
COS 116
 The Computational Universe

Laboratory 11: Machine Learning

In last Tuesday’s lecture, we surveyed many machine learning algorithms and their
applications. In this lab, you will explore algorithms for two of those applications in
greater detail: spam filtering and text generation.

Lab submission: Submit by Tuesday, May 4 by e-mail to TA or to TA’s mailbox (2nd
floor across from Tea Room). Turn in answers to all the questions posed in the body
of the lab and in the “Additional Questions” section.

Part 1: Introduction to Spam Filtering

Modern spam filters use statistical inference to classify an email as spam or “ham” (i.e.
non-spam). These filters require access to a large corpus of emails, containing both spam
and ham, with each email in the corpus labeled appropriately. The larger and more
diverse the corpus, the better the performance of the filter. Even the simplest of these
kinds of filters can detect more than 90% of spam. Here is the procedure that a simple
spam filter follows to classify an email:

• Step 1: Split the email to be classified into individual words. Ex. “Your loan request

approved!” becomes ‘your’, ‘loan’, ‘request’, and ‘approved’.

• Step 2: Compute the spam score for each word in the email. The formula for the spam

score of a word is:

 Fraction of spam emails in the corpus that contain word
 SpamScore(word) = ---
 Fraction of ham emails in the corpus that contain word

Remark: If word is much more prevalent in spam than in ham, then
SpamScore(word) will be a big number. Conversely, if word is much more
prevalent in ham than in spam, then SpamScore(word) will be a small
number. So the spam score correlates with the “spammy-ness” of a word.

• Step 3: Multiply the spam scores for all the words in the email to get a spam score for

the email itself. For example:

 SpamScore(“Your loan request approved!”) =
SpamScore(‘your’) × SpamScore(‘loan’) × SpamScore(‘request’) × SpamScore(‘approved’).

Remark: The spam score for an email will be large if contains many
“spammy” words, and small otherwise.

• Step 4: Classify the email as spam if its spam score is above a certain threshold, and

classify it as ham otherwise. The value of the threshold controls how aggressively
spam is filtered. A lower threshold will cause more email to be classified as spam.

Review the preceding procedure carefully, as understanding it is necessary for
completing the lab. Ask your TA for help if you have any questions.

Part 2: Experiments with Spam Filtering

1. Open this web page:
http://www.cs.princeton.edu/courses/archive/spring07/cos116/lab12/spam1.html

 This is a web interface to a spam filter. The spam filter is connected to a corpus of
roughly 8,000 emails – 6,000 ham and 2,000 spam.

2. Select “First Data Set”, and then click “Classify” (Don’t adjust the value of

“Threshold” yet.) This data set contains ten emails. When you click “Classify”,
the procedure described in Part 1 is performed for each email in the data set, and
the results are displayed.

3. Read the emails that were misclassified, and comment in your report why

you think each one was misclassified. Identify some words in each email that
you suspect misled the spam filter.

4. Adjust “Threshold” so that all the spam emails are correctly classified while

minimizing the number of misclassified ham emails. Note this threshold in
your report. Click “Classify” after each adjustment to “Threshold”. Recall that
an email is classified as spam if its spam score is above the threshold and as ham
otherwise.

5. Adjust “Threshold” so that all the ham emails are correctly classified while

minimizing the number of misclassified spam emails. Note this threshold in
your report.

6. Which of the previous approaches to setting the threshold would you prefer

to use for your own inbox? Explain your answer.

Part 3: More Experiments with Spam Filtering

1. Open this web page:

http://www.cs.princeton.edu/courses/archive/spring07/cos116/lab12/spam2.html

 This web interface allows you to enter your own emails and have them classified
by the spam filter. You can enter any text you like; it doesn’t need to be in the format of
an email (i.e. with the ‘From:’, ‘To:’, etc. at the top). You can even enter exactly one
word to determine the “spammy-ness” of that word.

2. Enter each of the following words individually into the text area, and click

“Classify” for each word:
a. Spam words: viagra, potency, money-back, mortgage, lender, mega
b. Ham words: blog, management, dialog, ouch, alumni, administrivia

3. From Part 2, Step 3, obtain the words you identified as having misled the
spam filter. Paste each of these words individually into the text area, and
classify them. Compared to the words in the previous step, are they as
spammy/hammy as you suspected? Report your findings.

4. From your own inbox, copy a ham and spam email, and classify each of them.

(If you are concerned about privacy, know that the web page does not record
anything you enter.) Does the spam filter correctly give the spam email a
higher spam score than the ham email? Put the text of both emails in your
report.

5. Try writing a couple of emails that defeat the spam filter.

a. Write an email that conveys a legitimate message, but nonetheless has
a high spam score. Try and make the spam score as high as you can.
Ex: “Let’s meet for lunch at Frist, I am mega hungry. I hear the chili has a
lot of potency.”

b. Write an email that conveys a spammy message, but nonetheless has a
low spam score. Try and make the spam score as low as you can. Can
you force the score below 1.0? Ex: "How about some medicine that
rhymes with a famous waterfall?"

Put the text of both emails in your report.

Part 4: Introduction to Text Generation

It is surprisingly easy to generate novel, semantically-plausible text from a small amount
of sample text. For example, from the 2007 State of the Union address, one can
automatically generate text like the following:

“This war is more competitive by strengthening math and science skills. The lives
of our nation was attacked, I ask you to make the same standards, and a prompt
up-or-down vote on the work we've done and reduce gasoline usage in the NBA.”

Below is a simple procedure for generating this kind of text from a sample text. The
procedure outputs one word at a time. There is a single parameter, k, which controls how
similar the generated text should be to the sample text. Higher values of k result in greater
similarity.

• Step 1: Let “w1 w2 … wk” be the last k words outputted.
• Step 2: From among all the occurrences of “w1 w2 … wk” in the sample text, choose

one at random.
• Step 3: Output the word in the sample text that immediately follows this occurrence.
• Step 4: Go to Step 1. Repeat as long as you like.

Let’s trace through the procedure for the State of the Union example given above. That
text was generated by letting k = 2. The procedure iterated through Steps 1-3 repeatedly.
Below is a “transcript” of the first several iterations. The underlined words are the ones
that were used in Steps 1-2, and the italicized word is the one that was outputted in Step
3.

1st iteration: “This” [see (a) below]
2nd iteration: “This war” [see (a) below]
3rd iteration: “This war is”
4th iteration: “This war is more”
5th iteration: “This war is more competitive”
6th iteration: “This war is more competitive by”
7th iteration: “This war is more competitive by strengthening”

Observe that this procedure generates text that mimics the sample text at a ‘small scale’.
For example, if the word “the” is usually followed by a noun in the sample text, this will
also be true in the generated text. If the phrase “war on” is usually followed by “terror” in
the sample text, this will also be true in the generated text (assuming k >= 2).

The text generator has a few minor details that have been elided thus far. For
completeness, they are discussed below:

a) In Step 1, if fewer than k words have been outputted so far, then all of the words
that have been outputted so far are used instead. If no words have yet been
outputted, the procedure chooses a word at random from the sample text.

b) In Step 2, if there are no occurrences of “w1 w2 … wk” in the sample text, the

procedure looks for occurrences of the last k-1 words outputted, then the last k-2
words outputted, and so on. This will eventually succeed, since there is always at
least one occurrence of the last word outputted, because every word outputted
appears in the sample text.

c) Punctuation is dealt with on a case-by-case basis. Good results can be achieved by
treating commas, semi-colons and periods just like whole words, and ignoring all
other punctuation.

Part 5: Experiments with Text Generation

1. Open this web page:
http://www.cs.princeton.edu/courses/archive/spring07/cos116/lab12/generate.html

 This is a web interface to the text generator described in Part 4.

2. Also open this web page:
http://www.cs.princeton.edu/courses/archive/spring07/cos116/lab12/texts.html

 This web page has links to sample texts.
 Note: When copying text, save it to a file first, then open the file and
 copy. Don’t copy from the web page directly.

3. Copy the 2007 State of the Union address into the text area of the Text

Generator, and click “Generate”. (Don’t change the “Style” option yet.) Do
this for several values of k. What is the lowest k that still produces sensible
sounding text? How high can you make k before the generated text becomes
a nearly verbatim copy of the sample text?

4. Copy the 1997 State of the Union address into the text area of the Text

Generator, and click “Generate”. Do this for several values of k. Is it easy to
tell text generated from the 1997 SOTU apart from text generated from the
2007 SOTU? Is there any value of k for which it is difficult?

5. Copy both the 1997 and 2007 SOTU addresses into the text area of the Text

Generator, and click “Generate”. Choose a value for k that produces sensible
sounding text. Find a funny sentence (e.g. an odd juxtaposition of ideas, an
un-Presidential choice of words, etc.), and include it in your report.

The procedure described in Part 4 is easily modified to produce text one letter at a time,
instead of one word at a time. In Step 1, let “l1l2…lk” be the last k letters outputted, and
modify the remainder of the procedure analogously. Spaces and punctuation are treated
as letters. The effect is to produce words that are pronounceable, but don’t actually mean
anything

6. Copy the soliloquy from Hamlet into the text area of the Text Generator.
Select “Letter” for the “Style” option, and click “Generate”. Do this for
several values of k. What is the lowest k that still produces English-like
words?

7. Copy the English news article on the death of Boris Yeltsin into the Text

Generator. Select “Letter” for the “Style” option, and click “Generate”. Do
this for several values of k. Repeat the process for the French article. Are you
able to determine the language of the sample text from the generated text?

For which values of k is this difficult? Note that these are two different articles;
one is not a translation of the other.

8. Just for fun: If you have handy access to an essay/term paper that you’ve

written, try feeding it to the Text Generator. Try both the “Letter” and
“Word” styles, and different values of k. Are you able to recognize the
generated text as your own writing?

Part 6: Complex Text Generation

1. Open this web page:
http://pdos.csail.mit.edu/scigen/

2. Read the description of what the program on this web page does. Then

generate an academic paper in which you are the author. Find a sentence or
few sentences in the paper that illustrate that the SCIgen algorithm for text
generation is more sophisticated than the simple algorithm described in Part
4. (Hint: The SCIgen algorithm can produce text with large scale structure
spanning several paragraphs.) Include these sentences in your report.

Additional Questions

1. Many email clients (e.g. Outlook, Gmail) prevent images from being displayed.
This is because displaying an image makes it possible for the sender to determine
whether his email reached the inbox, and therefore was not flagged by the spam
filter. Considering the procedure you undertook in Part 3, Step 5, do you
understand why images are not usually displayed? Explain.

2. A technique for weakening spam filters is called “poisoning”. It takes

considerable effort: a spammer sends you many spam messages, but each spam
message also contains a few legitimate hammy words. Assuming you mark each
of these messages as spam, how will this degrade the effectiveness of your spam
filter – specifically, will it make the filter more prone to incorrectly classify ham,
or spam? How would you adjust the threshold to compensate for this type of
error? And if you make this adjustment, how will that make it easier for spam to
get through the filter?

3. In lecture, you learned about the SAT analogies algorithm. Does its success imply

that computers have achieved human-level intelligence? Answer with a few
sentences.

