

Overlay Networks and Tunneling

Reading: 4.5, 9.4

COS 461: Computer Networks

Spring 2009 (MW 1:30-2:50 in COS 105)

Mike Freedman

Teaching Assistants: Wyatt Lloyd and Jeff Terrace http://www.cs.princeton.edu/courses/archive/spring09/cos461/

Goals of Today's Lecture

- Motivations for overlay networks
 - Incremental deployment of new protocols
 - Customized routing and forwarding solutions
- Overlays for partial deployments
 - 6Bone, Mbone, security, mobility, ...
- Resilient Overlay Network (RON)
 - Adaptive routing through intermediate node
- Multi-protocol label switching (MPLS)
 - Tunneling at L2.5

IP Tunneling to Build Overlay Links

- IP tunnel is a virtual point-to-point link
 - Illusion of a direct link between two separated nodes

- Encapsulation of the packet inside an IP datagram
 - Node B sends a packet to node E
 - ... containing another packet as the payload

Tunnels Between End Hosts

- A logical network built on top of a physical network
 - Overlay links are tunnels through the underlying network
- Many logical networks may coexist at once
 - Over the same underlying network
 - And providing its own particular service
- Nodes are often end hosts
 - Acting as intermediate nodes that forward traffic
 - Providing a service, such as access to files
- Who controls the nodes providing service?
 - The party providing the service
 - Distributed collection of end users

Overlays for Incremental Deployment

Using Overlays to Evolve the Internet

- Internet needs to evolve
 - IPv6
 - Security
 - Mobility
 - Multicast
- But, global change is hard
 - Coordination with many ASes
 - "Flag day" to deploy and enable the technology
- Instead, better to incrementally deploy
 - And find ways to bridge deployment gaps

6Bone: Deploying IPv6 over IP4

Secure Communication Over Insecure Links

- Encrypt packets at entry and decrypt at exit
- Eavesdropper cannot snoop the data
- ... or determine the real source and destination

Communicating With Mobile Users

- A mobile user changes locations frequently
 - So, the IP address of the machine changes often
- The user wants applications to continue running
 - So, the change in IP address needs to be hidden
- Solution: fixed gateway forwards packets
 - Gateway has a fixed IP address
 - ... and keeps track of the mobile's address changes

IP Multicast

Multicast

- Delivering the same data to many receivers
- Avoiding sending the same data many times

IP multicast

Special addressing, forwarding, and routing schemes

MBone: Multicast Backbone

- A catch-22 for deploying multicast
 - Router vendors wouldn't support IP multicast
 - ... since they weren't sure anyone would use it
 - And, since it didn't exist, nobody was using it
- Idea: software implementing multicast protocols
 - And unicast tunnels to traverse non-participants

Multicast Today

- Mbone applications starting in early 1990s
 - Primarily video conferencing, but no longer operational
- Still many challenges to deploying IP multicast
 - Security vulnerabilities, business models, ...
- Application-layer multicast is more prevalent
 - Tree of servers delivering the content
 - Collection of end hosts cooperating to delivery video
- Some multicast within individual ASes
 - Financial sector: stock tickers
 - Within campuses or broadband networks: TV shows
 - Backbone networks: IPTV

Case Study: Resilient Overlay Networks

RON: Resilient Overlay Networks

Premise: by building application overlay network, can increase performance and reliability of routing

http://nms.csail.mit.edu/ron/

RON Circumvents Policy Restrictions

- IP routing depends on AS routing policies
 - But hosts may pick paths that circumvent policies

RON Adapts to Network Conditions

- Start experiencing bad performance
 - Then, start forwarding through intermediate host

RON Customizes to Applications

- VoIP traffic: low-latency path
- Bulk transfer: high-bandwidth path

How Does RON Work?

- Keeping it small to avoid scaling problems
 - A few friends who want better service
 - Just for their communication with each other
 - E.g., VoIP, gaming, collaborative work, etc.
- Send probes between each pair of hosts

How Does RON Work?

- Exchange the results of the probes
 - Each host shares results with every other host
 - Essentially running a link-state protocol!
 - So, every host knows the performance properties
- Forward through intermediate host when needed

RON Works in Practice

- Faster reaction to failure
 - RON reacts in a few seconds
 - BGP sometimes takes a few minutes
- Single-hop indirect routing
 - No need to go through many intermediate hosts
 - One extra hop circumvents the problems
- Better end-to-end paths
 - Circumventing routing policy restrictions
 - Sometimes the RON paths are actually shorter

RON Limited to Small Deployments

- Extra latency through intermediate hops
 - Software delays for packet forwarding
 - Propagation delay across the access link
- Overhead on the intermediate node
 - Imposing CPU and I/O load on the host
 - Consuming bandwidth on the access link
- Overhead for probing the virtual links
 - Bandwidth consumed by frequent probes
 - Trade-off between probe overhead and detection speed
- Possibility of causing instability
 - Moving traffic in response to poor performance
 - May lead to congestion on the new paths

We saw tunneling "on top of" IP. What about tunneling "below" IP?

Introducing
Multi-Protocol Label Switching
(MPLS)

Why Tunnel?

- Reliability
 - Fast Reroute, Resilient Overlay Networks (Akamai SureRoute)
- Flexibility
 - Topology, protocol
- Stability ("path pinning")
 - E.g., for performance guarantees
- Security
 - E.g., Virtual Private Networks (VPNs)
- Bypassing local network engineers
 - Censoring regimes: China, Pakistan, ...

MPLS Overview

- Main idea: Virtual circuit
 - Packets forwarded based only on circuit identifier

Router can forward traffic to the same destination on different interfaces/paths.

MPLS Overview

Router can forward traffic to the same destination on different interfaces/paths.

Circuit Abstraction: Label Swapping

- Label-switched paths (LSPs): Paths are "named" by the label at the path's entry point
- At each hop, MPLS routers:
 - Use label to determine outgoing interface, new label
 - Thus, push/pop/swap MPLS headers that encapsulate IP
- Label distribution protocol: responsible for disseminating signalling information

Reconsider security problem

Layer 3 Virtual Private Networks

Private communications over a public network

 A set of sites that are allowed to communicate with each other

- Defined by a set of administrative policies
 - Determine both connectivity and QoS among sites
 - Established by VPN customers
 - One way to implement: BGP/MPLS VPN (RFC 2547)

Layer 2 vs. Layer 3 VPNs

 Layer 2 VPNs can carry traffic for many different protocols, whereas Layer 3 is "IP only"

More complicated to provision a Layer 2 VPN

 Layer 3 VPNs: potentially more flexibility, fewer configuration headaches

Layer 3 BGP/MPLS VPNs

- Isolation: Multiple logical networks over a single, shared physical infrastructure
- Tunneling: Keeping routes out of the core

High-Level Overview of Operation

IP packets arrive at PE

 Destination IP address is looked up in forwarding table

PE₂

PE₁

BGP/MPLS VPN key components

- Forwarding in the core: MPLS
- Distributing routes between PEs: BGP
- Isolation: Keeping different VPNs from routing traffic over one another
 - Constrained distribution of routing information
 - Multiple "virtual" forwarding tables
- Unique Addresses: VPN-IPv4 extensions
 - RFC 2547: Route Distinguishers

Virtual Routing and Forwarding

Separate tables per customer at each router

Forwarding

- PE and P routers have BGP next-hop reachability through the backbone IGP
- Labels are distributed through LDP (hop-by-hop) corresponding to BGP Next-Hops
- Two-Label Stack is used for packet forwarding
 - Top label indicates Next-Hop (interior label)
 - Second label indicates outgoing interface / VRF (exterior label)

Forwarding in BGP/MPLS VPNs

- Step 1: Packet arrives at incoming interface
 - Site VRF determines BGP next-hop and Label #2

 Step 2: BGP next-hop lookup, add corresponding LSP (also at site VRF)

Layer 3 BGP/MPLS VPNs

BGP to exchange routes

MPLS to forward traffic

Conclusions

Overlay networks

- Tunnels between host computers
- Build networks "on top" of the Internet
- Deploy new protocols and services
- Provide better control, flexibility, QoS, isolation, ...

Underlay tunnels

- Across routers within AS
- Build networks "below" IP route
- Provide better control, flexibility, QoS, isolation, ...

Next time

Peer-to-peer applications