
108 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

!Laurie A. Williams and
Robert R. Kessler

When it comes to programming practices,
studies show two heads are almost always better than one.

ALL I REALLY N
TO KNOW
ABOUTPA
PROGRAMMI
I LEARNED
KINDERGAR T

COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5 109

P
air programming is a practice in which
two programmers work side-by-side at
one computer, continuously collaborating
on the same design, algorithm, code, or
test. This method has been demonstrated
to improve productivity and the quality
of software products. Moreover, a recent
survey (hereafter referred to as “the pair
programming survey”) found that pro-

grammers were universally more confident in their solutions
when programming in pairs as opposed to working alone.
Likewise, 96% agreed they enjoy their jobs more when pair
programming [12].

However, most programmers are long conditioned to
working alone and often resist the transition to pair program-
ming. Ultimately, most make this transition with great suc-
cess. The goal of this article is to help programmers become
effective pair programmers. The transition to and on-going
success as a pair programmer often involves practicing every-
day civility, as illustrated in an essay by Robert Fulghum (see
box). Here, we take each line from the essay (with occasional

poetic license) to
explore the inherent
lessons related to suc-
cessful pair program-
ming.

Anecdotal and initial
statistical evidence indi-
cates pair programming
is highly beneficial. In
extreme programming
(XP)—an emerging
software development
methodology—all pro-
duction code is written
with a partner. XP was
developed initially by
Smalltalk code devel-
oper and consultant
Kent Beck with col-
leagues Ward Cunning-
ham and Ron Jeffries.
XP’s requirements gath-
ering, resource alloca-
tion, and design
practices are a radical
departure from most
accepted methodolo-
gies. Customer require-
ments are written as
fairly informal “User
Story” cards where a

NEED

AIR
ING

IN
TEN

rough effort estimate is assigned to the cards. The
cards are then designated for a programming pair, and
coding begins. With no formal design procedures or
discussions on overall system planning or architec-
ture, the pair determines which code in the code base
needs to be added or changed. This practice requires
the use of collective code ownership whereby any pro-
gramming pair can modify or add to any code in the
code base, regardless of the original programmer.
Extensive unit testing is continually performed on
this ever-enlarging code base.

The evidence of XP’s success is highly anecdotal,
but so impressive it has aroused the curiosity of many
highly respected software-engineering researchers and
consultants. The largest example of its accomplish-
ment is the sizable Chrysler Comprehensive Com-
pensation system launched in May 1997. After
finding significant, initial development problems,
Beck and Jeffries restarted this development using XP

principles. The payroll system pays some 10,000
employees each month and has 2,000 classes and
30,000 methods [1]. It went into production almost
on schedule, and is still operational today.

XP attributes great success to the use of pair pro-
gramming by all programmers—experts and novices
alike. XP advocates pair programming with such fer-
vor that even prototyping done solo is scrapped and
rewritten with a partner. One key element is that a
continuous code review is performed while working
in pairs. It is amazing to see how many obvious, yet
unnoticed, defects are recognized when another per-
son is watching over a shoulder. According to [11],
the results demonstrate that two programmers work-
ing together are more than twice as fast and think of
more than twice as many solutions to a problem as
two working alone, while attaining higher defect pre-
vention and defect removal, leading to a higher qual-
ity product.

In addition, two other studies support the use of
pair programming. Larry Constantine, a noted pro-
grammer and consultant, reported on some “dynamic
duos” during a visit to P.J. Plaugher’s software com-
pany, Whitesmiths, Ltd., providing anecdotal support
for collaborative programming. He immediately

noticed a room full of paired programmers working
on the same code at one computer. “Having adopted
this approach, they were delivering finished and
tested code faster than ever … The code that came
out the back of the two programmer terminals was
nearly 100% bug free … it was better code, tighter
and more efficient, having benefited from the think-
ing of two bright minds and the steady dialogue
between two trusted terminal-mates … Two pro-
grammers in tandem is not redundancy; it’s a direct
route to greater efficiency and better quality, he con-
tends.” [3].

An experiment by John Nosek at Temple Univer-
sity studied 15 full-time, experienced programmers
working for 45 minutes on a challenging problem,
important to their organization, in their own envi-
ronment, and with their own equipment. Five
worked individually, 10 worked collaboratively in five
pairs. Conditions and materials used were the same

for both the experimental (team) and control (indi-
vidual) groups. This study provided statistically sig-
nificant results, using a two-sided t-test. “To the
surprise of the managers and participants, all the
teams outperformed the individual programmers,
enjoyed the problem-solving process more, and had
greater confidence in their solutions,” Nosek explains.

Moreover, the groups completed the task 40%
more quickly and effectively by producing better
algorithms and code in less time. The majority of the
programmers were skeptical of the value of collabo-
ration in working on the same problem and thought
it would not be an enjoyable process. However,
results show collaboration improved both their per-
formance and their enjoyment of the problem-solv-
ing process [8].

The respondents of the pair programming survey
gave overwhelming support for the technique. Says
one: “I strongly feel pair programming is the primary
reason our team has been successful. It has given us a
very high level of code quality (almost to the point of
zero defects). The only code we have ever had errors
in was code that wasn’t pair programmed … utilized.”

Examination of why pair programming works with
such success reveals that a number of elementary

110 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

MOST PROGRAMMERS ARE LONG

CONDITIONED TO WORKING ALONE AND OFTEN RESIST THE

TRANSITION TO PAIR PROGRAMMING. ULTIMATELY, HOWEVER,

MOST MAKE THIS TRANSITION WITH GREAT SUCCESS.

principles come into play. These principles can be dis-
cussed in the context of Fulghum’s essay:

Share everything.
In pair programming, two programmers are assigned
to jointly produce one artifact (design, algorithm,
code, among others). The two programmers are like
a coherent, intelligent organism working with one
mind, responsible for every aspect of this artifact.
One person is typing or writing, the other is contin-
ually reviewing the work. Both are equal participants
in the process. It is not acceptable to say or think
things such as, “You made an error in your design,”
or “That defect was from your part.” Instead, “We
screwed up the design,” or better yet, “We just got
through our test with no defects!” Both partners own
everything.

Play fair.
With pair programming, one person drives (has con-
trol of the keyboard or is recording design ideas)
while the other is continuously reviewing the work.
Even when one programmer is significantly more
experienced than the other, it is important to take
turns driving, lest the observer become disjointed,
feel out of the loop, or unimportant.

The person not driving should not be a passive
observer, but instead should always be active and
engaged. “Just watching someone program is about as
interesting as watching grass die in a desert” [2]. In the
pair programming survey, approximately 90% stated
the main role of the person not typing was to perform
continuous analysis, design and code reviews. “When
one partner is busy typing, the other is thinking at a
more strategic level. Where is this line of development
going? Will it run into a dead end? Is there a better
overall strategy?”

Don’t hit people.
Make sure he or she stay focused and on-task (non-
violently, of course). Undoubtedly, a benefit of
working in pairs is that each person is far less likely
to waste time reading email, Web surfing, or staring
out the window because their partner is awaiting
continuous contribution and input. “Two people
working together in a pair treat their shared time as
more valuable. They tend to cut phone calls short;
they don’t waste each other’s time” [10].

Additionally, each is expecting the other to follow
the prescribed development practices. “With your
partner watching, though, chances are that even if you
feel like blowing off one of these practices, your part-
ner won’t … the chances of ignoring your commit-
ment to the rest of the team is much smaller in pairs

then it is when you are working alone” [2].
As summarized in the pair programming survey, “It

takes more effort because the pace is forced by the
other person all the time; neither person feels they can
slack off.” As each keeps his or her partner focused
and on-task, tremendous productivity gains and qual-
ity improvements are realized.

Put things (especially negative thoughts) back
where they belong.
The mind is a tricky thing. If you think about some-
thing long enough, the brain will consider it a truth.
If you tell yourself something negative, such as “I’m
a terrible programmer,” soon your brain will believe
you. However, anyone can control this negative self-
talk by putting these thoughts where they belong—
out of mind—every time they start to creep in. The
surveyed pair programmers indicated it was very dif-
ficult to work with someone who had insecurity or
anxiety about their programming skills. They tend
to have a defensiveness about them. Programmers
with such insecurity should view pair programming
as a means to improve their skill by constantly
watching and obtaining feedback from another.

A survey respondent reflected, “The best thing
about pair programming for me is the continuous dis-
cussion that gave me training in formulating the
thoughts I have about design and programming. It
helps me reflect over these thoughts, which has made
me a better designer/programmer.” Indeed, two
researchers surveyed 750 working programmers on
coordination techniques in software development [7].
The communication technique with both the highest
use and the highest value was discussion with peers.
“The standard response when one confronts a prob-
lem that cannot be solved alone is to go to a colleague
close by.” When pair programming, the “colleague
close by” is continuously available. Together, the pair
can solve problems they couldn’t solve alone and can
help improve each other’s skills.

Also, negative thoughts such as “I’m an awesome
programmer, and I’m paired up with a total loser”
should also be rejected, lest the collaborative relation-
ship be destroyed. None of us, no matter how skilled,
is infallible and above the input of another. John von
Neumann, the great mathematician and creator of the
von Neumann computer architecture, recognized his
own inadequacies and continuously asked others to
review his work. “And indeed, there can be no doubt
of von Neumann’s genius. His very ability to realize
his human limitation put him head and shoulders
above the average programmer today … Average peo-
ple can be trained to accept their humanity—their
inability to function like a machine—and to value it

COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5 111

and work with others so as to keep it under the kind of
control needed if programming is to be successful” [9].

Clean up your mess.
Pair programmers have the advantage of the pres-
ence of a partner to help them clean up. Many have
related that many obvious, but undetected, defects
were noticed by another person watching over their
shoulder. Additionally, these defects can be removed
without the natural animosity that might develop in
a formal inspection meeting. Established software
engineering techniques often stress the importance

of defect prevention and efficient defect removal.
Perhaps this “over the shoulder” technique epito-
mizes defect prevention and defect removal effi-
ciency.

Don’t take things too seriously.
“Ego-less programming,” an idea that surfaced 25
years ago by Gerald Weinberg in The Psychology of
Computer Programming, is essential for effective pair
programming. According to the pair programming
survey, excess ego can manifest itself in two ways,
both damaging the collaborative relationship. First,
having a “my way or the highway” attitude can pre-
vent the programmer from considering other ideas.
Secondly, excess ego can cause a programmer to be
defensive when receiving criticism or to view this
criticism as mistrust.

A true scenario about a programmer seeking review
of the code he produced is discussed in [9]. On this
particular bad programming day, an individual ego-
lessly laughed because his reviewer found 17 bugs in
13 statements. After fixing these defects, however, the
code performed flawlessly during testing and in pro-
duction. How different this outcome might have
been had the programmer been too proud to accept
the input of others or had viewed this input as an
indication of his inadequacies. Having another review
design and coding continuously and objectively is an
extremely beneficial aspect of pair programming.
“The human eye has an almost infinite capacity for
not seeing what it does not want to see … Program-
mers, if left to their own devices, will ignore the most
glaring errors in their output—errors that anyone else
can see in an instant” [9].

Conversely, a person who always agrees with their
partner lest create tension also minimizes the benefits
of collaborative work. For favorable idea exchange,
there should be some healthy disagreement/debate.
Notably, there is a fine balance between displaying
too much and too little ego. Effective pair program-
mers hone this balance during an initial adjustment
period. Ward Cunningham, one of the XP founders
and experienced pair programmer, reports this initial
adjustment period can take hours or days, depending
on the individuals, nature of work, and their past
experience with pair programming.

Say you’re sorry when you hurt somebody.
In the pair programming survey, 96% of the pro-
grammers agreed that appropriate workspace layout
was critical to their success. Pair programmers take
aggressive action on improving their physical envi-
ronment, by taking matters into their own hands
(armed with screwdrivers). The programmers must
be able to sit side-by-side and program, simultane-
ously viewing the computer screen and sharing the
keyboard and mouse. Extreme programmers have a
“slide the keyboard/don’t move the chairs” rule.

Effective communication, both within a collabora-
tive pair and with other collaborative pairs, is para-
mount. Without much effort, programmers need to
see each other, ask each other questions, and make
decisions on things such as integration issues, lest
these questions/issues are not discussed adequately.
Programmers also benefit from “accidentally” over-
hearing other conversations to which they can have
vital contributions. Separate offices and cubicles can
inhibit this necessary exchange. “If any one thing
proves that psychological research has been ignored
by working managers, it’s the continuing use of half
partitions to divide workspace into cubicles. … Like
many kings, some managers use divide-and-conquer
tactics to rule their subjects, but programmers need
contact with other programmers” [9].

Wash your hands before you start.
Many programmers venture into their first pair pro-
gramming assignment skeptical of the value of col-
laboration in programming, not expecting to benefit
from or to enjoy the experience. Two skeptical pro-

112 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

NONE OF US, NO MATTER HOW SKILLED, IS

INFALLIBLE AND ABOVE THE INPUT OF ANOTHER.

grammers joined together in a team could certainly
carry out this self-fulfilling prophecy. In the pair pro-
gramming survey, 91% agreed that “partner buy-in”
was critical to pair programming success.

Pair programming relationships can be established
informally by one programmer asking another to have
a seat and give them some help—and carry on from
there. Once the relationship has been created, one
could say, “That went well. I have some extra time
now. Is there anything this afternoon that I can help
you with?” Experience has shown that having just one
programmer, very positive and/or experienced in pair
programming, can lead the pair to become one victo-
riously jelled collaborative team.

Tom DeMarco shares his inspiring view on this
type of union in [4]. “A jelled team is a group of peo-
ple so strongly knit that the whole is greater than the
sum of the parts. The production of such a team is
greater than that of the same people working in
unjelled form. Just as important, the enjoyment that
people derive from their work is greater than what
you’d expect given the nature of the work itself. In
some cases, jelled teams working on assignments that
others would declare downright dull have a simply
marvelous time. … Once a team begins to jell, the
probability of success goes up dramatically. The team
can become almost unstoppable, a juggernaut for suc-
cess.”

Advice to an up-and-coming pair programmer:
Wash your hands of any skepticism, develop an expec-
tation of success, and greet your collaborative partner
by saying, “Jell me!” This is an unprecedented oppor-
tunity for the two to excel as one.

Flush.
Inevitably, the pair programmers will work on some-
thing independently. Of the programmers surveyed,
over half said they reviewed work done indepen-
dently when they rejoined with their partner, and
incorporated it into the project. Alternately, extreme
programmers flush and rewrite independent work.
In their XP experience, the majority of the defects
could be traced back to a time when a programmer
worked independently. In fact, during the five
months prior to first production from the Chrysler
Comprehensive Compensation project, the only
defects that made it through unit and functional
testing were written by someone programming
alone. In rewriting, the author must undergo the
customary continuous review of the work, which
identifies additional defects.

The decision to flush or to review work done
independently can be made by a pair of programmers,
or the choice may be encouraged, as it is with XP.

However, it is important to note none of the pro-
grammers surveyed incorporated work done indepen-
dently without reviewing it.

Warm cookies and cold milk are good for you.
Because pair programmers must keep each other
continuously focused and on-task, it can be a very
intense and mentally exhausting experience. Taking
a break periodically is important for maintaining the
stamina for another round of productive pair pro-
gramming. During the break, it is best to disconnect
from the task at hand and approach it refreshed
when restarting. Suggested activities: checking
email, making phone calls, surfing the Web, eating
warm cookies, and drinking cold milk.

Live a balanced life—-learn some and think some
and draw and paint and sing and dance and play
and work every day some.
Communicating with others on a regular basis is key
for leading a balanced life. “If asked, most program-
mers would probably say they preferred to work
alone in a place where they wouldn’t be disturbed by
other people” [9]. But, informal discussions with
other programmers—the one you are paired with or
any other—allow for effective idea exchange and
efficient transfer of information. For example, Wein-
berg [9] discusses a large university computing cen-
ter, in this case a common space with a collection of
vending machines in the back of the room. Some of
the more serious students complained about the
noise in this common space, and the machines were
moved out. Soon after the removal of the machines,
a different complaint echoed the walls: Not enough
computer consultants! Suddenly, the lines for the
computer consultant wound around the room. The
cause of the change was the fact that informal chat
around the vending machines offered idea exchanges
and information transfers between the mass of pro-
grammers. Now, all this discussion had to be done
with the relatively few consultants. (Sadly, the vend-
ing machines were never moved back in.)

Take a nap (or a break from working together)
every afternoon.
It’s certainly not necessary to work separately every
afternoon. But, according to 50% of the surveyed
programmers, it is acceptable to work alone
10%–50% of the time. Many prefer to do experi-
mental prototyping, tough, deep-concentration
problems, and logical thinking alone. Most agree
that simple, well-defined, rote coding is more effi-
ciently done by a solitary programmer and then
reviewed with a partner.

COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5 113

When you go out into the world, watch out for
traffic, hold hands and stick together.
With pair programming, the two programmers
become one. There should be no competition
between the two; both must work for a singular pur-
pose, as if the artifact was produced by a singular
good mind. Blame for problems or defects should
never be placed on either partner. The pair needs to
trust each other’s judgement and each other’s loyalty
to the team.

Be aware of wonder (and the power of two
brains working together).
Human beings can only remember and learn a
bounded amount. Therefore, they must consult
with others to increase this bounty. When two are
working together, each has their own set of knowl-
edge and skills. A large subset of this knowledge and
these skills will be common between the two, allow-
ing them to interact effectively. However, the unique
skills of each individual will allow them to engage in
interactions that pool their resources to accomplish
their tasks. “Collaborative people are those who
identify a possibility and recognize that their own
view, perspective, or talent is not enough to make it
a reality. Collaborative people see others not as crea-
tures who force them to compromise, but as col-
leagues who can help them amplify their talents and
skills” [6].

Experiences show that a pair will come up with
more than twice as many possible solutions as two
individuals working alone. They will then proceed to
more quickly narrow in on the best solution and will
implement it more quickly and with better quality. A
survey respondent reflects, “It is a powerful technique
as there are two brains concentrating on the same
problem all the time. It forces one to concentrate fully
on the problem at hand.”

Final Thoughts
Both anecdotal and initial statistical evidence indi-
cate that pair programming is a powerful technique
for generating high-quality software products. The
pair works and shares ideas together to tackle the
complexities of software development. They contin-
uously perform inspections on each other’s artifacts
leading to the earliest, most efficient form of defect
removal possible. In addition, they keep each other
intently focused on the task at hand.

Programmers, however, have generally been condi-
tioned to working alone. Making the transition to
pair programming involves breaking down some per-
sonal barriers. First, the programmers must under-
stand the benefits of intercommunication outweigh

their common (perhaps innate) preferences for work-
ing alone and undisturbed. Secondly, they must con-
fidently share their work, accepting instruction and
suggestions for improvement in order to improve
their own skills and the product at hand. They must
display humility in understanding they are not infal-
lible and their partner has the ability to make
improvements in what they do. Lastly, a pair pro-
grammer must accept ownership of his or her part-
ner’s work and, therefore, be willing to constructively
express criticism and suggested improvements.

The transition to pair programming takes condi-
tioned solitary programmers out of their comfort
zone. However, the potential for achieving results
impossible by a single programmer makes this a
journey to greatness.

References
1. Anderson, A., Beattie, R., Beck, K. et al. Chrysler goes to “Extremes.”

Distrib. Comput. (Oct. 1998), 24–28.
2. Beck, K. Extreme Programming Explained: Embrace Change. 1999. Addi-

son-Wesley, Reading, PA.
3. Constantine, L. L. Constantine on Peopleware. Yourdon Press, Englewood

Cliffs, NJ. 1995.
4. DeMarco, T., Lister, T. Peopleware. Dorset House, New York, NY.

1977.
5. Fulghum, R. All I Really Need to Know I Learned in Kindergarten. 1988.

Villard Books, New York, NY.
6. Hargrove, R. Mastering the Art of Creative Collaboration. McGraw-Hill,

New York, NY. 1988.
7. Kraut, R. E., Streeter, L.A. Coordination in software development.

Commun. ACM 38, 3 (Mar. 1995), 69–81.
8. Nosek, J. T. The case for collaborative programming. Commun. ACM

41, 3 (Mar. 1998), 105–108.
9. Weinberg, G. M. The Psychology of Computer Programming Silver

Anniversary Edition. Dorset House, New York, NY. 1998.
10. Wiki. Pair Programming Facilities. Portland Pattern Repository. Mar.

16, 1999; c2.com/cgi/wiki?PairProgrammingFacilities.
11. Wiki. Programming In Pairs. Portland Pattern Repository. June 29,

1999; c2.com/cgi/wiki?ProgrammingInPairs.
12. Williams, L. Pair Programming Questionnaire. 1999;

limes.cs.utah.edu/questionnaire/questionnaire.htm.

Laurie A. Williams (lwilliam@cs.utah.edu) is a Spring 2000
computer science Ph.D. graduate and instructor at the University of
Utah, Salt Lake City, UT.
Robert R. Kessler (kessler@cs.utah.edu) is a professor and chair
of the Department of Computer Science at the University of Utah, Salt
Lake City. He is the founder of the Center for Software Science, a state
of Utah Center of Excellence.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2000 ACM 0002-0782/00/0500 $5.00

c

114 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

