@

Networked Applications: Sockets

Class Logistics

* Slides and reading assignments online at

— http://www.cs.princeton.edu/courses/archive/spr09/cos461/

— Reading: chapter 1 and socket programming guides

e Course e-mail list
— https://lists.cs.princeton.edu/mailman/listinfo/cos461

e Office hours
— Wyatt: Mon 3-4pm, Tue 4-5pm
— Jeff: Wed 3-4pm, Thu 1-2pm

Class Logistics

* Computer accounts in FC 010

— CS account (can request a CS “class account”)

* https://csguide.cs.princeton.edu/requests/account
* SSH to portal.cs.princeton.edu with your CS account

— Account on FC 010

* For students who are enrolled in the class
e SSH to labpc-XX.cs.princeton.edu with OIT password

* Programming assignment #0
— Client and server programs to copy and print data
— Assignment is posted on the course Web site
— Due 11:59pm on Sunday February 15

Goals of Today’s Lecture

* Client-server paradigm
— End systems
— Clients and servers

e Sockets

— Socket abstraction
— Socket programming in UNIX

* HyperText Transfer Protocol (HTTP)
— URL, HTML, and HTTP
— Clients, proxies, and servers
— Example transactions using sockets

End System: Computer on the ‘Net

Internet

Also known as a “‘host”..

Clients and Servers

* Client program * Server program
— Running on end host — Running on end host
— Requests service — Provides service
— E.g., Web browser — E.g., Web server

GET /index.html

“Site under construction”

Clients Are Not Necessarily Human

 Example: Web crawler (or spider)
— Automated client program

— Tries to discover & download many Web pages
— Forms the basis of search engines like Google

e Spider client
— Start with a base list of popular Web sites
— Download the Web pages
— Parse the HTML files to extract hypertext links
— Download these Web pages, too
— And repeat, and repeat, and repeat...

Client-Server Communication

e Client “sometimes on” e Server is “always on”

— |Initiates a request to the — Services requests from many
server when interested client hosts

— E.g., Web browser on your — E.g., Web server for the
laptop or cell phone www.cnn.com Web site

— Doesn’t communicate — Doesn’t initiate contact with
directly with other clients the clients

— Needs to know server’s — Needs fixed, known address
address

Peer-to-Peer Communication

* No always-on server at the center of it all
— Hosts can come and go, and change addresses
— Hosts may have a different address each time

 Example: peer-to-peer file sharing

— Any host can request files, send files, query to
find a file’s location, respond to queries, ...

— Scalability by harnessing millions of peers
— Each peer acting as both a client and server

* Well, mostly no central server, but how to
initially discover peers? (“bootstrapping”)

Client and Server Processes

* Program vs. process
— Program: collection of code
— Process: a running program on a host

e Communication between processes

— Same end host: inter-process communication
* Governed by the operating system on the end host

— Different end hosts: exchanging messages
* Governed by the network protocols

* Client and server processes

— Client process: process that initiates communication
— Server process: process that waits to be contacted

Delivering the Data: Division of Labor

* Network
— Deliver data packet to the destination host
— Based on the destination IP address
* Operating system @
— Deliver data to the destination socket
— Based on the destination port number (e.g., 80)

* Application
— Read data from and write data to the socket
— Interpret the data (e.g., render a Web page)

Socket: End Point of Communication

* Sending message from one process to another
— Message must traverse the underlying network

* Process sends and receives through a “socket”
— In essence, the doorway leading in/out of the house

* Socket as an Application Programming Interface
— Supports the creation of network applications

User process User process

socket socket

Operating Operating
System System

ldentifying the Receiving Process

* Sending process must identify the receiver
— The receiving end host machine
— The specific socket in a process on that machine

* Receiving host
— Destination address that uniquely identifies the host
— An IP address is a 32-bit quantity

* Receiving socket
— Host may be running many different processes
— Destination port that uniquely identifies the socket
— A port number is a 16-bit quantity

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
g.........................E 128.2.1 94.242:80

: (i.e., the Web server)

Service request for : :
128.2.194.242:7
i (i.e., the echo server) P
Echo server
A : (port 7)

Knowing What Port Number To Use

* Popular applications have well-known ports

— E.g., port 80 for Web and port 25 for e-mail
— See http://www.iana.org/assigcnments/port-numbers

* Well-known vs. ephemeral ports

— Server has a well-known port (e.g., port 80)
* Between 0 and 1023 (requires root to use)

— Client picks an unused ephemeral (i.e., temporary) port
* Between 1024 and 65535

* Uniquely identifying traffic between the hosts
— Two IP addresses and two port numbers
— Underlying transport protocol (e.g., TCP or UDP)
— This is the “5-tuple” | decreased last lecture

Port Numbers are Unique per Host

* Port number uniquely identifies the socket
— Cannot use same port number twice with same address
— Otherwise, the OS can’t demultiplex packets correctly

* Operating system enforces uniqueness
— OS keeps track of which port numbers are in use

— Doesn’t let the second program use the port number

 Example: two Web servers running on a machine
— They cannot both use port “80”, the standard port #
— So, the second one might use a non-standard port #
— E.g., http://www.cnn.com:8080

UNIX Socket API

* Socket interface

— Originally provided in Berkeley UNIX

— Later adopted by all popular operating systems

— Simplifies porting applications to different OSes
* |In UNIX, everything is like a file

— All input is like reading a file

— All output is like writing a file

— File is represented by an integer file descriptor
* APl implemented as system calls

— E.g., connect, read, write, close, ...

Typical Client Program

* Prepare to communicate
— Create a socket
— Determine server address and port number
— Initiate the connection to the server

* Exchange data with the server
— Write data to the socket
— Read data from the socket
— Do stuff with the data (e.g., render a Web page)

 Close the socket

Servers Differ From Clients

* Passive open
— Prepare to accept connections
— ... but don’t actually establish C%?/
— ... until hearing from a client \

* Hearing from multiple clients

— Allowing a backlog of waiting clients
— ... in case several try to communicate at once

e Create a socket for each client
— Upon accepting a new client
— ... Create a new socket for the communication

Typical Server Program

Prepare to communicate

— Create a socket

— Associate local address and port with the socket
Wait to hear from a client (passive open)

— Indicate how many clients-in-waiting to permit
— Accept an incoming connection from a client
Exchange data with the client over new socket
— Receive data from the socket

— Do stuff to handle the request (e.g., get a file)

— Send data to the socket

— Close the socket

Repeat with the next connection request

Putting it All Together

Server

socket ()

'

bind ()

'

listen()

\

accept ()

Client

socket ()
establiSh *

ection
conn —» connect ()

'

send request

1t
read () write ()
process
request
send
write () reSponse

— read ()

Client Creating a Socket: socket()

Creating a socket
— int socket(int domain, int type, int protocol)

— Returns a file descriptor (or handle) for the socket
— Originally designed to support any protocol suite

Domain: protocol family
— PF_INET for the Internet (IPv4)

Type: semantics of the communication
— SOCK_STREAM: reliable byte stream (TCP)
— SOCK_DGRAM: message-oriented service (UDP)

Protocol: specific protocol
— UNSPEC: unspecified
— (PF_INET and SOCK_STREAM already implies TCP)

Client: Learning Server Address/Port

e Server typically known by name and service
— E.g., “www.cnn.com” and “http”

* Need to translate into IP address and port #
— E.g., “64.236.16.20"” and “80”

* Translating the server’s name to an address
— struct hostent *gethostbyname(char *name)

— Argument: host name (e.g., “www.cnn.com”
— Returns a structure that includes the host address

* |dentifying the service’s port number
— struct servent
*getservbyname (char *name, char *proto)
— Arguments: service (e.g., “ftp”) and protocol (e.g., “tcp”)
— Static configin/etc/services

Client: Connecting Socket to the Server

* Client contacts the server to establish connection
— Associate the socket with the server address/port
— Acquire a local port number (assigned by the OS)
— Request connection to server, who hopefully accepts

e Establishing the connection
— int connect (int sockfd,
struct sockaddr *server_ address,
socketlen t addrlen)

— Arguments: socket descriptor, server address, and
address size

— Returns 0 on success, and -1 if an error occurs

Client: Sending Data

* Sending data
— ssize_ t write
(int sockfd, void *buf, size t len)

— Arguments: socket descriptor, pointer to buffer of
data to send, and length of the buffer

— Returns the number of bytes written, and -1 on
error

Client: Receiving Data

* Receiving data

— ssize t read
(int sockfd, void *buf, size t len)

— Arguments: socket descriptor, pointer to buffer to
place the data, size of the buffer

— Returns the number of characters read (where O
implies “end of file”), and -1 on error

— Why do you need len?
— What happens if buf’s size < len?

* Closing the socket
— int close(int sockfd)

Server: Server Preparing its Socket

» Server creates a socket and binds address/port
— Server creates a socket, just like the client does

— Server associates the socket with the port number
(and hopefully no other process is already using it!)

— Choose port “0” and let kernel assign ephemeral port

* Create a socket
— int socket (int domain,
int type, int protocol)
* Bind socket to the local address and port number
— int bind (int sockifd,

struct sockaddr *my addr,
socklen t addrlen)

— Arguments: sockfd, server address, address length
— Returns 0 on success, and -1 if an error occurs

Server: Allowing Clients to Wait

* Many client requests may arrive
— Server cannot handle them all at the same time
— Server could reject the requests, or let them wait

* Define how many connections can be pending
— int listen(int sockfd, int backlog)

— Arguments: socket descriptor and acceptable backlog
— Returns a 0 on success, and -1 on error

 What if too many clients arrive?

— Some requests don’t get through : /@,
— The Internet makes no promises... LVQ

— And the client can always try again

Server: Accepting Client Connection

* Now all the server can do is wait...
— Waits for connection request to arrive »\
— Blocking until the request arrives :
— And then accepting the new request

D

7.

* Accept a new connection from a client
— int accept(int sockfd,

struct sockaddr *addr,
socketlen t *addrlen)

— Arguments: sockfd, structure that will provide client
address and port, and length of the structure

— Returns descriptor of socket for this new connection

Server: One Request at a Time?

* Serializing requests is inefficient
— Server can process just one request at a time
— All other clients must wait until previous one is done
— What makes this inefficient?

 May need to time share the server machine

— Alternate between servicing different requests

* Do a little work on one request, then switch when you are
waiting for some other resource (e.g., reading file from disk)

* “Nonblocking |/O”

— Or, use a different process/thread for each request
e Allow OS to share the CPU(s) across processes

— Or, some hybrid of these two approaches

Client and Server: Cleaning House

* Once the connection is open
— Both sides and read and write
— Two unidirectional streams of data
— In practice, client writes first, and server reads
— ... then server writes, and client reads, and so on

* Closing down the connection
— Either side can close the connection
— ... using the close () system call

 What about the data still “in flight”

— Data in flight still reaches the other end
— So, server can close () before client finishes reading

One Annoying Thing: Byte Order

* Hosts differ in how they store data
— E.g., four-byte number (byte3, byte2, bytel, byte0)
 Little endian (“little end comes first”): Intel x86’s
— Low-order byte stored at the lowest memory location
— ByteO, bytel, byte2, byte3
* Big endian (“big end comes first”)
— High-order byte stored at lowest memory location
— Byte3, byte2, bytel, byte O
* Makes it more difficult to write portable code

— Client may be big or little endian machine
— Server may be big or little endian machine

Endian Example: Where is the Byte?

16 bits Memory 32 bits Memory

+1 +0 +3 +2 +1 +0
1000 § 78 1000 78 1000 78
Little. 1001 1002 1004
Endian 1002 1004 1008
1003 1006 100C
+0 +1 +0 +1 +2 +3
1000 | 78 1000 | 78 1000 78
Big- 1001 1002 1004
Endian 1002 1004 1008
1003 1006 100C

IP is Big Endian

But, what byte order is used “on the wire”
— That is, what do the network protocol use?

The Internet Protocols picked one convention
— IP is big endian (aka “network byte order”)

Writing portable code require conversion
— Use htons() and htonl() to convert to network byte order
— Use ntohs() and ntohl() to convert to host order

Hides details of what kind of machine you’re on

— Use the system calls when sending/receiving data
structures longer than one byte

Using htonl and htons

int sockfd = // connected SOCK STREAM
u int32 t my val = 1234;
u intlé t my xtra = 16;

u short bufsize = sizeof (struct data t);
char *buf = New char[bufsize];

bzero (buf, bufsize);
struct data t *dat = (struct data t *) buf;
dat->value = htonl (my val);

dat->xtra = htons (my xtra);

int rc = write (sockfd, buf, bufsize);

Why Can’t Sockets Hide These Details?

Dealing with endian differences is tedious
— Couldn’t the socket implementation deal with this
— ... by swapping the bytes as needed?

No, swapping depends on the data type

— 2-byte short int: (byte 1, byte 0) vs. (byte O, byte 1)

— 4-byte long int: (byte 3, ... byte 0) vs. (byte O, ... byte 3)

— String of one-byte chars (char O, char 1, char 2, ...) in both

Socket layer doesn’t know the data types

— Sees the data as simply a buffer pointer and a length
— Doesn’t have enough information to do the swapping

Higher-layer with defined types can do this for you
— Java object serialization, RPC “marshalling”

Wanna See Real Clients and Servers?

* Apache Web server
— Open source server first released in 1995
— Name derives from “a patchy server” ;-)
— Software available online at http://www.apache.org

 Mozilla Web browser

— http://www.mozilla.org/developer/
 Sendmail

— http://www.sendmail.org/

BIND Domain Name System
— Client resolver and DNS server
— http://www.isc.org/index.pl?/sw/bind/

The Web as an Example
Application

The Web: URL, HTML, and HTTP

* Uniform Resource Locator (URL)
— A pointer to a “black box” that accepts request methods

— Formatted string with protocol (e.g., http), server name
(e.g., www.cnn.com), and resource name (coolpic.jpg)

* HyperText Markup Language (HTML)
— Representation of hyptertext documents in ASCIl format
— Format text, reference images, embed hyperlinks
— Interpreted by Web browsers when rendering a page

e HyperText Transfer Protocol (HTTP)
— Client-server protocol for transferring resources
— Client sends request and server sends response

Example: HyperText Transfer Protocol

GET /courses/archive/spr09/cos461/ HTTP/1.1
Host: www.cs.princeton.edu

User-Agent: Mozilla/4.03 Request
<CRLF>

HTTP/1.1 200 OK

Date: Mon, 4 Feb 2009 13:09:03 GMT

Server: Netscape-Enterprise/3.5.1
Content-Type: text/plain

Response | | ast-Modified: Mon, 4 Feb 2008 11:12:23 GMT
Content-Length: 21

<CRLF>

Site under construction

Components: Clients, Proxies, Servers

* Clients
— Send requests and receive responses
— Browsers, spiders, and agents

e Servers
— Receive requests and send responses

— Store or generate the responses
* Proxies (see “HTTP Proxy” assignment!)

— Act as a server for the client, and a client to the server

— Perform extra functions such as anonymization,
logging, transcoding, blocking of access, caching, etc.

Example Client: Web Browser

* Generating HTTP requests

— User types URL, clicks a hyperlink, or selects bookmark
— User clicks “reload”, or “submit” on a Web page
— Automatic downloading of embedded images

e Layout of response

— Parsing HTML and rendering the Web page

— Invoking helper applications (e.g., Flash, Flash)
 Maintaining a cache

— Storing recently-viewed objects
— Checking that cached objects are fresh

Client: Typical Web Transaction

User clicks on a hyperlink: http://www.cnn.com/index.html
Browser learns the IP address

— Invokes gethostbyname(www.cnn.com)

— And gets a return value of 64.236.16.20

Browser creates socket and connects to server

— OS selects an ephemeral port for client side

— Contacts 64.236.16.20 on port 80

Browser writes the HTTP request into the socket
GET /index.html| HTTP/1.1<CRLF>

Host: www.cnn.com<CRLF>

In Fact, Try This at a UNIX Prompt...

labpc$ telnet www.cnn.com 80
GET /index.html HTTP/1.1
Host: www.cnn.com

<CRLF>

And you’ll see the response...

Client: Typical Web Transaction (Cont)

* Browser parses the HTTP response message
— Extract the URL for each embedded image
— Create new sockets and send new requests
— Render the Web page, including the images

e Opportunities for caching in the browser
— HTML file
— Each embedded image
— |P address of the Web site

Web Server

e Website vs. Webserver

— Website: collections of Web pages associated with
a particular host name

— Webserver: program that satisfies client requests

for Web resources
 Handling a client request

— Accept the socket

— Read and parse the HTTP request message

— Translate the URL to a filename (object)

— Determine whether the request is authorized

— Generate and transmit the response

Conclusions

Client-server paradigm

— Model of communication between end hosts
— Client asks, and server answers

Sockets

— Simple byte-stream and messages abstractions
— Common application programmable interface
HyperText Transfer Protocol (HTTP)

— Client-server protocol

— URL, HTML, and HTTP

Next Monday: IP packet switching!

