
1

1

The Design of C: 
A Rational Reconstruction

2

3

Goals of this Lecture
•  Help you learn about:

•  The decisions that were available to the designers of C
•  The decisions that were made by the designers of C
… and thereby…
•  C !

•  Why?
•  Learning the design rationale of the C language provides a richer

understanding of C itself
•  … and is easier than learning rote rules

•  A systems programmer knows the language to know whatʼs safe
and whatʼs not

•  But first a preliminary topic…

2

4

Preliminary Topic

Number Systems

5

Why Bits (Binary Digits)?
•  Computers are built using digital circuits

•  Inputs and outputs can have only two values
•  True (high voltage) or false (low voltage)
•  Represented as 1 and 0

•  Can represent many kinds of information
•  Boolean (true or false)
•  Numbers (23, 79, …)
•  Characters (ʻaʼ, ʻzʼ, …)
•  Pixels, sounds
•  Internet addresses

•  Can manipulate in many ways
•  Read and write
•  Logical operations
•  Arithmetic

6

Base 10 and Base 2
•  Decimal (base 10)

•  Each digit represents a power of 10
•  4173 = 4 x 103 + 1 x 102 + 7 x 101 + 3 x 100

•  Binary (base 2)
•  Each bit represents a power of 2
•  10110 = 1 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20 = 22

Decimal to binary conversion:
Divide repeatedly by 2 and keep remainders
12/2 = 6 R = 0
6/2 = 3 R = 0
3/2 = 1 R = 1
1/2 = 0 R = 1
Result = 1100

3

7

Writing Bits is Tedious for People
•  Octal (base 8, 3 bits/digit)

•  Digits 0, 1, …, 7

•  Hexadecimal (base 16, 4 bits/digit)
•  Digits 0, 1, …, 9, A, B, C, D, E, F

0000 = 0 1000 = 8
0001 = 1 1001 = 9
0010 = 2 1010 = A
0011 = 3 1011 = B
0100 = 4 1100 = C
0101 = 5 1101 = D
0110 = 6 1110 = E
0111 = 7 1111 = F

Thus the 16-bit binary number

1011 0010 1010 1001

converted to hex is

B2A9

8

The Rise and Fall of Octal
•  Octal (base 8, 3 bits/digit)

•  Digits 0, 1, …, 7

•  Early computers often had 36 bits/word
•  Competition was high-precision (10-digit) calculators
•  236 = 68719476736, which is greater than 1010

•  Decimal required conversion circuitry
•  Reading and display octal numbers required much less processing

than decimal

•  Hexadecimal not easy with some displays (Nixie tubes)
•  36-bit octal possible in 12 octal digits

9

Representing Colors: RGB
•  Three primary colors

•  Red
•  Green
•  Blue

•  Strength
•  8-bit number for each color (e.g., two hex digits, 256 values)
•  So, 24 bits to specify a color (2563 colors ~ 16M colors)

•  In HTML, e.g. course “Schedule” Web page
•  Red: De-Comment Assignment Due</

span>
•  Blue: Reading Period

•  Same thing in digital cameras
•  Each processed pixel is a mixture of red, green, and blue

4

10

Finite Representation of Integers
•  Fixed number of bits in memory

•  Usually 8, 16, or 32 bits
•  (1, 2, or 4 bytes)

•  Unsigned integer
•  No sign bit
•  Always 0 or a positive number
•  All arithmetic is modulo 2n

•  Examples of unsigned integers
•  00000001 1
•  00001111 15
•  00010000 16
•  00100001 33
•  11111111 255

11

Adding Two Integers
•  From right to left, we add each pair of digits
•  We write the sum, and add the carry to the next column

 1 9 8

+ 2 6 4

Sum

Carry

 0 1 1

+ 0 0 1

Sum

Carry
2

1

6

1

4

0

0

1

0

1

1

0

Base 10 Base 2

12

Binary Sums and Carries
a b Sum a b Carry
0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

XOR
(“exclusive OR”)

AND

 0100 0101

 + 0110 0111

 1010 1100

69
103

172

5

13

Modulo Arithmetic
•  Consider only numbers in a range

•  E.g., five-digit car odometer: 0, 1, …, 99999
•  E.g., eight-bit numbers 0, 1, …, 255

•  Roll-over when you run out of space
•  E.g., car odometer goes from 99999 to 0, 1, …
•  E.g., eight-bit number goes from 255 to 0, 1, …

•  Adding 2n doesnʼt change the answer
•  For eight-bit number, n=8 and 2n=256
•  E.g., (37 + 256) mod 256 is simply 37

•  This can help us do subtraction…
•  Suppose you want to compute a – b
•  Note that this equals a + 256 – b, which is also a + (256 -1 - b) + 1

14

Oneʼs and Twoʼs Complement
•  Oneʼs complement: flip every bit

•  E.g., b is 01000101 (i.e., 69 in decimal)
•  Oneʼs complement is 10111010
•  Thatʼs simply 255-69

•  Subtracting from 11111111 is easy (no carry needed!)

•  Twoʼs complement
•  Add 1 to the oneʼs complement
•  E.g., (255 – 69) + 1 1011 1011

 - 0100 0101
 1111 1111

 1011 1010

b
oneʼs complement

15

Putting it All Together
•  Computing “a – b”

•  Same as “a + 256 – b”
•  Same as “a + (255 – b) + 1”
•  Same as “a + onesComplement(b) + 1”
•  Same as “a + twosComplement(b)”

•  Example: 172 – 69
•  The original number 69: 0100 0101
•  Oneʼs complement of 69: 1011 1010
•  Twoʼs complement of 69: 1011 1011
•  Add to the number 172: 1010 1100
•  The sum comes to: 0110 0111
•  Equals: 103 in decimal

 1010 1100

 + 1011 1011

 1 0110 0111

6

16

Signed Integers
•  Sign-magnitude representation

•  Use one bit to store the sign
•  Zero for positive number
•  One for negative number

•  Examples
•  E.g., 0010 1100 44
•  E.g., 1010 1100 -44

•  Hard to do arithmetic this way, so it is rarely used

•  Complement representation
•  Oneʼs complement

•  Flip every bit
•  E.g., 1101 0011 -44

•  Twoʼs complement
•  Flip every bit, then add 1
•  E.g., 1101 0100 -44

17

Overflow: Running Out of Room
•  Adding two large integers together

•  Sum might be too large to store in the number of bits available
•  What happens?

•  Unsigned integers
•  All arithmetic is “modulo” arithmetic
•  Sum would just wrap around

•  Signed integers
•  Can get nonsense values
•  Example with 16-bit integers

•  Sum: 10000+20000+30000
•  Result: -5536

18

Bitwise Operators: AND and OR
•  Bitwise AND (&)

•  Mod on the cheap for certain values!
•  E.g., 53 % 16
•  … is same as 53 & 15;

•  Bitwise OR (|)

&
0

1

0 1
0 0

0 1

|

0

1

0 1
0 1

1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 1 1

53

& 15

0 0 0 0 0 1 0 1 5

7

19

Bitwise Operators: Not and XOR
• Oneʼs complement (~)

•  Turns 0 to 1, and 1 to 0
•  E.g., set last three bits to 0

•  x = x & ~7;

• XOR (^)
•  0 if both bits are the same
•  1 if the two bits are different

^

0

1

0 1
0 1

1 0

20

Bitwise Operators: Shift Left/Right
•  Shift left (<<): Multiply by powers of 2

•  Shift some # of bits to the left, filling the blanks with 0

•  Shift right (>>): Divide by powers of 2
•  Shift some # of bits to the right
•  For unsigned integer, fill in blanks with 0
•  What about signed negative integers?

•  Undefined by language spec – two common approaches

0 0 1 1 0 1 0 1 53

1 1 0 1 0 0 0 0 53<<2

0 0 1 1 0 1 0 1 53

0 0 0 0 1 1 0 1 53>>2

21

Example: Counting the 1ʼs
•  How many 1 bits in a number?

•  E.g., how many 1 bits in the binary representation of 53?

•  Four 1 bits

•  How to count them?
•  Look at one bit at a time
•  Check if that bit is a 1
•  Increment counter

•  How to look at one bit at a time?
•  Look at the last bit: n & 1
•  Check if it is a 1: (n & 1) == 1, or simply (n & 1)

0 0 1 1 0 1 0 1

8

22

Counting the Number of ʻ1ʼ Bits
#include <stdio.h>
#include <stdlib.h>
int main(void) {
 unsigned int n;
 unsigned int count;
 printf("Number: ");
 if (scanf("%u", &n) != 1) {
 fprintf(stderr, "Error: Expect unsigned int.\n");
 exit(EXIT_FAILURE);
 }
 for (count = 0; n > 0; n >>= 1)
 count += (n & 1);
 printf("Number of 1 bits: %u\n", count);
 return 0;
}

23

Summary
•  Computer represents everything in binary

•  Integers, floating-point numbers, characters, addresses, …
•  Pixels, sounds, colors, etc.

•  Binary arithmetic through logic operations
•  Sum (XOR) and Carry (AND)
•  Twoʼs complement for subtraction

•  Bitwise operators
•  AND, OR, NOT, and XOR
•  Shift left and shift right
•  Useful for efficient and concise code, though sometimes cryptic

24

The Main Event

The Design of C

9

25

Goals of C

Designers wanted C to support:
•  Systems programming

•  Development of Unix OS
•  Development of Unix programming tools

But also:
•  Applications programming

•  Development of financial, scientific, etc. applications

Systems programming was the primary intended use

26

The Goals of C (cont.)

The designers of wanted C to be:
•  Low-level

•  Close to assembly/machine language
•  Close to hardware

But also:
•  Portable

•  Yield systems software that is easy to port to differing hardware

27

The Goals of C (cont.)

The designers wanted C to be:
•  Easy for people to handle

•  Easy to understand
•  Expressive

•  High (functionality/sourceCodeSize) ratio

But also:
•  Easy for computers to handle

•  Easy/fast to compile
•  Yield efficient machine language code

Commonality:
•  Small/simple

10

28

Design Decisions

In light of those goals…
•  What design decisions did the designers of C have?
•  What design decisions did they make?

Consider programming language features, from simple to
complex…

29

Feature 1: Data Types
•  Previously in this lecture:

•  Bits can be combined into bytes
•  Our interpretation of a collection of bytes gives it meaning

•  A signed integer, an unsigned integer, a RGB color, etc.

•  A data type is a well-defined interpretation of a collection of
bytes

•  A high-level programming language should provide
primitive data types
•  Facilitates abstraction
•  Facilitates manipulation via associated well-defined operators
•  Enables compiler to check for mixed types, inappropriate use of

types, etc.

30

Primitive Data Types
•  Issue: What primitive data types should C provide?
•  Thought process

•  C should handle:
•  Integers
•  Characters
•  Character strings
•  Logical (alias Boolean) data
•  Floating-point numbers

•  C should be small/simple

•  Decisions
•  Provide integer, character, and floating-point data types
•  Do not provide a character string data type (More on that later)
•  Do not provide a logical data type (More on that later)

11

31

•  Issue: What integer data types should C provide?
•  Thought process

•  For flexibility, should provide integer data types of various sizes
•  For portability at application level, should specify size of each data

type
•  For portability at systems level, should define integral data types in

terms of natural word size of computer
•  Primary use will be systems programming

Integer Data Types

Why? Why?

32

Integer Data Types (cont.)
•  Decisions

•  Provide three integer data types: short, int, and long
•  Do not specify sizes; instead:

• int is natural word size
•  2 <= bytes in short <= bytes in int <= bytes in long

•  Incidentally, on hats using gcc217
•  Natural word size: 4 bytes
• short: 2 bytes
• int: 4 bytes
• long: 4 bytes

33

Integer Constants
•  Issue: How should C represent integer constants?
•  Thought process

•  People naturally use decimal
•  Systems programmers often use binary, octal, hexadecimal

•  Decisions
•  Use decimal notation as default
•  Use "0" (zero) prefix to indicate octal notation
•  Use "0x" prefix to indicate hexadecimal notation
•  Do not allow binary notation; too verbose, error prone
•  Use "L" suffix to indicate long constant
•  Do not use a suffix to indicate short constant; instead must use cast

•  Examples
•  int: 123, -123, 0173, 0x7B
•  long: 123L, -123L, 0173L, 0x7BL
•  short: (short)123, (short)-123, (short)0173, (short)0x7B

Was that a good
decision?

Why?

12

34

Unsigned Integer Data Types
•  Issue: Should C have both signed and unsigned integer

data types?
•  Thought process

•  Must represent positive and negative integers
•  Signed types are essential

•  Unsigned data can be twice as large as signed data
•  Unsigned data could be useful

•  Unsigned data are good for bit-level operations
•  Bit-level operations are common in systems programming

•  Implementing both signed and unsigned data types is complex
•  Must define behavior when an expression involves both

35

Unsigned Integer Data Types (cont.)
•  Decisions

•  Provide unsigned integer types: unsigned short, unsigned
int, and unsigned long

•  Conversion rules in mixed-type expressions are complex
•  Generally, mixing signed and unsigned converts signed to

unsigned
•  See King book Section 7.4 for details

Do you see
any potential
problems?Was providing

unsigned types a
good decision?

What decision
did the designers
of Java make?

36

Unsigned Integer Constants
•  Issue: How should C represent unsigned integer

constants?
•  Thought process

•  “L” suffix distinguishes long from int; also could use a suffix to
distinguish signed from unsigned

•  Octal or hexadecimal probably are used with bit-level operators

•  Decisions
•  Default is signed
•  Use "U" suffix to indicate unsigned
•  Integers expressed in octal or hexadecimal automatically are

unsigned

•  Examples
• unsigned int: 123U, 0173, 0x7B
• unsigned long: 123UL, 0173L, 0x7BL
• unsigned short: (short)123U, (short)0173, (short)0x7B

