The Design of C:
A Rational Reconstruction

Goals of this Lecture

- Help you learn about:
 - The decisions that were available to the designers of C
 - The decisions that were made by the designers of C
 ... and thereby...
 - C !
- Why?
 - Learning the design rationale of the C language provides a richer understanding of C itself
 - ... and is easier than learning rote rules
 - A systems programmer knows the language to know what’s safe and what’s not
- But first a preliminary topic...
Number Systems

Why Bits (Binary Digits)?

- Computers are built using digital circuits
 - Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0
- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, ...)
 - Characters ('a', 'z', ...)
 - Pixels, sounds
 - Internet addresses
- Can manipulate in many ways
 - Read and write
 - Logical operations
 - Arithmetic

Base 10 and Base 2

- Decimal (base 10)
 - Each digit represents a power of 10
 - $473 = 4 \times 10^2 + 1 \times 10^1 + 7 \times 10^0$
- Binary (base 2)
 - Each bit represents a power of 2
 - $10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22$

Decimal to binary conversion:

Divide repeatedly by 2 and keep remainders

- \[\frac{12}{2} = 6 \quad R = 0 \]
- \[\frac{6}{2} = 3 \quad R = 0 \]
- \[\frac{3}{2} = 1 \quad R = 1 \]
- \[\frac{1}{2} = 0 \quad R = 1 \]

Result = 1100
Writing Bits is Tedious for People

- Octal (base 8, 3 bits/digit)
 - Digits 0, 1, ..., 7
- Hexadecimal (base 16, 4 bits/digit)
 - Digits 0, 1, ..., 9, A, B, C, D, E, F

<table>
<thead>
<tr>
<th>Binary</th>
<th>Octal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Thus the 16-bit binary number 1011 0010 1010 1001 converted to hex is B2A9.

The Rise and Fall of Octal

- Octal (base 8, 3 bits/digit)
 - Digits 0, 1, ..., 7
- Early computers often had 36 bits/word
 - Competition was high-precision (10-digit) calculators
 - \(2^{36} = 68719476736\), which is greater than \(10^{10}\)
- Decimal required conversion circuitry
 - Reading and display octal numbers required much less processing than decimal
- Hexadecimal not easy with some displays (Nixie tubes)
- 36-bit octal possible in 12 octal digits

Representing Colors: RGB

- Three primary colors
 - Red
 - Green
 - Blue
- Strength
 - 8-bit number for each color (e.g., two hex digits, 256 values)
 - So, 24 bits to specify a color (256^3 colors ~ 16M colors)
- In HTML, e.g. course "Schedule" Web page
 - Red: De-Comment Assignment Due
 - Blue: Reading Period
- Same thing in digital cameras
 - Each processed pixel is a mixture of red, green, and blue
Finite Representation of Integers

- Fixed number of bits in memory
 - Usually 8, 16, or 32 bits
 - (1, 2, or 4 bytes)
- Unsigned integer
 - No sign bit
 - Always 0 or a positive number
 - All arithmetic is modulo 2^n
- Examples of unsigned integers
 - 00000001 → 1
 - 00001111 → 15
 - 00100000 → 16
 - 00100001 → 33
 - 11111111 → 255

Adding Two Integers

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column

<table>
<thead>
<tr>
<th>Base 10</th>
<th>Base 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 1 \ 2</td>
<td>+ 0 \ 1</td>
</tr>
<tr>
<td>\ 6 \ 3</td>
<td>\ 0 \ 0</td>
</tr>
<tr>
<td>Sum 4 \ 6</td>
<td>Sum 1 \ 0</td>
</tr>
<tr>
<td>Carry 0 \ 1</td>
<td>Carry 0 \ 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a \ b</th>
<th>Sum</th>
<th>a \ b</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 \ 0</td>
<td>0</td>
<td>0 \ 0</td>
<td>0</td>
</tr>
<tr>
<td>0 \ 1</td>
<td>1</td>
<td>0 \ 1</td>
<td>0</td>
</tr>
<tr>
<td>1 \ 0</td>
<td>1</td>
<td>1 \ 0</td>
<td>0</td>
</tr>
<tr>
<td>1 \ 1</td>
<td>0</td>
<td>1 \ 1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR ("exclusive OR")

AND

0100 0101 → 69
+ 0110 0111 → 103
1010 1100 → 172
Modulo Arithmetic

- Consider only numbers in a range
 - E.g., five-digit car odometer: 0, 1, …, 99999
 - E.g., eight-bit numbers 0, 1, …, 255
- Roll-over when you run out of space
 - E.g., car odometer goes from 99999 to 0, 1, …
 - E.g., eight-bit number goes from 255 to 0, 1, …
- Adding 2^n doesn’t change the answer
 - For eight-bit number, $n=8$ and $2^n=256$
 - E.g., $(37 + 256) \mod 256$ is simply 37
- This can help us do subtraction…
 - Suppose you want to compute $a - b$
 - Note that this equals $a + (256 - b)$, which is also $a + (256 \cdot 1 - b) + 1$

One’s and Two’s Complement

- One’s complement: flip every bit
 - E.g., b is 0100 0101 (i.e., 69 in decimal)
 - One’s complement is 1011 1010
 - That’s simply $255 - 69$
- Subtracting from 1111 1111 is easy (no carry needed!)

\[
\begin{align*}
&1111 \ 1111 \\
- &0100 \ 0101 \\
&1011 \ 1010 \ \\
&\text{one’s complement}
\end{align*}
\]

- Two’s complement
 - Add 1 to the one’s complement
 - E.g., $(255 - 69) + 1 \rightarrow 1011 1011$

Putting it All Together

- Computing “$a - b$”
 - Same as “$a + 256 - b$”
 - Same as “$a + (255 - b) + 1$”
 - Same as “$a + \text{onesComplement}(b) + 1$”
 - Same as “$a + \text{twosComplement}(b)$”
- Example: 172 – 69
 - The original number 69: \ 0100 \ 0101
 - One’s complement of 69: \ 1011 \ 1010
 - Two’s complement of 69: \ 1011 \ 1011
 - Add to the number 172: \ 1010 \ 1100
 - The sum comes to: \ 0110 \ 0111
 - Equals: 103 in decimal

\[
\begin{align*}
&1010 \ 1100 \\
+ &1011 \ 1011 \\
&1 \ 0110 \ 0111
\end{align*}
\]
Signed Integers

- Sign-magnitude representation
 - Use one bit to store the sign
 - Zero for positive number
 - One for negative number
- Examples
 - E.g., 0010 1100 \(\Rightarrow\) 44
 - E.g., 1010 1100 \(\Rightarrow\) -44
- Hard to do arithmetic this way, so it is rarely used

- Complement representation
 - One’s complement
 - Flip every bit
 - E.g., 1101 0011 \(\Rightarrow\) -44
 - Two’s complement
 - Flip every bit, then add 1
 - E.g., 1101 0100 \(\Rightarrow\) -44

Overflow: Running Out of Room

- Adding two large integers together
 - Sum might be too large to store in the number of bits available
 - What happens?
- Unsigned integers
 - All arithmetic is “modulo” arithmetic
 - Sum would just wrap around
- Signed integers
 - Can get nonsense values
 - Example with 16-bit integers
 - Sum: 10000+20000+30000
 - Result: -5536

Bitwise Operators: AND and OR

- Bitwise AND (\&)
 - Mod on the cheap for certain values!
 - E.g., 53 \% 16
 - ... is same as 53 & 15:
 - 53
 - 0 1 0 1 0 0
 - 15
 - 0 1 0 0 1 1
 - 5
 - 0 0 0 0 0 1
Bitwise Operators: Not and XOR

- One's complement (~)
 - Turns 0 to 1, and 1 to 0
 - E.g., set last three bits to 0
 - \(x = x \& \sim 7; \)

- XOR (^)
 - 0 if both bits are the same
 - 1 if the two bits are different

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Bitwise Operators: Shift Left/Right

- Shift left (<<): Multiply by powers of 2
 - Shift some # of bits to the left, filling the blanks with 0
 - 53 \(<< 2 \) \(\begin{array}{llllll}
0 & 0 & 1 & 1 & 0 & 1 \\
\end{array} \)

- Shift right (>>): Divide by powers of 2
 - Shift some # of bits to the right
 - For unsigned integer, fill in blanks with 0
 - What about signed negative integers?
 - Undefined by language spec – two common approaches
 - 53 \(>> 2 \) \(\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 0 \\
\end{array} \)

Example: Counting the 1’s

- How many 1 bits in a number?
 - E.g., how many 1 bits in the binary representation of 53?

\(\begin{array}{llllll}
0 & 0 & 1 & 1 & 0 & 1 \\
\end{array} \)

- Four 1 bits

- How to count them?
 - Look at one bit at a time
 - Check if that bit is a 1
 - Increment counter

- How to look at one bit at a time?
 - Look at the last bit: \(n \& 1 \)
 - Check if it is a 1: \((n \& 1) == 1 \), or simply \((n \& 1) \)
Counting the Number of ‘1’ Bits

```c
#include <stdio.h>
#include <stdlib.h>
int main(void) {
    unsigned int n;
    unsigned int count;
    printf("Number: ");
    if (scanf("%u", &n) != 1) {
        fprintf(stderr, "Error: Expect unsigned int.\n");
        exit(EXIT_FAILURE);
    }
    for (count = 0; n > 0; n >>= 1)
        count += (n & 1);
    printf("Number of 1 bits: %u
", count);
    return 0;
}
```

Summary

- Computer represents everything in binary
 - Integers, floating-point numbers, characters, addresses, ...
 - Pixels, sounds, colors, etc.
- Binary arithmetic through logic operations
 - Sum (XOR) and Carry (AND)
 - Two’s complement for subtraction
- Bitwise operators
 - AND, OR, NOT, and XOR
 - Shift left and shift right
 - Useful for efficient and concise code, though sometimes cryptic

The Main Event

The Design of C
Goals of C

Designers wanted C to support:
- Systems programming
 - Development of Unix OS
 - Development of Unix programming tools

But also:
- Applications programming
 - Development of financial, scientific, etc. applications

Systems programming was the primary intended use

The Goals of C (cont.)

The designers wanted C to be:
- Low-level
 - Close to assembly/machine language
 - Close to hardware

But also:
- Portable
 - Yield systems software that is easy to port to differing hardware

The Goals of C (cont.)

The designers wanted C to be:
- Easy for people to handle
 - Easy to understand
 - Expressive
 - High (functionality/sourceCodeSize) ratio

But also:
- Easy for computers to handle
 - Easy/fast to compile
 - Yield efficient machine language code

Commonality:
- Small/simple
Design Decisions

In light of those goals…
• What design decisions did the designers of C have?
• What design decisions did they make?

Consider programming language features, from simple to complex…

Feature 1: Data Types

• Previously in this lecture:
 • Bits can be combined into bytes
 • Our interpretation of a collection of bytes gives it meaning
 • A signed integer, an unsigned integer, a RGB color, etc.
 • A data type is a well-defined interpretation of a collection of bytes
 • A high-level programming language should provide primitive data types
 • Facilitates abstraction
 • Facilitates manipulation via associated well-defined operators
 • Enables compiler to check for mixed types, inappropriate use of types, etc.

Primitive Data Types

• Issue: What primitive data types should C provide?
• Thought process
 • C should handle:
 • Integers
 • Characters
 • Character strings
 • Logical (alias Boolean) data
 • Floating-point numbers
 • C should be small/simple

• Decisions
 • Provide integer, character, and floating-point data types
 • Do not provide a character string data type (More on that later)
 • Do not provide a logical data type (More on that later)
Integer Data Types

- **Issue:** What integer data types should C provide?
- **Thought process**
 - For flexibility, should provide integer data types of various sizes
 - For portability at application level, should specify size of each data type
 - For portability at systems level, should define integral data types in terms of natural word size of computer
 - Primary use will be systems programming

Integer Data Types (cont.)

- **Decisions**
 - Provide three integer data types: short, int, and long
 - Do not specify sizes; instead:
 - int is natural word size
 - 2 <= bytes in short <= bytes in int <= bytes in long
 - Incidentally, on hats using gcc217
 - Natural word size: 4 bytes
 - short: 2 bytes
 - int: 4 bytes
 - long: 4 bytes

Integer Constants

- **Issue:** How should C represent integer constants?
- **Thought process**
 - People naturally use decimal
 - Systems programmers often use binary, octal, hexadecimal
- **Decisions**
 - Use decimal notation as default
 - Use "0" (zero) prefix to indicate octal notation
 - Use "0x" prefix to indicate hexadecimal notation
 - Do not allow binary notation; too verbose, error prone
 - Use "L" suffix to indicate long constant
 - Do not use a suffix to indicate short constant; instead must use cast
- **Examples**
 - int: 123, -123, 0173, 0x7B
 - long: 123L, -123L, 0173L, 0x7BL
 - short: (short)123, (short)-123, (short)0173, (short)0x7B

Was that a good decision?
Unsigned Integer Data Types

- Issue: Should C have both signed and unsigned integer data types?

- Thought process
 - Must represent positive and negative integers
 - Signed types are essential
 - Unsigned data can be twice as large as signed data
 - Unsigned data could be useful
 - Unsigned data are good for bit-level operations
 - Bit-level operations are common in systems programming
 - Implementing both signed and unsigned data types is complex
 - Must define behavior when an expression involves both

Unsigned Integer Data Types (cont.)

- Decisions
 - Provide unsigned integer types: unsigned short, unsigned int, and unsigned long
 - Conversion rules in mixed-type expressions are complex
 - Generally, mixing signed and unsigned converts signed to unsigned
 - See King book Section 7.4 for details

Do you see any potential problems?
What decision did the designers of Java make?

Unsigned Integer Constants

- Issue: How should C represent unsigned integer constants?

- Thought process
 - "L" suffix distinguishes long from int; also could use a suffix to distinguish signed from unsigned
 - Octal or hexadecimal probably are used with bit-level operators

- Decisions
 - Default is signed
 - Use "U" suffix to indicate unsigned
 - Integers expressed in octal or hexadecimal automatically are unsigned

- Examples
 - unsigned int: 123U, 0173, 0x7B
 - unsigned long: 123UL, 0173L, 0x7BL
 - unsigned short: (short)123U, (short)0173, (short)0x7B