COS 461: Computer Networks

Course Review
(12 weeks in 80 minutes)

Spring 2009 (MW 1:30-2:50 in CS 105)
Mike Freedman

Teaching Assistants: Wyatt Lloyd and Jeff Terrace
http://www.cs.princeton.edu/courses/archive/spr09/cos461/

What You opetuiy) Learned in This Course

* Skill: network programming s ?Sl Moqel
un ayers

— Socket programming

— Implementing protocols _
 Knowledge: how Internet works _

— IP protocol suite _

— Internet architecture

— Applications (Web, DNS, P2P, ...) _
e Insight: key concepts _

— Protocols

— Resource allocation _

— Layering

2

Message, Segment, Packet, and Frame

host host
HTTP message
HTTP |<¢-----------mm e -> HTTP
TCP segment
B O L R > TCP
router router
IP packet
IP (-----B?E-E--.) IP <______l_l_)_Rz_l_c_l_(_e_t_______} IP (-IB-P.@.QK?.‘.) IP
Ethernet Ethernet SONET SOI:]ET Ethernet Ethernet
interface interface interface interface interface interface

Ethernet frame SONET frame Ethernet frame

Topics

Link layer: * Transport layer:

— Ethernet and CSMA/CD — Socket interface

— Wireless protocols and CSMA/CA — UDP

— Spanning tree, switching and bridging — TCP

— Translating addrs: DHCP and ARP * Reliability
Network |ayer: * Congestion Control

— IPv4, addressing, and forwarding ~ Reliable multicast

— IP routing ° Application Iayer:
* Link-state and distance vector — Translating names: DNS
* BGP: path vector, policies — HTTP and CDNs
— |P multicast and anycast — Overlay networks
— Middleboxes: NATs, firewalls — Peer-to-peer and DHTs
— Tunneling: MPLS, IPSec — Email

— Addt. Considerations: mobility, DTNs

Link Layer

Link-Layer Services

* Encoding
— Representing the Os and 1s

* Framing

— Encapsulating packet into frame, adding header
and trailer

— Using MAC addresses, rather than IP addresses

* Error detection
— Errors caused by signal attenuation, noise.
— Receiver detecting presence of errors

Multiple Access Protocol

* Single shared broadcast channel
— Avoid having multiple nodes speaking at once
— Otherwise, collisions lead to garbled data

 Multiple access protocol
— Distributed algorithm for sharing the channel
— Algorithm determines which node can transmit

* Classes of techniques

— Channel partitioning: divide channel into pieces

— Time-division multiplexing, frequency division multiplexing
— Taking turns: passing a token for right to transmit
— Random access: allow collisions, and then recover

Key Ideas of Random Access

e Carrier Sense (CS)
— Listen before speaking, and don’t interrupt
— Checking if someone else is already sending data
— ... and waiting till the other node is done

e Collision Detection (CD)
— If someone else starts talking at the same time, stop
— Realizing when two nodes are transmitting at once
— ...by detecting that the data on the wire is garbled

e Randomness
— Don’t start talking again right away
— Waiting for a random time before trying again

CSMA/CD Collision Detection

+«—— space —>

collision
detect/abort
time

Wireless: Avoidance, Not Detection

Collision detection in wired Ethernet

— Station listens while transmitting

— Detects collision with other transmission

— Aborts transmission and tries sending again

Problem #1: cannot detect all collisions
— Hidden terminal problem
— Fading

Problem #2: listening while sending
— Strength of received signal is much smaller
— Expensive to build hardware that detects collisions

So, 802.11 does not do collision detection

Medium Access Control in 802.11

e Collision avoidance, not detection

— First exchange control frames before transmitting data
e Sender issues “Request to Send” (RTS), including length of data

e Receiver responds with “Clear to Send” (CTS)
— If sender sees CTS, transmits data (of specified length)
— If other node sees CTS, will idle for specified period
— If other node sees RTS but not CTS, free to send

* Link-layer acknowledgment and retransmission
— CRC to detect errors
— Receiving station sends an acknowledgment
— Sending station retransmits if no ACK is received
— Giving up after a few failed transmissions

Scaling the Link Layer

* Ethernet traditionally limited by fading signal
strength in long wires
— Introduction of hubs/repeaters to rebroadcast

e Still a maximum “length” for a Ethernet segment

— Otherwise, two nodes might be too far for carrier sense
to detect concurrent broadcasts

e Further, too many nodes in shorter Ethernet can
vield low transmissions rates
— Constantly conflict with one another

Bridges/Switches: Traffic Isolation

e Switch breaks subnet into LAN segments

e Switch filters packets
— Frame only forwarded to the necessary segments
— Segments can support separate transmissions

xy switch/bridge

segment

segment segment

Comparing Hubs, Switches, Routers

Hub/ Bridge/ |Router
Repeater | Switch

Traffic isolation no yes yes
Plug and Play yes yes no
Efficient routing no no yes

Cut through yes yes no

Self Learning: Building the Table

* When a frame arrives
— Inspect the source MAC address
— Associate the address with the incoming interface
— Store the mapping in the switch table

— Use a time-to-live field to eventually forget the mapping

Switch learns
how to reach A

Solution: Spanning Trees

* Ensure the topology has no loops
— Avoid using some of the links when flooding
— ... to avoid forming a loop
* Spanning tree
— Sub-graph that covers all vertices but contains no cycles
— Links not in the spanning tree do not forward frames

N\
AN

Evolution Toward Virtual LANs

* |Inthe olden days...
— Thick cables snaked through cable ducts in buildings
— Every computer they passed was plugged in
— All people in adjacent offices were put on the same LAN
— Independent of whether they belonged together or not

* More recently...
— Hubs and switches changed all that
— Every office connected to central wiring closets
— Often multiple LANs (k hubs) connected by switches
— Flexibility in mapping offices to different LANs

Group users based on organizational
structure, rather than the physical
layout of the building.

Example: Two Virtual LANs

T

R

R

Red VLAN and

Switches forward traffic as needed
18

Network Layer

|IP Packet Structure

abit | 4-bit 8-bit _
Version | Header | Type of Service 16-bit Total Length (Bytes)
Length (TOS)
: P 3-bit _
16-bit ldentification Flags | 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

20

Source Address: What if Source Lies?

* Source address should be the sending host
— But, who's checking, anyway?
— You could send packets with any source you want

 Why would someone want to do this?
— Launch a denial-of-service attack
* Send excessive packets to the destination
* ...to overload the node, or the links leading to node
— Evade detection by “spoofing”
* But, the victim could identify you by the source address
* So, you can put someone else’s source address in packets
— Also, an attack against the spoofed host
» Spoofed host is wrongly blamed
* Spoofed host may receive return traffic from receiver

Hierarchical Addressing: IP Prefixes

e |P addresses can be divided into two portions
— Network (left) and host (right)

e 12.34.158.0/24 is a 24-bit prefix
— Which covers 28 addresses (e.g., up to 255 hosts)

12 34 158 5

R

00001100 100100010] 10011110 00000101

B —— PP

Network (24 bits) Host (8 bits)

Classful Addressing

* |n the olden days, only fixed allocation sizes
— Class A: 0*
* Very large /8 blocks (e.g., MIT has 18.0.0.0/8)
— Class B: 10*
 Large /16 blocks (e.g,. Princeton has 128.112.0.0/16)

— Class C: 110*
* Small /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)

— Class D: 1110*
* Multicast groups

—Class E: 11110*

e Reserved for future use

* This is why folks use dotted-quad notation!

CIDR: Hierarchal Address Allocation

* Prefixes are key to Internet scalability
— Address allocated in contiguous chunks (prefixes)
— Routing protocols and packet forwarding based on prefixes
— Today, routing tables contain ~200,000 prefixes (vs. 4B)

12.0.0.0/16

12.1.0.0/16 12.3.0.0/24

12.2.0.0/16 12.3.1.0/24

12.3.0.0/16

12.0.0.0/8 12.3.254.0/24

12.253.0.0/19
12.253.32.0/19
12.253.64.0/19

12.253.96.0/19
12.254.0.0116 @ 15:553.128.0/19
12.253.160.0/19

Two types of addresses

Provider independent (from IANA)

Provider allocated (from upstream ISP)

Provider allocated addresses seem to offer
more potential for aggregation (and reducing
routing table size), but not always so...

Scalability: Address Aggregation

Provider is given 201.10.0.0/21

-
- a» a» a»

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Routers in rest of Internet just need to know how to
reach 201.10.0.0/21. Provider can direct IP packets
to appropriate customer.

26

But, Aggregation Not Always Possible

201.10.0.0/21

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Multi-homed customer (201.10.6.0/23) has two
providers. Other parts of the Internet need to know
how to reach these destinations through both providers.

27

CIDR Makes Packet Forwarding Harder

* Forwarding table may have many matches
— E.g., entries for 201.10.0.0/21 and 201.10.6.0/23
— The IP address 201.10.6.17 would match both!

— Use Longest Prefix Matching

Can lead to routing table expansion
— To satify LPM, need to announce /23 from both 1 and 2

201.10.0.0/21

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23 28

Two types of addresses

Provider independent (from IANA)

Provider allocated (from upstream ISP)

Provider allocated addresses seem to offer
more potential for aggregation (and reducing
routing table size), but not always so...

— Multi-homing a PA address

— Traffic engineering between multiple links to
same single provider

Internet-wide Internet Routing

* AS-level topology
— Destinations are IP prefixes (e.g., 12.0.0.0/8)
— Nodes are Autonomous Systems (ASes)
— Edges are links and business relationships

\Q-‘;“%’

”
e

Client

Web server

Intradomain routing
(Interior Gateway Protocol — IGP)

Link-state:
— Keep complete map of all links
— Fast convergence
— Node can advertise incorrect link cost

— Each node computes only its own table
— OSPF, IS-1S, ...

Distance Vector:
— Keep only next-hop and cost information for each destination
— Convergence time varies (can be loops, count-to-infinity)
— DV node can advertise incorrect path cost
— Each node’s table used by others (error propagates)
— RIP, ...

Path-Vector Routing

* Extension of distance-vector routing
— Support flexible routing policies
— Avoid count-to-infinity problem

e Key idea: advertise the entire path
— Distance vector: send distance metric per dest d
— Path vector: send the entire path for each dest d

“d: path (2,1)” “d: path (1)”

data traffic data traffic

BGP Route

* Destination prefix (e.g., 128.112.0.0/16)
* Route attributes, including

— AS path (e.g., “7018 88”)

— Next-hop IP address (e.g., 12.127.0.121)

~
192.0.2.1 AS 7018 12.127.0.121

. ~ K AT&T /
AS88 oY "AS 11
}’rinceton /7?/ 4 _ E / ? Yale

128.112.0.0/16
AS path = 88
Next Hop =192.0.2.1

128.112.0.0/16

AS path = 7018 88
Next Hop =12.127.0.121

BGP Policy: Applying Policy to Routes

* Import policy
— Filter unwanted routes from neighbor
* E.g. prefix that your customer doesn’t own

— Manipulate attributes to influence path selection

* E.g., assign local preference to favored routes
* Export policy
— Filter routes you don’t want to tell your neighbor
* E.g., don’t tell a peer a route learned from other peer

— Manipulate attributes to control what they see
* E.g., make a path look artificially longer than it is

Customer-Provider Relationship

* Customer needs to be reachable from everyone
— Provider tells all neighbors how to reach the customer

* Customer does not want to provide transit service

— Customer does not let its providers route through it

Traffic to the customer Traffic from the customer

provider

announcements

ﬁ)vider
l\ customer

d customer

Peer-Peer Relationship

e Peers exchange traffic between customers
— AS exports only customer routes to a peer
— AS exports a peer’s routes only to its customers
— Often the relationship is settlement-free (i.e., no SSS)

Traffic to/from the peer and its customers

\ /a:nnouncements

peer peer
/Y traftfic 7\
d

ldentify the peer/transit links!

—

FE R SSRR

Web server

Extending the network layer

* Anycast
* Multicast
* Middleboxes

Motivation for IP anycast

e Failure problem: client has resolved IP address

— What if IP address can represent many servers?

* Load-balancing/failover via IP addr, rather than DNS

* |P anycast is simple reuse of existing protocols
— Multiple instances of a service share same IP address
— Each instance announces IP address / prefix in BGP / IGP

— Routing infrastructure directs packets to nearest
instance of the service

e Can use same selection criteria as installing routes in the FIB

— No special capabilities in servers, clients, or network

Downsides of IP anycast
Many Tier-1 ISPs ingress filter prefixes > /24

— Publish a /24 to get a “single” anycasted address: Poor utilization

Scales poorly with the # anycast groups
— Each group needs entry in global routing table

Not trivial to deploy
— Obtain an IP prefix and AS number; speak BGP

Subject to the limitations of IP routing

— No notion of load or other application-layer metrics
— Convergence time can be slow (as BGP or IGP convergence)

Failover doesn’t really work with TCP
— TCP is stateful; other server instances will just respond with RSTs
— Anycast may react to network changes, even though server online

Root name servers (UDP) are anycasted, little else

IP Multicast

e Simple to use in applications

— Multicast “group” defined by IP multicast address

* |P multicast addresses look similar to IP unicast addrs
e 224.0.0.0 to 239.255.255.255 (RPC 3171)

— Best effort delivery only
* Sender issues single datagram to IP multicast address

* Routers delivery packets to all subnetworks that have a
receiver “belonging” to the group

* Receiver-driven membership

— Receivers join groups by informing upstream routers
— Internet Group Management Protocol (v3: RFC 3376)

Middleboxes

* Middleboxes are intermediaries
— Interposed in-between the communicating hosts
— Often without knowledge of one or both parties

 Examples
— Network address translators
— Firewalls
— Traffic shapers
— Intrusion detection systems
— Transparent Web proxy caches

— Application accelerators

Two Views of Middleboxes

* An abomination
— Violation of layering
— Cause confusion in reasoning about the network
— Responsible for many subtle bugs

e A practical necessity
— Solving real and pressing problems
— Needs that are not likely to go away

 Would they arise in any edge-empowered
network, even if redesigned from scratch?

Port-Translating NAT

 Map outgoing packets

— Replace source address with NAT address
— Replace source port number with a new port number

— Remote hosts respond using (NAT address, new port #)
* Maintain a translation table

— Store map of (src addr, port #) to (NAT addr, new port #)
 Map incoming packets

— Consult the translation table

— Map the destination address and port number
— Local host receives the incoming packet

Transport Layer

Two Basic Transport Features

* Demultiplexing: port numbers
Server host 128.2.194.242

: Service request for
et oS " 128.2.194.242:80 Web server ™ :
. (i.e., the Web server) (port 80)
Echo server

(port 7)

 Error detection: checksums

IP payload

y
detect corruption

User Datagram Protocol (UDP)

* Datagram messaging service
— Demultiplexing of messages: port numbers

— Detecting corrupted messages: checksum

* Lightweight communication between processes
— Send messages to and receive them from a socket
— Avoid overhead and delays of ordered, reliable delivery

SRC port DST port

checksum length

DATA

Transmission Control Protocol (TCP)

e Stream-of-bytes service
— Sends and receives a stream of bytes, not messages

* Reliable, in-order delivery
— Checksums to detect corrupted data
— Sequence numbers to detect losses and reorder data
— Acknowledgments & retransmissions for reliable delivery

 Connection oriented
— Explicit set-up and tear-down of TCP session

Flow control
— Prevent overflow of the receiver’s buffer space

* Congestion control
— Adapt to network congestion for the greater good

Establishing a TCP Connection

A B
SYN

\)
S

CK
m
%
%‘\’

Each host tells
its ISN to the
other host.

 Three-way handshake to establish connection
— Host A sends a SYNchronize (open) to the host B
— Host B returns a SYN ACKnowledgment (SYN ACK)
— Host A sends an ACK to acknowledge the SYN ACK

TCP “Stream of Bytes” Service

Host A
555 5
Host B \\\\\\\\
HEEEN N

...Emulated Using TCP “Segments”

Host A
S
olo|o|o o
O|—={rofwo e
(]

TCP Data < iegment sent when:

Segment full (Max Segment Size),
2. Not full, but times out, or
3. “Pushed” by application.

TCP Data
HoST B
YVVYY A 4
SRR T
olo|o|o o
Of—=bofw 00
(=)

Reliability: TCP Acknowledgments

Host A

ISN (initial sequence number)

4"

Sequence humber | [— T Tcp

ACK sequence
humber = next
expected byte

TCP Data | [
HOST B

:"%

Timeout

_Timeout

Pack
\et"
Aok

Packet lost

Detecting losses

~-{—Pack
| \et>

Timeout

_Timeout

Pack
\et"
| hoK

ACK lost
DUPLICATE
PACKET

__Timeout

Timeout

Early timeout
DUPLICATE
PACKETS

Flow control: Sliding window

* Allow a larger amount of data “in flight”
— Allow sender to get ahead of the receiver
— ... though not too far ahead

Sending process

TCP | ast byte writte&(TCP ﬁst byte read

Last byte ACKed Next byte expected

Last byte sent Last byte received

Where Congestion Happens: Links

* Simple resource allocation: FIFO queue & drop-tail

e Access to the bandwidth: first-in first-out queue

— Packets transmitted in the order they arrive

-

B

>

e Access to the buffer space: drop-tail queuing

— If the queue is full, drop the incoming packet

>

TCP Congestion Window

* Each TCP sender maintains a congestion window
— Maximum number of bytes to have in transit
— |.e., number of bytes still awaiting acknowledgments

* Adapting the congestion window
— Decrease upon losing a packet: backing off
— Increase upon success: optimistically exploring
— Always struggling to find the right transfer rate

* Both good and bad

— Pro: avoids having explicit feedback from network
— Con: under-shooting and over-shooting the rate

Leads to the TCP “Sawtooth”

Window

Loss

e

T~

But, could take a long
time to get started!

{

Slow Start and the TCP Sawtooth

Window
| Duplicate ACK

Loss /

/4///

A
AN
—\ . p
Exponential

"slow start”

Repeating Slow Start After Timeout

Window

Timeout

Loss ///

// //

A

>

) t

Slow start in operation
until it reaches half of
previous cwnd.

Extensions

* Tail drop in routers lead to bursty loss and
synchronization of senders

— Led to Random Early Detection (RED)

* Packets dropped and retransmission when
unnecessary

— Led to Explicit Congestion Notification (ECN)

Application layer

DNS
HTTP and CDNs
P2P and DHTs

61

Three Hierarchical Assighment Processes

 Host name: www.cs.princeton.edu

— Domain: registrar for each top-level domain (e.g., .edu)
— Host name: local administrator assigns to each host

 IP addresses: 128.112.7.156

— Prefixes: ICANN, regional Internet registries, and ISPs
— Hosts: static configuration, or dynamic using DHCP

* MAC addresses: 00-15-C5-49-04-A9
— Blocks: assigned to vendors by the IEEE

— Adapters: assigned by the vendor from its block

Mapping Between ldentifiers

e Domain Name System (DNS)
— Given a host name, provide the IP address
— Given an IP address, provide the host name

* Dynamic Host Configuration Protocol (DHCP)
— Given a MAC address, assigh a unique IP address
— ... and tell host other stuff about the Local Area Network
— To automate the boot-strapping process

e Address Resolution Protocol (ARP)
— Given an IP address, provide the MAC address
— To enable communication within the Local Area Network

DHCP and ARP use L2 broadcast....DNS is app-layer protocol

DNS: Distributed Hierarchical DB

unnamed root

CICEC

O - W@

gcnc domains country domains

my.east.bar.edu

usr.cam.ac.uk

12.34.56.0/24

Recursive vs. lterative Queries

o Recu rsive query root DNS server
— Ask server to get i
answer for you //
TLD DNS server
— E.g., request 1 and 4
response 3 local DNS server n : 5 n

dns.poly.edu

* |terative query

— Ask server who 2N\ 6
to ask next =
— Eg, all other — authoritative DNS server

dns.cs.umass.edu

request-response requesting host
. cis.poly.edu
pairs

DNS security

* DNS cache poisoning
— Ask for www.evil.com
— Additional section for (www.cnn.com, 1.2.3.4, A)
— Thanks! | won’t bother check what | asked for

* DNS hijacking
— Let’s remember the domain. And the UDP ID.

— 16 bits: 65K possible IDs
* What rate to enumerate all in 1 sec? ~32 Mbps

— Prevention: Also randomize the DNS source port

* Weaknesses led to DNSSec
— Chain of signatures from root to authoritative DNS server

HTTP Request Example

GET /HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

Host: www.intel-iris.net

Connection: Keep-Alive

67

One page, lots of objects
Pt v sV e A S,

Web |Images Video News Maps more» New! Upload your videos

Search I Advanced Video Search

Top 100 Comedy Music videos Movies Sports Animation TV shows

A Good comic video found
some where on Net

Avg: filiRll 42833 ratings
All time views: 6,888,549 »

Copyrighted to who ever has created it
1 min 3 sec - May 25, 2006

Browse: orkut, awesome, url, more »

Add tag - Mark tag as Spam

-for| Windows /Mac Jid |

A Good comic video found some where
on Net

« Prev - Next video »

Playlist - Details - From user - Related -
Comments - Flag as inappropriate

° Dynamlc HTM L: 19.6 KB Continuous Playback: ON - OFF

A Good comic video
found some where on

e Static content: 6.2 MB .
Pixar Hippo & Dog The

ever has created it
* 1 flash movie - 5 style sheets —

. . Lion Sleeps Tonight
* 18 images - 3 scripts golasarpion

TCP Interaction: Short Transfers

Multiple connection setups
— Three-way handshake each time

Round-trip time estimation
— Maybe large at the start of a connection (e.g., 3 seconds)
— Leads to latency in detecting lost packets

Congestion window
— Small value at beginning of connection (e.g., 1 MSS)
— May not reach a high value before transfer is done

Detecting packet loss

— Timeout: slow ®
— Duplicate ACK
* Requires many packets in flight
* Which doesn’t happen for very short transfers ®

Persistent HTTP

Persistent without pipelining:

Non-persistent HTTP issues:

Requires 2 RTTs per object

OS must allocate resources
for each TCP connection

But browsers often open
parallel TCP connections to

fetch referenced objects

Persistent HTTP:

Server leaves connection
open after sending response

Subsequent HTTP messages
between same client/server
are sent over connection

Client issues new request only
when previous response has

been received
One RTT for each object

Persistent with pipelining:

Default in HTTP/1.1

Client sends requests as soon as
it encounters referenced object

As little as one RTT for all the
referenced objects

70

Web Proxy Caches

User configures browser: origin
. server
Web accesses via cache

Browser sends all HTTP
requests to cache

L o
— Object in cache: cache o2) Qoo?’e
. S
returns object A0

— Else: cache requests

. . . client .
object from origin, origin

then returns to client server

Content Distribution Networks (CDNs)

Content providers are CDN
customers

Content replication

CDN company installs thousands
of servers throughout Internet

— In large datacenters
— Or, close to users
CDN replicates customers’ content

When provider updates content,
CDN updates servers

origin server
in North America

i
CDN distri£ution node
|
@/ I\
L9 9 0

] . CDN server
in S. America CDN server]]
in Asia
in Europe

How to perform server selection?

* Routing based (IP anycast)

— Pros: Transparent to clients, works when browsers cache
failed addresses, circumvents many routing issues

— Cons: Little control, complex, scalability, TCP can’t recover, ...

e Application based (HTTP redirects)
— Pros: Application-level, fine-grained control

— Cons: Additional load and RTTs, hard to cache

 Naming based (DNS selection)
— Pros: Well-suitable for caching, reduce RTTs

— Cons: Request by resolver not client, request for domain not
URL, hidden load factor of resolver’s population

* Much of this data can be estimated “over time”

Consistent Hashing

* Construction 0
— Assign each of C hash buckets to random 14
points on mod 2" circle; hash key size = n 1o

— Map object to random position on circle
— Hash of object = closest clockwise bucket

e Desired features

— Balanced: No bucket responsible for large number of objects

— Smoothness: Addition of bucket does not cause movement
among existing buckets

— Spread and load: Small set of buckets that lie near object

e Used layer in P2P Distributed Hash Tables (DHTSs)

Extended consistent hashing to
large-scale systems

e Chord: each node has small view of network

®@ @@

— log n long-distance “fingers” ‘
@ O

— k immediate successors

* Performing lookup(k)
— Greedily route to closest nodeid @
— Each step get % closer
—Takes log n hops @
0,

Topics

Link layer: * Transport layer:

— Ethernet and CSMA/CD — Socket interface

— Wireless protocols and CSMA/CA — UDP

— Spanning tree, switching and bridging — TCP

— Translating addrs: DHCP and ARP * Reliability
Network |ayer: * Congestion Control

— IPv4, addressing, and forwarding ~ Reliable multicast

— IP routing ° Application Iayer:
* Link-state and distance vector — Translating names: DNS
* BGP: path vector, policies — HTTP and CDNs
— |P multicast and anycast — Overlay networks
— Middleboxes: NATs, firewalls — Peer-to-peer and DHTs
— Tunneling: MPLS, IPSec — Email

— Addt. Considerations: mobility, DTNs

