Delay Tolerant Networks
(and email)

Goals of Today’s Lecture

Underlying assumptions of the Internet
— And how they are cooked into the protocols

Challenging network environments
— Example networking scenarios
— Delay-Tolerant Networking architecture

E-mail as a example of disruption tolerance

— Mail servers and user agents
— Simple Mail Transfer Protocol (SMTP)
— Retrieving e-mail from a mail server

E-mail message format (if time allows)

Assumptions Underlying the
Internet Protocols

Best-Effort Packet Delivery

* Abstract IP datagram

— Sending a portion of a message in each packet
— Assumption: end hosts provide message abstraction

* No application or transport-level state
— Routers do not maintain state across a connection
— Assumption: communicating hosts can store this state

* Best-effort delivery
— Drop packets during times of overload
— Assumption: retransmission by end hosts is sufficient

Stationary Hosts and Stable Topology

* Addressing
— Hierarchical 32-bit IP addresses
— Assumption: end hosts are largely stationary

* Routing
— Discover network topology and compute “best” path
— Assumption: topology is relatively stable over time

* Drop on failure
— Drop packets when no route currently exists
— Assumption: communicating hosts usually connected

End-to-End Argument

* Link properties
— Links exist and are generally reliable
— Assumption: loss rates typically less than 1%

* Flow control and congestion control
— React to flow control on a half round-trip time
— React to congestion on a full round-trip time
— Assumption: end-to-end path has reasonably small RTT

* Router storage
— Short-term queuing of a few packets
— Assumption: no long-term storage of data in the network

Challenging Network
Environments

What are Challenged Networks?

e Unusual
— Contain features or reqgs that a network
designer would find difficult to reason about

* Challenged

— Operating environment makes communications difficult

 Examples: mobile, power-limited, far-away nodes
communicating over poorly or intermittently-available links

(ta)

/]

Challenging Environments

Random or predictable node mobility

— Military/tactical networks (clusters meet clusters)
— Mobile routers with disconnection (e.g., ZebraNet)
— Daily schedule for a bus passing by a village
Periods of complete disconnection

— E.g., the bus is out of range

Big delays and low bandwidth (high cost)
— Satellites (GEO, LEO / polar)
— Exotic links (e.g., deep space or underwater acoustics)

Big delays and high bandwidth

— Busses, mail trucks, delivery trucks, etc.

Limp Along With Internet Protocols?

* Run existing Internet protocols
— And endure the poor performance and poor reliability
— ... and the risk that communication never succeeds

* Deploy proxies at the boundary points
— E.g., at the wireless/wired boundary
— To retransmit, cache, transcode, ...

&
= P Internet

@~ @€

Design New Protocols?

e Revisit the assumptions underlying the Internet
— Create new assumptions tailored to the environment
— Design new protocols based on those assumptions

* Advantages
— More efficient, reliable, and better-performing network
— Especially for extremely challenging environments

* Disadvantages
— Additional protocols and complexity, and perhaps cost
— Significant risk of incompatibility with the Internet

Example Projects

* Digital Gangetic Plains
— Low-cost networking in rural India
— Qutdoor long-distance directional links using 802.11
— http://www.cse.iitk.ac.in/users/braman/dgp.html

* Sami Network Connectivity Project
— Internet connectivity for nomadic reindeer herders
— E-mail, cached Web access, & reindeer herd telemetry
— Opportunistic relaying of data through gateways
— http://www.snc.sapmi.net/

e ZebraNet
— Study animal migration and inter-species interaction
— Tracking collars, P2P communication, and base stations
— http://www.princeton.edu/~mrm/zebranet.html

Delay / Disruption
Tolerant Networking

DTN Architecture

* Goals
— Interop. across ‘radically heterogeneous’ networks

— Tolerate delay and disruption
* Acceptable performance in high loss/delay/error environs

* Decent performance for low loss/delay/error environments

* Components
— Flexible naming scheme
— Message abstraction and API
— Extensible Store-and-Forward Overlay Routing
— Per-(overlay)-hop reliability and authentication

Naming

e Support ‘radical heterogeneity’ using URI’s:
— {scheme ID (allocated), scheme-specific-part}
— Associative or location-based names/addresses optional

— Variable-length, can accommodate “any” net’s names and
addresses

* Endpoint IDs (EIDs)
— Multicast to send to multiple recipients
— Anycast to send to one of many possible recipients
— Unicast to send to one specific recipient

e Late binding of EID permits naming flexibility:
— EID “looked up” only when necessary during delivery
— Contrast with Internet lookup-before-use DNS/IP

Message Abstraction

* Network protocol data unit: bundles

“Postal-like” message delivery
Coarse-grained CoS (4 classes)
Origination and useful life time
Source, destination, and respond-to EIDs

Options: return receipt, “traceroute”-like function, alternative
reply-to field, custody transfer

Fragmentation capability
Overlay atop TCP/IP or other (link) layers (layer ‘agnostic’)

* Applications send and receive messages

“Application data units” (ADUs) of possibly-large size

— Adaptation to underlying protocols via ‘convergence layer’

— APl includes persistent registrations

DTN Routing

DTN Routers form an overlay network
— Only selected/configured nodes participate
— Nodes have persistent storage

DTN routing topology is a time-varying multigraph
— Links come and go, sometimes predictably
— Use any/all links that can possibly help
— Scheduled, Predicted, or Unscheduled Links

* May be direction specific
* May learn from history to predict schedule

 Messages fragmented based on dynamics
— Proactive fragmentation: optimize contact volume
— Reactive fragmentation: resume where you failed

Example Routing Problem

Internet w
-

Cit

(ta))
2N I,

3 1 Village

18

Example Graph Abstraction

Village 2 @

Village 1

time (days) —
bike (data mule)
intermittent high capacity

Geo satellite
medium/low capacity

«— satellite
<> phone
Connectivity: Village 1 — City

bandwidth
—

......... dial-up link
low capacity

The DTN Routing Problem

Goal: satisfy message demand matrix
Vertices have buffer limits

Edge is possible chance to communicate:

— One-way: (S, D, c(t), d(t))

— (S, D): source/destination ordered pair of contact
— c(t): capacity (rate); d(t): delay

— A Contact is when c(t) > 0 for some period [ik,ik+1]
Problem: optimize some metric of delivery

— What metric to optimize? Efficiency? Cost?

So, is This Just E-mail?

naming/ routing flow multi- security reliable priority
late binding contrl app delivery
e-malil Y N (static) N(Y) N(Y) opt Y N(Y)
DTN ‘Y Y (exten) Y Y opt opt Y

e Many similarities to (abstract) e-mail service
e Primary difference involves routing, reliability and security

e E-mail depends on an underlying layer’s routing

— Cannot generally move messages ‘closer’ to their
destinations in a partitioned network

— E-mail protocols are not disconnection-tolerant or
efficient for long RTTs due to “chattiness”

e E-mail security authenticates only user-to-user
e Still, e-mail has some properties that are useful...

Delivering E-Mail

E-Mail Must Tolerate Disruptions

 Message abstraction
— Sending a (potentially large) message
— From one user to another user
— Okay if there is some delay in delivering the message

e Users may not be online together
— Receiver may be offline when the sender sends
— Sender may be offline when the receiver receives
— Cannot afford to wait until they are both online

e Users may connect from different places

— Home, work, airport, hotel room, ...
— Cannot assume a single IP address, or single host

Mail Servers and User Agents

o .
».--:PF\.- ;‘: &
el S
W72 user o
&7 3
%‘J‘& agent [54

ooooo|

e mail server mail server
K \;.. 's\;‘. _.} User'

p |ogent agent .g #

* Mail servers

— Always on and always accessible

— Transferring e-mail to and from other servers
* User agents

— Sometimes on and sometimes accessible

— Intuitive interface for the user

Store-and-Forward Model

user >I|||||||| ’I|||||||I ,| user
agent L0000 Hnnnn agent
mail server mail server

 Messages sent through a series of servers

— A server stores incoming messages in a qgueue
— ... to await attempts to transmit them to the next hop

* |If the next hop is not reachable
— The server stores the message and tries again later

e Each server adds a Received header
— To aid in diagnosis of problems

Scenario: Alice Sends Message to Bob

1) Alice uses UA to compose 4) Alice’s mail server sends
message “to” Alice’s message over the
bob@someschool.edu TCP connection

2) Alice’s UA sends message 5) Bob’s mail server places
to her mail server; message the message in Bob’s
placed in message queue mailbox

3) Alice’s mail server opens 6) Bob invokes his user
TCP connection with Bob’s agent to read message
mail server

B []

TR mail mail _ ;‘_‘1:':;_
5;3"; server server ‘w:_‘:’f:'
I M3 05 [TOE 4

00000 005)0

ldentifying the Mail Server

Alice identifying her mail server
— Explicit config of her user agent (e.g., smtp.cs.princeton.edu)

Alice’s mail server identifying Bob’s mail server
— From domain name in Bob’s e-mail address (e.g., mit.edu)

Domain name is not necessarily the mail server

— Mail server may have longer/cryptic name
e E.g., cs.princeton.edu vs. mail.cs.princeton.edu

— Multiple servers may exist to tolerate failures

* E.g., cnn.com vs. atlmail3.turner.com and nycmail2.turner.com
ldentifying the mail server for a domain
— DNS query asking for MX records (Mail eXchange)

* E.g., nslookup —g=mx yale.edu

— Then, a regular DNS query to learn the IP address

Simple Mail Transfer Protocol

access
user SMTP >||||||||| SMTP ’I|||||||I pI"OTOCO' user
agent LOO D L0000 agent
mail server mail server

* Client-server protocol
— Client is the sending mail server
— Server is the receiving mail server
* Reliable data transfer
— Built on top of TCP (on port 25)

e Push protocol

— Sending server pushes the file to the receiving server
— ... rather than waiting for the receiver to request it

0 QO QOO naonongQon QQm

Sample SMTP interaction

220 hamburger.edu

HELO crepes.fr

250 Hello crepes.fr, pleased to meet you
MAIL FROM: <alice@crepes.fr>

250 alicelcrepes.fr... Sender ok

RCPT TO: <bob@hamburger.edu>

250 bob(@hamburger.edu ... Recipient ok
DATA

354 Enter mail, end with "." on a line by itself
Do you like ketchup?

How about pickles?

250 Message accepted for delivery
QUIT
221 hamburger.edu closing connection

29

Try SMTP For Yourself

* Running SMTP

— Run “telnet servername 25” at UNIX prompt

— See 220 reply from server

— Enter HELO, MAIL FROM, RCPT TO, DATA commands
* Thinking about spoofing?

— Very easy

— Just forge the argument of the “FROM” command

— ... leading to all sorts of problems with spam

e Spammers can be even more clever
— E.g., using open SMTP servers to send e-mail
— E.g., forging the “Received” header

Multiple Server Hops

* Typically at least two mail servers
— Sending and receiving sides

 May be more

— Separate servers for key functions
e Spam filtering
* Virus scanning

— Servers that redirect the message

* mfreed (@) princeton.edu to mfreed (@) cs.princeton.edu
* Messages to princeton.edu go through extra hops

— Electronic mailing lists
* Mail delivered to the mailing list’s server
... and then the list is expanded to each recipient

Example With Received Header

Return-Path: <casado@cs.stanford.edu>

Received: from ribavirin.CS.Princeton.EDU (ribavirin.CS.Princeton.EDU [128.112.136.44])
by newark.CS.Princeton.EDU (8.12.11/8.12.11) with SMTP id k04M5R7Y023164
for <jrex@newark.CS.Princeton.EDU>; Wed, 4 Jan 2006 17:05:37 -0500 (EST)

Received: from bluebox.CS.Princeton.EDU ([128.112.136.38])
by ribavirin.CS.Princeton.EDU (SMSSMTP 4.1.0.19) with SMTP id M2006010417053607946
for <jrex@newark.CS.Princeton.EDU>; Wed, 04 Jan 2006 17:05:36 -0500

Received: from smtp-roam.Stanford.EDU (smtp-roam.Stanford.EDU [171.64.10.152])
by bluebox.CS.Princeton.EDU (8.12.11/8.12.11) with ESMTP id k04M5XNQ005204
for <jrex@cs.princeton.edu>; Wed, 4 Jan 2006 17:05:35 -0500 (EST)

Received: from [192.168.1.101] (adsl-69-107-78-147.dsl.pltn13.pacbell.net [69.107.78.147])
(authenticated bits=0)
by smtp-roam.Stanford.EDU (8.12.11/8.12.11) with ESMTP id k04M5W92018875
(version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT);
Wed, 4 Jan 2006 14:05:32 -0800

Message-ID: <43BC46AF.3030306 @cs.stanford.edu>

Date: Wed, 04 Jan 2006 14:05:35 -0800

From: Martin Casado <casado@cs.stanford.edu>

User-Agent: Mozilla Thunderbird 1.0 (Windows/20041206)

MIME-Version: 1.0

To: jrex@CS.Princeton.EDU

CC: Martin Casado <casado@cs.stanford.edu>

Subject: Using VNS in Class

Content-Type: text/plain; charset=ISO-8859-1; format=flowed

Content-Transfer-Encoding: 7bit -

Retrieving E-Mail From the Server

Server stores incoming e-mail by mailbox
— Based on the “From” field in the message

Users need to retrieve e-mail

— Asynchronous from when the message was sent

— With a way to view the message and reply

— With a way to organize and store the messages

In the olden days...

— User logged on to the machine where mail was delivered
— Users received e-mail on their main work machine

Now, user agent typically on a separate machine
— And sometimes on more than one such machine

Influence of PCs on E-Mail Retrieval

e Separate machine for personal use
— Users did not want to log in to remote machines

e Resource limitations

— Most PCs did not have enough resources to act as a full-
fledged e-mail server

* Intermittent connectivity
— PCs only sporadically connected to the network
— ... due to dial-up connections, and shutting down of PC
— Too unwieldy to have sending server keep trying
* Led to the creation of new e-mail agents
— POP, IMAP, and Web-based e-mail

Post Office Protocol (POP)

 POP goals
— Support users with intermittent network connectivity
— Allow them to retrieve e-mail messages when connected

— ... and view/manipulate messages when disconnected

* Typical user-agent interaction with a POP server
— Connect to the server
— Retrieve all e-mail messages
— Store messages on the user’s PCs as new messages
— Delete the messages from the server

— Disconnect from the server

Limitations of POP

Does not handle multiple mailboxes easily

— Designed to put user’s incoming e-mail in one folder
Not designed to keep messages on the server

— Instead, designed to download messages to the client

Poor handling of multiple-client access to mailbox

— Increasingly important as users have home PC, work PC,
laptop, cyber café computer, PDA, etc.

High network bandwidth overhead

— Transfers all of the e-mail messages, often well before
they are read (and they might not be read at all!)

Interactive Mail Access Protocol (IMAP)

Supports connected and disconnected operation
— Users can download message contents on demand

Multiple clients can connect to mailbox at once
— Detects changes made to the mailbox by other clients

— Server keeps state about message (e.g., read, replied to)

Access to parts of messages and partial fetch
— Clients can retrieve individual parts separately
— E.g., text of a msg without downloading attachments

Multiple mailboxes on the server
— Client can create, rename, and delete mailboxes
— Client can move messages from one folder to another

Server-side searches
— Search on server before downloading messages

Web-Based E-Mail

* User agentis an ordinary Web browser
— User communicates with server via HTTP
— E.g., Gmail, Yahoo mail, and Hotmail

e Reading e-mail
— Web pages display the contents of folders

— ... and allow users to download and view messages
— “GET” request to retrieve the various Web pages

* Sending e-mail
— User types the text into a form and submits to the server

— “POST” request to upload data to the server
— Server uses SMTP to deliver message to other servers

E-Mail Messages
(Backup Material)

E-Mail Message

* E-mail messages have two parts
— A header, in 7-bit U.S. ASCII text
— A body, also represented in 7-bit U.S. ASCII text

e Header —

— Lines with “type: value” |
blank

— “To: mfreed (@) princeton.edu”

line
— “Subject: Go Tigers!”

* Body —
i T body

— The text message

— No particular structure
or meaning

40

E-Mail Message Format (RFC 822)

* E-mail messages have two parts
— A header, in 7-bit U.S. ASCII text
— A body, also represented in 7-bit U.S. ASCII text

 Header
— Series of lines ending in carriage return and line feed
— Each line contains a type and value, separated by “.”
— E.g., “To: jrex@princeton.edu” and “Subject: Go Tigers”

— Additional blank line before the body begins

* Body
— Series of text lines with no additional structure/meaning
— Conventions arose over time (e.g., e-mail signatures)

Limitation: Sending Non-Text Data

* E-mail body is 7-bit U.S. ASCII
— What about non-English text?
— What about binary files (e.g., images and executables)?

 Solution: convert non-ASCII data to ASCII

— Baseb64 encoding: Map each group of 3B into four printable
U.S.-ASCII characters

— uuencode (Unix-to-Unix Encoding) was widely used

begin 644 cat.txt
#0V9%T

end

— Limitation: filename is the only cue to the data type

Limitation: Sending Multiple Items

e Users often want to send multiple pieces of data
— Multiple images, powerpoint files, or e-mail messages
— Yet, e-mail body is a single, uninterpreted data chunk

e Example: e-mail digests
— Encapsulating several e-mail messages into one
aggregate messages (i.e., a digest)

— Commonly used on high-volume mailing lists

e Conventions arose for how to delimit the parts
— E.g., well-known separator strings between the parts
— Yet, having a standard way to handle this is better

Multipurpose Internet Mail Extensions

* Additional headers to describe the message body
— MIME-Version: the version of MIME being used
— Content-Type: the type of data contained in the message
— Content-Transfer-Encoding: how the data are encoded

e Definitions for a set of content types and subtypes
— E.g., image with subtypes gif and jpeg
— E.g., text with subtypes plain, html, and richtext
— E.g., application with subtypes postscript and msword
— E.g., multipart for messages with multiple data types

* A way to encode the data in ASCIl format
— Base64 encoding, as in uuencode/uudecode

Example: E-Mail Message Using MIME

MIME version

method used\

to encode data

//’////'

type and subtype

/

encoded data

From:

mfreed (@) cs.princeton.edu

To: jrex (@) cs.princeton.edu
Subject: picture of Thomas Sweet
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

Il CREAM & CHQCO ®
%

Distribution of Content Types

 Content types in e-mail archive
— Searched on “Content-Type”, not case sensitive
— Extracted the value field, and counted unique types
— At UNIX command line:

grep -i Content-Type * | cut -d" " -f2 | sort | uniq -c¢ | sort -nr

* Qut of 44343 matches
— 25531: text/plain
— 7470: multipart to send attachments
— 4230: text/html
— 759: application/pdf
— 680: application/msword
— 479: application/octet-stream
— 292: image (mostly jpeg, and some gif, tiff, and bmp)

Electronic Mailing Lists

Community of users reachable by one address
— Allows groups of people to receive the messages

Exploders

— Explode a single e-mail message into multiple messages
— One copy of the message per recipient

Handling bounced messages

— Mail may bounce for several reasons

— E.g., recipient mailbox does not exist; resource limits
E-mail digests

— Sending a group of mailing-list messages at once

— Messages delimited by boundary strings

— ... or transmitted using multiple/digest format

Conclusions

* New challenges in data networking
— Sensors, intermittent connectivity, long-delay links, ...
— Require revisiting traditional assumptions

e Disruption Tolerant Networking (DTN)

— Relatively new area of research and standards
— Many application scenarios with unique properties

* Electronic mail as an example
— Sporadic end-host connectivity
— Resource constraints on the end host
— User connecting from different hosts and locations
— While still relying on the underlying Internet infrastructure

