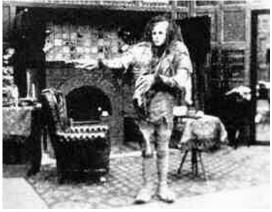
COS 116: The Computational Universe

Adam Finkelstein Spring 2010

COS 116: The Computational Universe

- Instructor: Adam Finkelstein
- TA: Vladimir Kim
- Labs
 - Wed 7:30-10:20pm, Friend 007
 - ☐ This week only: take-home lab

Ancient dream: "Breathe life into matter"

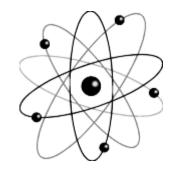


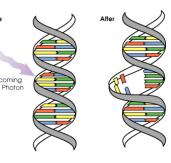
Golem (Jewish mythology)

Frankenstein (Shelley 1818)

Automaton (Europe)

Robot (Capek 1920)

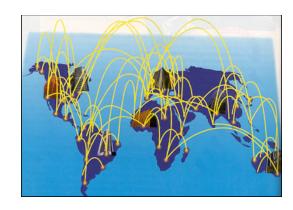

"Breathe life into matter" – Another perspective


100

"Breathe life into matter" – A 20th century perspective

"Matter": Atoms, molecules, quantum mechanics, relativity ...

"Life": Cells, nucleus, DNA, RNA, ...


"Breathe life into matter": Computation

One interpretation: Make matter do useful, interesting things on its own

Computational Universe

Some important distinctions

Computer Science

vs. Computer Programming (Java, C++, etc.)

Notion of computation

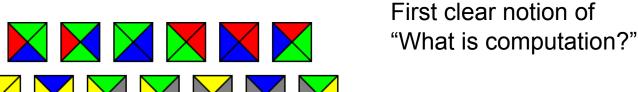
vs. Specific implementation (Silicon, robots, Xbox, etc.)

No programming in this course!

- Not necessary for understanding
- More time for to cover computer science (broader than COS126!)
- No advantage to those who have prior programming experience

Brief history of computation

- Technological:
 - Clocks
 - Clockwork "Automata"
 - ☐ Mechanized looms, steam engines
 - □ Vacuum tubes, electronic calculators (1910-1930's)
 - □ ENIAC (1945)
 - □ von Neumann Computer (1949, Princeton)



Brief history of computation

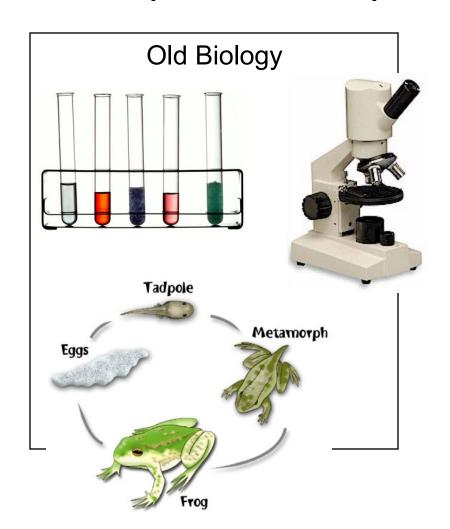
- Intellectual
 - □ Ancient Greeks, philosophers
 - (How to "formalize thought")
 - □ Boolean logic (G. Boole, 1815-1864)
 - Crisis in math
 - Hilbert: Call to systematize math
 - Gödel: Incompleteness theorem
 - □ Lambda calculus (A. Church, 1936)
 - □ Turing machines (A. Turing, 1937)

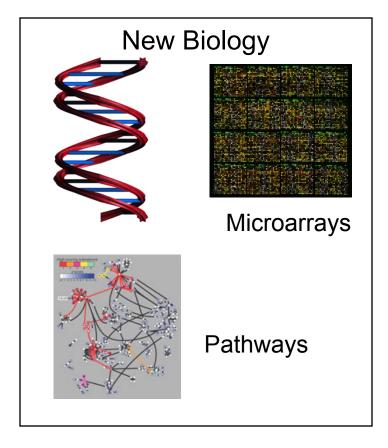
Both at Princeton;

Wang tiles 1961

Computer Science: A new way of looking at the world

Example 1:


W


Example 2: Public closed-ballot elections

- Hold an election in this room
 - □ Everyone speaks publicly (no computers, email, etc.)
 - □ End: everyone agrees on who won and margin
 - No one knows how anyone else voted
- Is this possible?
 - ☐ Yes! (A. Yao, Princeton)

Example 3: Computational Biology

COS 116

- First 10 lectures:
 - □ Cool things computers do and how
- Next 8 lectures:
 - What's inside, internet, silicon chips
- Last 6 lectures:
 - □ Complexity, cryptography, viruses, search engines, artificial intelligence

This week's reading: Brooks pp 12-21, pp 32-51.

This week's lab: Web 2.0

(Take-home lab – will be posted by Wed afternoon)

Grading

■ Midterm: 15%

■ Final: 35%

■ Lab reports: 35%

Participation (class, blog): 15%

Attendance expected at lectures and labs

Next couple labs: Scribbler. What determines its behavior?

