Creating new worlds inside the computer

COS 116, Spring 2010 Adam Finkelstein

Pseudocode

- Simple instructions: involve +, -, ×, ÷
- Compound instructions
 - Conditionals
 - Loops
- No need to sweat over exact wording during exams (unless it changes meaning!)

Did you figure out how to express the selection sort algorithm in pseudocode?

```
Do for i= 1 to n-1
{
find minimum element of the numbers in positions from i to n;
swap that number with the i'th number;
}
```

Full pseudocode appears in Example 2 of Handout on pseudocode. (See "handouts" tab on course web page.)

"Algorithm" - definition revisited

"Pseudocode for turning a set of inputs into outputs in a finite amount of time"

Questions to think about:

- What group of computational tasks can be solved by algorithms?
- How dependent is this group on the exact <u>definition of pseudocode</u>?

Today's topic:

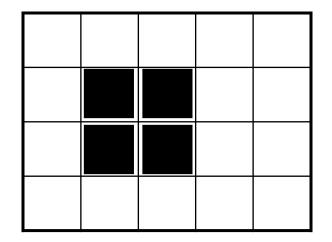
Creating new worlds inside the computer.

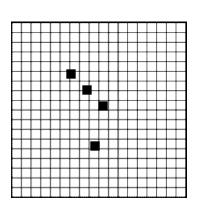
"simulation"

Conway's Game of life

Rules: At each step, in each cell:
 Survival: Critter survives if it has:

2 or 3 neighbors.


Death: Critter dies if it has:


Example

1 or fewer neighbors, or more than 3.

□ Birth: New critter is born if cell is currently empty and

3 neighboring cells have critters.

How would you write pseudocode that simulates Game of Life?

Should use: n x n array A (for desired n)

A[i, j] = 1 means critter in square A[i, j] = 0 means empty square

Q: How do we "traverse" such an array using the "loop" construct? Q: How do we update such an array for the next time step?

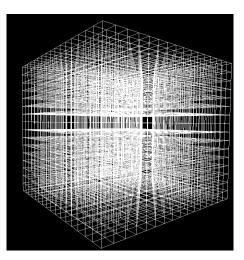
Pseudocode for each step

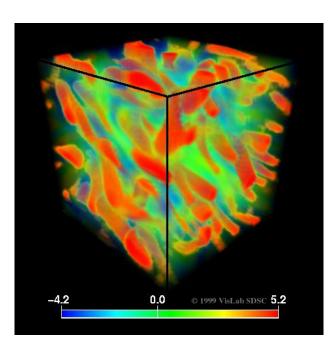
```
Do for i = 1 to n
{
     Do for j = 1 to n
         neighbors \leftarrow
             A[i - 1, j - 1] + A[i - 1, j] + A[i - 1, j + 1] + A[i, j - 1] + A[i, j + 1] + A[i + 1, j - 1] + A[i + 1, j] + A[i + 1, j + 1]
         if (A[I,j] = 1 \text{ AND neighbors} = 2) then
                 \{ B[i, j] \leftarrow 1 \}
         else if (...)
                 ...etc. //see handout; Example 3//
     }
Do for i = 1 to n
     Do for j = 1 to n
        { A[i,j] ← B[i,j] }
}
```

Lesson from the Game of Life?

Simple local behavior can lead to complex global behavior

(See Brian Hayes article in readings.)


Next..



Twister simulation

Divide region into 3D array

Identify laws of physics for air

Navier Stokes equations:

How does a block of air move, given pressure, temperature and velocity differentials on boundary?

("differentials" = difference from neighbors)

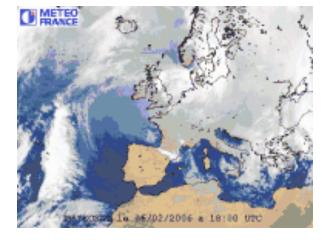
Simulator pseudocode

 Initialize Grid using data from observations: surface and aircraft measurements, radar (NEXRAD) readings, etc.

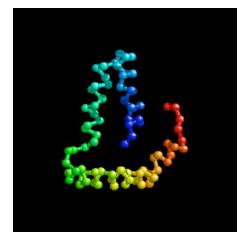
```
Do for i = 1 to n

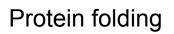
{

Do for j = 1 to n


{

Do for k = 1 to n


{Update state of Grid[i, j, k] }


}
```

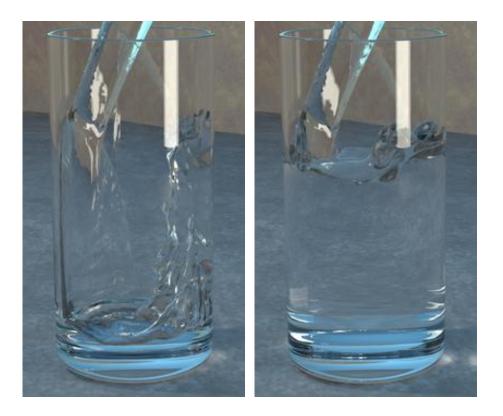
Other examples of simulation

Weather forecasting

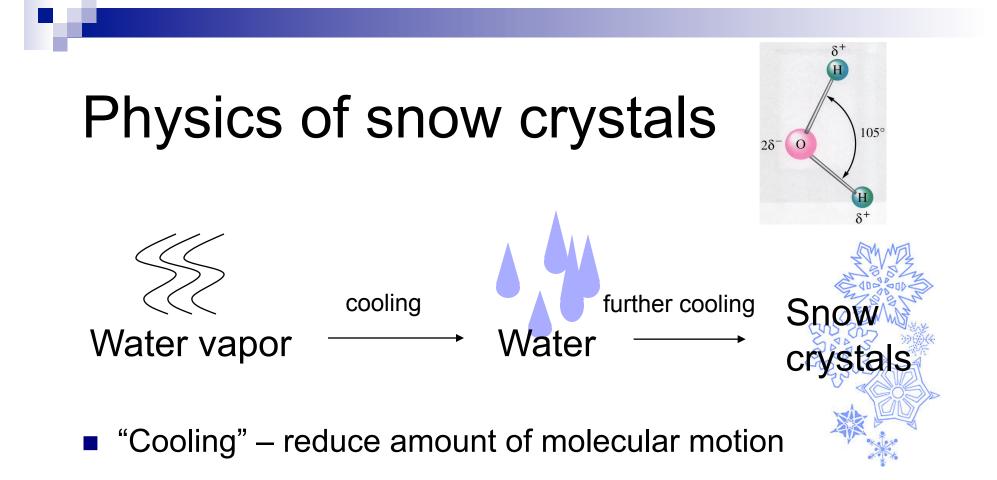
[Turk 91] following: [Turing 52] Turing, Alan, "The Chemical Basis of Morphogenesis,"

[Turing 52] Turing, Alan, "The Chemical Basis of Morphogenesis," *Philosophical Transactions of the Royal Society B*, Vol. 237, pp. 37–72 (August 14, 1952).

How patterns arise in plants and animals

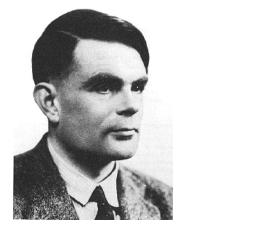


Animation

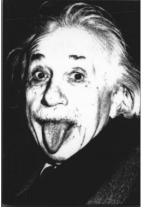

Display

Q: How to display result of simulation?

A: Computer graphics (later in course)

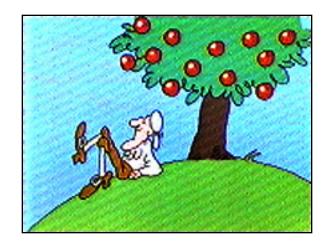


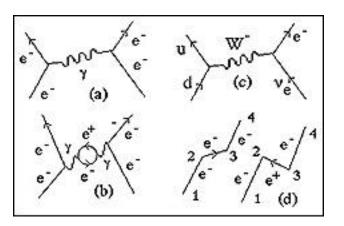
[Enright and Fedkiw 02]



Crystal growth: capture of nearby floating molecules

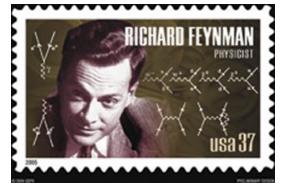
Bigger questions


Alan Turing



Albert Einstein

- Can computer simulation be replaced by a "theory of weather"? A "theory of tornadoes"?
- Is there a "theory" that answers this type of problem:
 - □ Given: A starting configuration in the game of life
 - Output: "Yes" if the cell at position (100, 100) is ever occupied, "No" otherwise


Actually, reverse trend: "theory of matter" (particle physics) is becoming computational.

1670 F = ma

Hayes (reading this week): The universe as a "cellular automaton"

Peeking ahead:

A computer can simulate another computer (e.g., a Classic Mac simulator on a PC). Will explore the implications of this in a future lecture.

Game of life is actually a "computer."

Readings for this week: (i) Brian Hayes article; first 5 pages (ii) Brooks 99-126 (iii) Conway's game of life

HW 1 Due next Thurs.