IP ANYCAST AND MULTICAST

READING: SECTION 4.4

COS 461: Computer Networks
Spring 2009 (MW 1:30-2:50 in COS 105)

Mike Freedman

Teaching Assistants: Wyatt Lloyd and Jeff Terrace
http://www.cs.princeton.edu/courses/archive/spring09/cos461/

Outline today

* |P Anycast

* Multicast protocols
— [P Multicast and IGMP
— SRM (Scalable Reliable Multicast)
— PGM (Pragmatic General Multicast)
— Bimodal multicast
— Gossiping

Limitations of DNS-based failover

* Failover/load balancing via multiple A records
s s ANSWER SECTION:

WWW.Cnn.com. 300 IN A 157.166.255.19
WWWwW.Cnn.com. 300 IN A 157.166.224.25
WWW.Cnn.com. 300 IN A 157.166.226.26
WWW.Cnn.com. 300 IN A 157.166.255.18

* |If server fails, service unavailable for TTL
— Very low TTL: Extra load on DNS
— Anyway, browsers cache DNS mappings ®

 What if root NS fails? All DNS queries take > 3s?

Motivation for IP anycast

e Failure problem: client has resolved IP address

— What if IP address can represent many servers?

* Load-balancing/failover via IP addr, rather than DNS

* |P anycast is simple reuse of existing protocols
— Multiple instances of a service share same IP address
— Each instance announces IP address / prefix in BGP / IGP

— Routing infrastructure directs packets to nearest
instance of the service

e Can use same selection criteria as installing routes in the FIB

— No special capabilities in servers, clients, or network

IP anycast in action

Announce 10.0.0.1/32

\ 192,168-07% 10.0.0.1

Server Instance A

\:Z:cir 3 Router 4 |—| Server Instance B
/ 1927T68: 10.0.0.1

Announce 10.0.0.1/32

IP anycast in action

192.168.0.1 10.0.0.1

Server Instance A

Router 2

Router 3 Router 4 |—| Server Instance B

192.168.0.2 10.0.0.1

Routing Table from Router 1:

Destination Mask Next-Hop Distance
192.168.0.0 /29 127.0.0.1 0
10.0.0.1 /32 192.168.0.1 1
10.0.0.1 /32 192.168.0.2 2

IP anycast in action

192.168.0.1 10.0.0.1

Router 2 Server Instance A

Router 4 |—| Server Instance B

Router 3

192.168.0.2 10.0.0.1

DNS lookup for http://www.server.com/
produces a single answer:

www.server.com. IN A 10.0.0.1

IP anycast in action

192.168.0.1 10.0.0.1

Server Instance A

Router 2

Router 3 Router 4 |—| Server Instance B

192.168.0.2 10.0.0.1

Routing Table from Router 1:

Destination Mask Next-Hop Distance
192.168.0.0 /29 127.0.0.1 0
10.0.0.1 /32 192.168.0.1 1
10.0.0.1 /32 192.168.0.2 2

IP anycast in action

192.168.0.1 10.0.0.1

Server Instance A

Router 2

Router 3 Router 4 |—| Server Instance B

192.168.0.2 10.0.0.1

Routing Table from Router 1:

Destination Mask Next-Hop Distance
192.168.0.0 /29 127.0.0.1 0
10.0.0.1 /32 192.168.0.1 1
10.0.0.1 /32 192.168.0.2 2

IP anycast in action

192.168.0.1 10.0.0.1

Server Instance A

Router 2

Router 3 Router 4 |—| Server Instance B

192.168.0.2 10.0.0.1

Routing Table from Router 1:

Destination Mask Next-Hop Distance
192.168.0.0 /29 127.0.0.1 0
10.0.0.1 /32 192.168.0.1 1
10.0.0.1 /32 192.168.0.2 2

IP anycast in action

From client/router perspective, topology could as well be:

192.168.0.1

Router 2

Server

Router 3 Router 4

192.168.0.2

Routing Table from Router 1:

Destination Mask Next-Hop Distance
192.168.0.0 /29 127.0.0.1 0
10.0.0.1 /32 192.168.0.1 1
10.0.0.1 /32 192.168.0.2 2

Downsides of IP anycast
Many Tier-1 ISPs ingress filter prefixes > /24

— Publish a /24 to get a “single” anycasted address: Poor utilization

Scales poorly with the # anycast groups
— Each group needs entry in global routing table

Not trivial to deploy
— Obtain an IP prefix and AS number; speak BGP

Subject to the limitations of IP routing

— No notion of load or other application-layer metrics
— Convergence time can be slow (as BGP or IGP convergence)

Failover doesn’t really work with TCP
— TCP is stateful; other server instances will just respond with RSTs
— Anycast may react to network changes, even though server online

Root name servers (UDP) are anycasted, little else

Multicast protocols

Multicasting messages

* Simple application multicast: Iterated unicast
— Client simply unicasts message to every recipient
— Pros: simple to implement, no network modifications

— Cons: O(n) work on sender, network

* Advanced overlay multicast

— Build receiver-driven tree
— Pros: Scalable, no network modifications

— Cons: O(log n) work on sender, network; complex to implement

e |P multicast

— Embed receiver-driven tree in network layer
— Pros: O(1) work on client, O(# receivers) on network
— Cons: requires network modifications; scalability concerns?

Another way to slice it

lterated Unicast UDP-based TCP-based
communication communication;
Atomic broadcast
Application “Trees” UDP-based trees (P2P) TCP-based trees;
Gossiping;

Bimodal multicast *

IP-layer multicast IP multicast SRM;
PGM;
NORM;
Bimodal multicast *

Another way to slice it

lterated Unicast UDP-based TCP-based
communication communication;
Atomic broadcast
Application “Trees” UDP-based trees (P2P) TCP-based trees;
Gossiping;

Bimodal multicast *

IP-layer multicast IP multicast SRM;
PGM;
NORM;
Bimodal multicast *

IP Multicast

e Simple to use in applications

— Multicast “group” defined by IP multicast address

* |P multicast addresses look similar to IP unicast addrs

e 224.0.0.0 to 239.255.255.255 (RPC 3171)
— 265 M multicast groups at most

— Best effort delivery only
* Sender issues single datagram to IP multicast address

* Routers delivery packets to all subnetworks that have a
receiver “belonging” to the group

* Receiver-driven membership
— Receivers join groups by informing upstream routers
— Internet Group Management Protocol (v3: RFC 3376)

IGMP vl
e Two types of IGMP msgs (both have IP TTL of 1)

— Host membership query: Routers query local
networks to discover which groups have members

— Host membership report: Hosts report each group
(e.g., multicast addr) to which belong, by broadcast on
net interface from which query was received

* Routers maintain group membership
— Host senders an IGMP “report” to join a group

— Multicast routers periodically issue host membership
qguery to determine liveness of group members

— Note: No explicit “leave” message from clients

IGMP

* |GMP v2 added:
— If multiple routers, one with lowest IP elected querier
— Explicit leave messages for faster pruning
— Group-specific query messages

 |GMP v3 added:

— Source filtering: Join specifies multicast “only from”
or “all but from” specific source addresses

IGMP

* Parameters
— Maximum report delay: 10 sec
— Query internal default: 125 sec

— Time-out interval: 270 sec
e 2 * (query interval + max delay)

* Questions
— Is a router tracking each attached peer?

— Should clients respond immediately to
membership queries?

— What if local networks are layer-two switched?

So far, we've been best-effort
IP multicast...

Challenges for reliable multicast

Ack-implosion if all destinations ack at once
Source does not know # of destinations
How to retransmit?

— To all? One bad link effects entire group

— Only where losses? Loss near sender makes
retransmission as inefficient as replicated unicast

Once size fits all?

— Heterogeneity: receivers, links, group sizes

— Not all multicast applications need reliability of the type
provided by TCP. Some can tolerate reordering, delay, etc.

Another way to slice it

lterated Unicast UDP-based TCP-based
communication communication;
Atomic broadcast
Application “Trees” UDP-based trees (P2P) TCP-based trees;
Gossiping;

Bimodal multicast *

IP-layer multicast SRM;

NORM;
Bimodal multicast *

Scalable Reliable Multicast

* Receives all packets or unrecoverable data loss

* Data packets sent via IP multicast
— ODATA includes sequence numbers

 Upon packet failure:

— Receiver multicasts a NAK
 ...or sends NAK to sender, who multicasts a NAK confirmation (NCF)

— Scale through NAK suppression
e ...ifreceived a NAK or NCF, don’t NAK yourself
 What do we need to do to get adequate suppression?
— Add random delays before NAK'ing
— But what if the multicast group grows big?

— Repair through packet retransmission (RDATA)
* From initial sender
* From designated local repairer (DLR — IETF loves acronyms!)

Another way to slice it

lterated Unicast UDP-based TCP-based
communication communication;
Atomic broadcast
Application “Trees” UDP-based trees (P2P) TCP-based trees;
Gossiping;

Bimodal multicast *

IP-layer multicast
PGM;
NORM;
Bimodal multicast *

Pragmatic General Multicast (RFC 3208)

e Similar approach as SRM: IP multicast + NAKs
— ... but more techniques for scalability

* Hierarchy of PGM-aware network elements
— NAK suppression: Similar to SRM

— NAK elimination: Send at most one NAK upstream
* Or completely handle with local repair!

— Constrained forwarding: Repair data can be
suppressed downstream if no NAK seen on that port

— Forward-error correction: Reduce need to NAK

 Works when only sender is multicast-able

A stronger “reliability”?

e Atomic broadcast
— “Everybody or nobody” receives a packet
— Clearly not guaranteed with SRM/PGM:

* Requires consensus between receivers
* Performance problem: One slow node hurts everybody

* Performance problems with SRM/PGM?

— Sender spends lots of time on retransmissions as
heterogenous group increases in size
* Local repair makes this better

“Virtual synchrony” multicast performance

250

—E— group size: 32
== group size: 64
o — group size: 96

200

150

100

Average throughput on
nonperturbed members

50

0 0.1 02 03 04 05 06 0.7 08 0.9

Performance perturbation rate

Another way to slice it

lterated Unicast UDP-based TCP-based
communication communication;
Atomic broadcast
Application “Trees” UDP-based trees (P2PO0 TCP-based trees;
Gossiping;

Bimodal multicast *

IP-layer multicast

NORM:;
Bimodal multicast *

Bimodal multicast

" |nitially use UDP / IP multicast

Bimodal multicast

" Periodically (e.g. 100ms) each node sends digest
describing its state to randomly-selected peer.

* The digest identifies messages; it doesn’t include them.

31

Bimodal multicast

= Recipient checks gossip digest against own history

= Solicits any missing message from node that sent gossip

32

Bimodal multicast

= Recipient checks gossip digest against own history
= Solicits any missing message from node that sent gossip

"Processes respond to solicitations received during a round
of gossip by retransmitting the requested message. 33

Bimodal multicast

= Respond to solicitations by retransmitted requested msg

34

Delivery? Garbage Collection?

* Deliver a message when it is in FIFO order

— Report an unrecoverable loss if a gap persists for so long
that recovery is deemed “impractical”

e Garbage collect a message when no “healthy”
process could still need a copy

* Match parameters to intended environment

Optimizations

Retransmission for most recent multicast first
— “Catch up quickly” to leave at most one gap in sequence

Participants bound the amount of data they will
retransmit during any given round of gossip.

— |f too much is solicited they ignore the excess requests

Label gossip msgs with sender’s gossip round #

— lgnore if expired round #; node probably no longer correct

Don’t retransmit same msg twice in row to same dest
— Retransmission may still be in transit

Optimizations

 Use UDP multicast when retransmitting a message if
several processes lack a copy
— For example, if solicited twice
— Also, if a retransmission is received from “far away”
— Tradeoff: excess messages versus low latency

* Use regional TTL to restrict multicast scope

Why “bimodal”?

" There are two phases?

" Nope; description of duals “modes” of result

=k }

p{#processes

Pbcast bimodal delivery distribution

1.E+00 -
1.E-05 -
1.E-10 1
1.E-15 1
1.E-20 -

1.E-25 1

1.E-30

Either sender ... or data gets
fails... through w.h.p.

0]

5 0 15 20 25 30 35 40 45 50

number of processes to deliver pbcast

ldea behind analysis

e Can use the mathematics of epidemic theory to
predict reliability of the protocol
— Assume an initial state

— Now look at result of running B rounds of gossip:
Converges exponentially quickly to atomic delivery

Another way to slice it

lterated Unicast UDP-based TCP-based
communication communication;
Atomic broadcast
Application “Trees” UDP-based trees (P2P) TCP-based trees;
Gossiping;

Bimodal multicast *

IP-layer multicast

NORM;
Bimodal multicast *

Epidemic algorithms via gossiping
Assume a fixed population of size n

For simplicity, assume epidemic spreads
homogenously through popularly

— Simple randomized epidemic: any one can infect any one
with equal probability

Assume that Kk members are already infected
Infection occurs in rounds

Probability of Infection

" Probability P, ;...(k,n) that a uninfected member
is infected in a round if k are already infected?

P.tctlk,n) =1—P (nobody infects)
= 1—(1-1/n)

E (#newly infected) = (n-k) (k,n)

mfec

= Basically it’s a Binomial Distribution
" # rounds to infect entire population is O(log n)

Two prevailing styles

e Gossip push (“rumor mongering”):
— A tells B something B doesn’t know

— Gossip for multicasting
» Keep sending for bounded period of time: O (log n)

— Also used to compute aggregates
* Max, min, avg easy. Sum and count more difficult.

e Gossip pull (“anti-entropy”)
— A asks B for something it is trying to “find”

— Commonly used for management replicated data

* Resolve differences between DBs by comparing digests
e Amazon S3 |

Still several research questions

* Gossip with bandwidth control
— Constant rate?
— Tunable with flow control?
— Prefer to send oldest data? Newest data?

* Gossip with heterogenous bandwidth
— Topology / bandwidth-aware gossip

Summary

* |P Anycast
— Failover and load balancing between IP addresses
— Uses existing routing protocols, no mods anywhere
— But problems: scalability, coarse control, TCP stickiness
— Primarily used for DNS, now being introduced inside ISPs

* Multicast protocols
— Unrealiable: IP Multicast and IGMP
— Realiable: SRM, PGM, Bimodal multicast
— Gossiping

