. The original
flow has value 25, so the resulting flow has value 26.

(c) The flow is not optimal. In both cases the augmenting path s-4-3-2-5-t remains.

8. Data compression.

(a) 5 rdrcbaaaaba

(b) carabadabra

9. Linear programming.

maximize 320(F1 + C1 + B1) + 400(F2 + C2 + B2) + 360(F3 + C3 + B3) + 290(F4 + C4 + B4)
subject to: F1 + F2 + F3 + F4 ≤ 12

C1 + C2 + C3 + C4 ≤ 18
B1 + B2 + B3 + B4 ≤ 10
F1 + F2 + F3 + F4 = C1 + C2 + C3 + C4

F1 + F2 + F3 + F4 = B1 + B2 + B3 + B4

F1 + C1 + B1 ≤ 20
F2 + C2 + B2 ≤ 16
F3 + C3 + B3 ≤ 25
F4 + C4 + B4 ≤ 23
500F1 + 700F2 + 600F3 + 400F4 ≤ 7000
500C1 + 700C2 + 600C3 + 400C4 ≤ 9000
500B1 + 700B2 + 600B3 + 400B4 ≤ 5000
F1, F2, F3, F4, C1, C2, C3, C4, B1, B2, B3, B4 ≥ 0

We note that the first two constraints are redundant since they are implied by the next 3
constraints.

10. Reductions.

Create a new directed graph G′ with the same set of vertices. For each undirected edge v-w
in G, add two directed edges to G′: one edge from v to w with distance c(v), and one from w

to v with distance c(w). The shortest path from s to t in G′ is the path in G that minimizes
the sum of the vertex weights. To see why, observe that we pay the price c(v) whenever we
leave vertex v. Since we leave each vertex on the path once, this will sum to the right value.
Since all the edge weights are nonnegative, there is no incentive to revisit a vertex so we will
use each original edge in at most once (either in the forward or reverse direction).


