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Course Overview
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What is COS 226?

• Intermediate-level survey course.

• Programming and problem solving with applications.

• Algorithm:  method for solving a problem.

• Data structure:  method to store information.

topic data structures and algorithms

data types stack, queue, union-find, priority queue

sorting quicksort, mergesort, heapsort, radix sorts

searching hash table, BST, red-black tree

graphs BFS, DFS, Prim, Kruskal, Dijkstra

strings KMP, Regular expressions, TST, Huffman, LZW

geometry Graham scan, k-d tree, Voronoi diagram

COS 226 course overview
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Their impact is broad and far-reaching.

Internet.  Web search, packet routing, distributed file sharing, ... 

Biology.  Human genome project, protein folding, ...

Computers.  Circuit layout, file system, compilers, ...

Computer graphics.  Movies, video games, virtual reality, ...

Security.  Cell phones, e-commerce, voting machines, ...

Multimedia.  CD player, DVD, MP3, JPG, DivX, HDTV, ...

Transportation.  Airline crew scheduling, map routing, ...

Physics.  N-body simulation, particle collision simulation, ...

…

Why study algorithms?



Old roots, new opportunities.

• Study of algorithms dates at least to Euclid

• Some important algorithms were
discovered by undergraduates!
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300 BC

1920s

1940s
1950s
1960s
1970s
1980s
1990s
2000s

Why study algorithms?
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To solve problems that could not otherwise be addressed.

Ex.  Network connectivity.  [stay tuned]

Why study algorithms?
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For intellectual stimulation.

Why study algorithms?

“ For me, great algorithms are the poetry of computation. Just like  
   verse, they can be terse, allusive, dense, and even mysterious. But
   once unlocked, they cast a brilliant new light on some aspect of
   computing.  ”    — Francis Sullivan

“  An algorithm must be seen to be believed. ”    —  D. E. Knuth



They may unlock the secrets of life and of the universe.

Computational models are replacing mathematical models in scientific enquiry
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20th century science
(formula based)

€ 

E  =  mc2

€ 

F  =  ma

€ 

F  =  Gm1m2

r2

  

€ 

−
h2

2m
∇2 + V (r)

 

 
 

 

 
  Ψ(r)  =  E Ψ(r)

Why study algorithms?

“ Algorithms: a common language for nature, human, and computer. ”  —  Avi Wigderson

21st century science
(algorithm based)

for (double t = 0.0; true; t = t + dt) 
   for (int i = 0; i < N; i++) 
   {
      bodies[i].resetForce();
      for (int j = 0; j < N; j++) 
         if (i != j) 
            bodies[i].addForce(bodies[j]);
   }



For fun and profit.
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Why study algorithms?



• Their impact is broad and far-reaching.

• Old roots, new opportunities.

• To solve problems that could not otherwise be addressed.

• For intellectual stimulation.

• They may unlock the secrets of life and of the universe.

• For fun and profit.
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Why study algorithms?

Why study anything else?
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Lectures.  Introduce new material, answer questions.

Precepts.  Answer questions, solve problems, discuss programming assignment.

FAQ.

• Not registered? Change precept? Use SCORE.

• See Donna O’Leary (CS 210) to resolve serious conflicts. 

• See Maia Ginsburg (CS 205) for other course admin issues.

The usual suspects

What When Where Who Office Hours

L01 MW 11-12:20 Bowen 222 Prof. Sedgewick W 1-2 (Cafe Viv)

P01 Th 12:30 CS 102 Moritz Hardt see web page

P01A Th 12:30 Friend 112
Maia Ginsburg

(lead preceptor) see web page

P02 Th 1:30 CS 302 Martin Suchara see web page

P03 Th 3:30 Friend 109 Aravindan Vijayaraghavan see web page

first precept meets this week!
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8 programming assignments.  45%

• Electronic submission.

• Due 11:55pm, starting Wednesday 9/17.

Exercises.  15%

• Due in lecture, starting Tuesday 9/16.

Exams.

• Closed-book with cheatsheet.

• Midterm.   15%

• Final.         25%

Staff discretion.  To adjust borderline cases.

Final

Midterm

Programs

Coursework and grading

everyone needs to meet me (at least) once!

Exercises



Course content.

• Course info.

• Exercises.

• Lecture slides.

• Programming assignments.

Course administration.

• Check grades.

• Submit assignments.

Booksites. 

• Brief summary of content.

• Download code from lecture.
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Resources (web)

http://www.princeton.edu/~cos226

https://moodle.cs.princeton.edu/course/view.php?id=40

http://www.cs.princeton.edu/IntroProgramming
http://www.cs.princeton.edu/algs4



Algorithms 4th edition                 availability TBA

Algorithms in Java, 3rd edition

• Parts 1-4.  [sorting, searching]  recommended

• Part 5.  [graph algorithms]           required

Introduction to Programming       recommended

• Basic programming model.

• Elementary AofA and data structures.

Algorithms, 2nd edition                availability TBA

• Strings.

• Geometric algorithms.
14

Resources (books)
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‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Union-Find Algorithms



Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

2

Subtext of today’s lecture (and this course)
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‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications



Given a set of objects

• Union:  connect two objects.

• Find:  is there a path connecting the two objects?

4

Dynamic connectivity

6 5 1

4

87

32

0

union(3, 4)

union(8, 0)

union(2, 3)

union(5, 6)

 find(0, 2) no

 find(2, 4) yes

union(5, 1)

union(7, 3)

union(1, 6)

 find(0, 2) yes

 find(2, 4) yes

union(4, 8)

more difficult problem: find the path
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Network connectivity:  larger example

p

q



Dynamic connectivity applications involve manipulating objects of all types.

• Variable name aliases.

• Pixels in a digital photo.

• Computers in a network.

• Web pages on the Internet.

• Transistors in a computer chip.

• Metallic sites in a composite system.

When programming, convenient to name objects 0 to N-1.

• Use integers as array index.

• Suppress details not relevant to union-find.
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Modeling the objects

can use symbol table to translate from 
object names to integers (stay tuned)



Transitivity.
If p is connected to q and q is connected to r, then p is connected to r.

Connected components.  Maximal set of objects that are mutually connected.
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Modeling the connections

6 5 1

4

87

32

0

{ 1 5 6 } { 2 3 4 7 }  { 0 8 }

connected components



Find query.  Check if two objects are in the same set.

Union command.   Replace sets containing two objects with their union.
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Implementing the operations

6 5 1

4

87

32

0

{ 1 5 6 } { 2 3 4 7 }  { 0 8 }

6 5 1

7

32

0

{ 1 5 6 } { 0 2 3 4 7 8 }

4

8

union(4, 8)

connected components



9

Goal.  Design efficient data structure for union-find.

• Number of objects N can be huge. 

• Number of operations M can be huge.

• Find queries and union commands may be intermixed.

Union-find data type (API)

 public class UnionFind public class UnionFind

UnionFind(int N) create union-find data structure with
N objects and no connections

boolean find(int p, int q) are p and q in the same set?

void unite(int p, int q) replace sets containing p and q
with their union
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‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications
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Data structure.

• Integer array id[] of size N.

• Interpretation:  p and q are connected if they have the same id.

  i   0  1  2  3  4  5  6  7  8  9
id[i] 0  1  9  9  9  6  6  7  8  9

5 and 6 are connected
2, 3, 4, and 9 are connected

Quick-find  [eager approach]

0 1 2 3 4

5 6 7 8 9
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Data structure.

• Integer array id[] of size N.

• Interpretation:  p and q are connected if they have the same id.

Find.  Check if p and q have the same id.

  i   0  1  2  3  4  5  6  7  8  9
id[i] 0  1  9  9  9  6  6  7  8  9

id[3] = 9; id[6] = 6
3 and 6 not connected

Quick-find  [eager approach]

5 and 6 are connected
2, 3, 4, and 9 are connected
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Data structure.

• Integer array id[] of size N.

• Interpretation:  p and q are connected if they have the same id.

Find.  Check if p and q have the same id.

Union.  To merge sets containing p and q, change all entries with id[p] to id[q].

  i   0  1  2  3  4  5  6  7  8  9
id[i] 0  1  9  9  9  6  6  7  8  9

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

  i   0  1  2  3  4  5  6  7  8  9
id[i] 0  1  6  6  6  6  6  7  8  6

id[3] = 9; id[6] = 6
3 and 6 not connected

problem: many values can change

Quick-find  [eager approach]

5 and 6 are connected
2, 3, 4, and 9 are connected
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3-4  0 1 2 4 4 5 6 7 8 9 

4-9  0 1 2 9 9 5 6 7 8 9 

8-0  0 1 2 9 9 5 6 7 0 9 

2-3  0 1 9 9 9 5 6 7 0 9 

5-6  0 1 9 9 9 6 6 7 0 9 

5-9  0 1 9 9 9 9 9 7 0 9 

7-3  0 1 9 9 9 9 9 9 0 9 

4-8  0 1 0 0 0 0 0 0 0 0 

6-1  1 1 1 1 1 1 1 1 1 1 

Quick-find example

problem: many values can change



public class QuickFind
{
   private int[] id;

   public QuickFind(int N)
   {
      id = new int[N];
      for (int i = 0; i < N; i++)
         id[i] = i;
   }

   public boolean find(int p, int q)
   {
      return id[p] == id[q];
   }

   public void unite(int p, int q)
   {
      int pid = id[p];
      for (int i = 0; i < id.length; i++)
         if (id[i] == pid) id[i] = id[q];
   }
}

15

check if p and q have same id 
(1 operation)

change all entries with id[p] to id[q]
(N operations)

set id of each object to itself
(N operations)

Quick-find:  Java implementation



Quick-find defect.

• Union too expensive (N operations).

• Trees are flat, but too expensive to keep them flat.

Ex.  May take N2 operations to process N union commands on N objects.

16

Quick-find is too slow

algorithm union find

quick-find N     1



Rough standard (for now).

• 109 operations per second.

• 109 words of main memory.

• Touch all words in approximately 1 second.

Ex.  Huge problem for quick-find.

• 109 union commands on 109 objects.

• Quick-find takes more than 1018 operations.

• 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

• New computer may be 10x as fast.

• But, has 10x as much memory so problem may be 10x bigger.

• With quadratic algorithm, takes 10x as long!

17

a truism (roughly) since 1950 !

Quadratic algorithms do not scale
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‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications
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Data structure.

• Integer array id[] of size N.

• Interpretation:  id[i] is parent of i.

• Root of i  is  id[id[id[...id[i]...]]].

Quick-union  [lazy approach]

keep going until it doesn’t change

  i   0  1  2  3  4  5  6  7  8  9
id[i] 0  1  9  4  9  6  6  7  8  9

3's root is 9; 5's root is 6

3

542

70 1 9 6 8

p

q



Data structure.

• Integer array id[] of size N.

• Interpretation:  id[i] is parent of i.

• Root of i  is  id[id[id[...id[i]...]]].

Find.  Check if p and q have the same root. 3

542

70 1 9 6 8

20

  i   0  1  2  3  4  5  6  7  8  9
id[i] 0  1  9  4  9  6  6  7  8  9

3's root is 9; 5's root is 6
3 and 5 are not connected 

Quick-union  [lazy approach]

p

q

keep going until it doesn’t change



Data structure.

• Integer array id[] of size N.

• Interpretation:  id[i] is parent of i.

• Root of i  is  id[id[id[...id[i]...]]].

Find.  Check if p and q have the same root.

Union.  To merge subsets containing p and q,
set the id of q's root to the id of p's root.

3 5

4

70 1 9

6

8

2

3

542

70 1 9 6 8
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  i   0  1  2  3  4  5  6  7  8  9
id[i] 0  1  9  4  9  6  6  7  8  9

3's root is 9; 5's root is 6
3 and 5 are not connected 

  i   0  1  2  3  4  5  6  7  8  9
id[i] 0  1  9  4  9  6  9  7  8  9

only one value changes p q

Quick-union  [lazy approach]

p

q

keep going until it doesn’t change
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3-4  0 1 2 4 4 5 6 7 8 9 

4-9  0 1 2 4 9 5 6 7 8 9 

8-0  0 1 2 4 9 5 6 7 0 9 

2-3  0 1 9 4 9 5 6 7 0 9 

5-6  0 1 9 4 9 6 6 7 0 9 

5-9  0 1 9 4 9 6 9 7 0 9 

7-3  0 1 9 4 9 6 9 9 0 9 

4-8  0 1 9 4 9 6 9 9 0 0 

6-1  1 1 9 4 9 6 9 9 0 0 

problem:
trees can get tall

Quick-union example



Quick-union:  Java implementation

public class QuickUnion
{
   private int[] id;

   public QuickUnion(int N)
   {
      id = new int[N];
      for (int i = 0; i < N; i++) id[i] = i;
   }

   private int root(int i)
   {
      while (i != id[i]) i = id[i];
      return i;
   }

   public boolean find(int p, int q)
   {
      return root(p) == root(q);
   }

   public void unite(int p, int q)
   {
      int i = root(p), j = root(q);
      id[i] = j;
   }
}

set id of each object to itself
(N operations)

chase parent parents until reach root
(depth of i operations)

check if p and q have same root
(depth of p and q operations)

change root of p to point to root of q
(depth of p and q operations)

23
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Quick-find defect.

• Union too expensive (N operations).

• Trees are flat, but too expensive to keep them flat.

Quick-union defect.

• Trees can get tall.

• Find too expensive (could be N operations).

worst case

* includes cost of finding root

Quick-union is also too slow

algorithm union find

quick-find N     1

quick-union   N * N
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‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications



Weighted quick-union.

• Modify quick-union to avoid tall trees.

• Keep track of size of each subset.

• Balance by linking small tree below large one.

Ex.  Union of 3 and 5.

• Quick union:  link 9 to 6.

• Weighted quick union:  link 6 to 9.

1

3

542

70 1 6 8

26

q

p

21 1 1size

Improvement 1:  weighting

4

9
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3-4  0 1 2 3 3 5 6 7 8 9 

4-9  0 1 2 3 3 5 6 7 8 3 

8-0  8 1 2 3 3 5 6 7 8 3 

2-3  8 1 3 3 3 5 6 7 8 3 

5-6  8 1 3 3 3 5 5 7 8 3 

5-9  8 1 3 3 3 3 5 7 8 3 

7-3  8 1 3 3 3 3 5 3 8 3 

4-8  8 1 3 3 3 3 5 3 3 3 

6-1  8 3 3 3 3 3 5 3 3 3 

no problem:
trees stay flat

Weighted quick-union example
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Data structure.  Same as quick-union, but maintain extra array sz[i] to count 
number of objects in the tree rooted at i.

Find.  Identical to quick-union.

Union.  Modify quick-union to:

• Merge smaller tree into larger tree.

• Update the sz[] array.

 int i = root(p);
 int j = root(q);
 if  (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; } 
 else                { id[j] = i; sz[i] += sz[j]; }  

Weighted quick-union:  Java implementation

return root(p) == root(q);
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Analysis.

• Find:  takes time proportional to depth of p and q.

• Union:  takes constant time, given roots.

• Fact:  depth is at most lg N.  [needs proof]

Q.  How does depth of x increase by 1?
A.  Tree T1 containing x is merged into another tree T2.

• The size of the tree containing x at least doubles since |T2| ≥ |T1|.

• Size of tree containing x can double at most lg N times.

Weighted quick-union analysis

  T2

T1

x
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Analysis.

• Find:  takes time proportional to depth of p and q.

• Union:  takes constant time, given roots.

• Fact:  depth is at most lg N.  [needs proof]

Q.  Stop at guaranteed acceptable performance?
A.   No, easy to improve further.

* includes cost of finding root

Weighted quick-union analysis

algorithm union find

quick-find N 1

quick-union N * N

weighted QU lg N * lg N



10

Quick union with path compression.  Just after computing the root of p, set 
the id of each examined node to root(p).

2

41211

0

9

78

136

5

2

54

7

8

1211

0

1

3

6

9

31

root(9)

Improvement 2:  path compression

p

10



Standard implementation:  add second loop to root() to set the id of each 
examined node to the root.

Simpler one-pass variant:  halve the path length by making every other node in 
path point to its grandparent.

In practice.  No reason not to!  Keeps tree almost completely flat.

32

only one extra line of code !

public int root(int i)
{
   while (i != id[i])
   {
      id[i] = id[id[i]];
      i = id[i];
   }
   return i;
}

Path compression:  Java implementation
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3-4  0 1 2 3 3 5 6 7 8 9 

4-9  0 1 2 3 3 5 6 7 8 3 

8-0  8 1 2 3 3 5 6 7 8 3 

2-3  8 1 3 3 3 5 6 7 8 3 

5-6  8 1 3 3 3 5 5 7 8 3 

5-9  8 1 3 3 3 3 5 7 8 3 

7-3  8 1 3 3 3 3 5 3 8 3 

4-8  8 1 3 3 3 3 5 3 3 3 

6-1  8 3 3 3 3 3 3 3 3 3 

no problem:
trees stay VERY flat

Weighted quick-union with path compression example



34

Theorem.  [Tarjan 1975]  Starting from an empty data structure, any sequence
of M union and find operations on N objects takes O(N + M lg* N) time.

• Proof is very difficult.

• But the algorithm is still simple!

Linear algorithm?

• Cost within constant factor of reading in the data.

• In theory,  WQUPC is not quite linear.

• In practice,  WQUPC is linear.

Amazing fact.  No linear-time linking strategy exists.

because lg* N is a constant in this universe

actually O(N + M α(M, N))
see COS 423

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

WQUPC performance

lg* function
number of times needed to take 

the lg of a number until reaching 1



Bottom line.  WQUPC makes it possible to solve problems that
could not otherwise be addressed.

Ex.  [109 unions and finds with 109 objects]

• WQUPC reduces time from 30 years to 6 seconds.

• Supercomputer won't help much; good algorithm enables solution.
35

M union-find operations on a set of N objects

algorithm worst-case time

quick-find M N

quick-union M N

weighted QU N + M log N

QU + path compression N + M log N

weighted QU + path compression N + M lg* N

Summary
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• Percolation.

• Games (Go, Hex).
✓ Network connectivity.

• Least common ancestor.

• Equivalence of finite state automata.

• Hoshen-Kopelman algorithm in physics.

• Hinley-Milner polymorphic type inference.

• Kruskal's minimum spanning tree algorithm.

• Compiling equivalence statements in Fortran.

• Morphological attribute openings and closings.

• Matlab's bwlabel() function in image processing.

Union-find applications



A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1-p).

• System percolates if top and bottom are connected by open sites.

38

Percolation

Percolation examples

does not percolate

percolates

site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to top

Percolation examples

does not percolate

percolates

site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to topN = 8



A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1-p).

• System percolates if top and bottom are connected by open sites.

39

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation



Depends on site vacancy probability p.

40

Likelihood of percolation

p low
does not percolate

p high
percolates

p medium
percolates?

N = 20



Theory guarantees a sharp threshold p*  (when N is large).

• p > p*: almost certainly percolates.

• p < p*: almost certainly does not percolate.

Q.  What is the value of p* ?

41

Percolation phase transition

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

N = 100



• Initialize N-by-N whole grid to be blocked.

• Make random sites open until top connected to bottom.

• Vacancy percentage estimates p*.

42

empty open site
(not connected to top)

full open site
(connected to top)

Monte Carlo simulation

blocked site
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How to check whether system percolates?

• Create object for each site.

• Sites are in same set if connected by open sites.

• Percolates if any site in top row is in same set as any site in bottom row.

UF solution to find percolation threshold

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 28 29 29 31

32 33 25 35 36 37 38 39

40 41 25 43 36 45 46 47

48 49 25 51 36 53 47 47

56 57 58 59 60 61 62 47

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

brute force alg would need to check N2 pairs

N = 8



Q.  How to declare a new site open?

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 28 29 29 31

32 33 25 35 36 37 38 39

40 41 25 43 36 45 46 47

48 49 25 51 36 53 47 47

56 57 58 59 60 61 62 47

44

open this site

UF solution to find percolation threshold

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8



Q.  How to declare a new site open?
A.  Take union of new site and all adjacent open sites.

0 0 2 3 4 5 6 7

8 9 10 10 12 13 6 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

56 57 58 59 60 61 62 47

45

open this site

UF solution to find percolation threshold

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8
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Q.  How to avoid checking all pairs of top and bottom sites?
A.  Create a virtual top and bottom objects;
      system percolates when virtual top and bottom objects are in same set.

UF solution:  a critical optimization

virtual top row

virtual bottom row

00000000

0 0 2 3 4 5 0 7

8 9 10 10 12 13 0 15

16 17 18 19 20 21 22 23

24 25 25 25 25 25 25 31

32 33 25 35 25 37 38 39

40 41 25 43 25 45 46 47

48 49 25 51 25 53 47 47

47 57 58 59 60 61 62 47

4747474747474747

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

N = 8
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Q.  What is percolation threshold p* ?
A.  About 0.592746 for large square lattices.

percolation constant known
      only via simulation

Percolation threshold

p*

0.5930
0

1

1

site vacancy probability p

percolation
probability



Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

48

Subtext of today’s lecture (and this course)
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‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

Analysis of Algorithms

Reference:
    Algorithms in Java, Chapter 2
    Intro to Programming in Java, Section 4.1
    http://www.cs.princeton.edu/algs4
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Running time

Charles Babbage (1864) Analytic Engine

how many times 
do you have to 
turn the crank?

“ As soon as an Analytic Engine exists, it will necessarily guide the future
   course of the science.  Whenever any result is sought by its aid, the question
   will arise—By what course of calculation can these results be arrived at by
   the machine in the shortest time? ”    —  Charles Babbage



Predict performance.

Compare algorithms.

Provide guarantees.

Understand theoretical basis.

Primary practical reason:  avoid performance bugs. 

Reasons to analyze algorithms

3

this course (COS 226)

theory of algorithms (COS 423)

client gets poor performance because programmer
did not understand performance characteristics
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Some algorithmic successes

Discrete Fourier transform.

• Break down waveform of N samples into periodic components.

• Applications:  DVD, JPEG, MRI, astrophysics, ….

• Brute force:  N2 steps.

• FFT algorithm:  N log N steps, enables new technology.
Freidrich Gauss
1805

Linear, linearithmic, and quadratic

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear
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Some algorithmic successes

N-body Simulation.

• Simulate gravitational interactions among N bodies.

• Brute force:  N2 steps.

• Barnes-Hut:  N log N steps, enables new research.
Andrew Appel
PU '81 

Linear, linearithmic, and quadratic

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear
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Scientific analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

• Observe some feature of the universe.

• Hypothesize a model that is consistent with observation.

• Predict events using the hypothesis.

• Verify the predictions by making further observations.

• Validate by repeating until the hypothesis and observations agree.

Principles.

• Experiments must be reproducible.

• Hypotheses must be falsifiable.

Universe = computer itself.



Every time you run a program you are doing an experiment!

First step.  Debug your program!
Second step.  Choose input model for experiments.
Third step.  Run and time the program for problems of increasing size.

Why is my program so slow ??

Experimental algorithmics

8
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Example:  3-sum

3-sum.  Given N integers, find all triples that sum to exactly zero.

Context.  Deeply related to problems in computational geometry.

% more input8.txt
8
 30 -30 -20 -10 40 0 10 5

% java ThreeSum < input8.txt
 4
 30 -30   0
 30 -20 -10
-30 -10  40
-10   0  10



public class ThreeSum
{
   public static int count(long[] a)
   {
      int N = a.length;
      int cnt = 0;

    for (int i = 0; i < N; i++)
         for (int j = i+1; j < N; j++)
            for (int k = j+1; k < N; k++)
               if (a[i] + a[j] + a[k] == 0)
                  cnt++;
      return cnt;
   }

   public static void main(String[] args)
   {
      long[] a = StdArrayIO.readLong1D(); 
      StdOut.println(count(a));
   }
} 

10

3-sum:  brute-force algorithm

check each triple



Run the program for various input sizes and measure running time.

11

Empirical analysis

N time (seconds)  †

1024 0.26

2048 2.16

4096 17.18

8192 137.76

† Running Linux on Sun-Fire-X4100



Q.  How to time a program?
A.  Manual.

12

Measuring the running time



Q.  How to time a program?
A.  Automatic.

13

Measuring the running time

client code

implementation (part of stdlib.jar, see http://www.cs.princeton.edu/introcs/stdlib/)

Stopwatch stopwatch = new Stopwatch();

ThreeSum.count(a);

double time = stopwatch.elapsedTime();
StdOut.println("Running time: " + time + " seconds");

public class Stopwatch 
{ 
   private final long start = System.currentTimeMillis();

   public double elapsedTime() 
   {  
      long now = System.currentTimeMillis();
      return (now - start) / 1000.0;
   }
}



Plot plot running time as a function of input size N.

14

Data analysis
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Log-log plot.  Plot running time vs. input size N on log-log scale.

Regression.  Fit straight line through data points:  a N b.
Hypothesis.  Running time grows with the cube of the input size:  a N 3.

Data analysis

slope

power law

slope = 3
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Doubling hypothesis

Doubling hypothesis.  Quick way to estimate b in a power law hypothesis.

Run program, doubling the size of the input.

Hypothesis.  Running time is about a N b with b = lg ratio.

N time (seconds)  † ratio lg ratio

512 0.03 -

1024 0.26 7.88 2.98

2048 2.16 8.43 3.08

4096 17.18 7.96 2.99

8192 137.76 7.96 2.99

seems to converge to a constant b ≈ 3
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Prediction and verification

Hypothesis.  Running time is about a N 3 for input of size N.

Q.  How to estimate a?
A.  Run the program!

Refined hypothesis.  Running time is about 2.5 × 10 –10 × N 3  seconds.

Prediction.  1,100 seconds for N = 16,384.
Observation.

validates hypothesis!

N time (seconds)

4096 17.18

4096 17.15

4096 17.17

N time (seconds)

16384 1118.86

17.17  =  a × 40963

⇒   a  =  2.5 × 10 –10



18

Experimental algorithmics

Many obvious factors affect running time:

• Machine.

• Compiler.

• Algorithm.

• Input data.

More factors (not so obvious):

• Caching.

• Garbage collection.

• Just-in-time compilation.

• CPU use by other applications.

Bad news.  It is often difficult to get precise measurements.
Good news.  Easier than other sciences.

e.g., can run huge number of experiments



19

War story (from COS 126)

Q.  How long does this program take as a function of N?

Jenny.  ~ c1 N2  seconds.

Kenny.  ~ c2 N  seconds.

public class EditDistance
{
   String s = StdIn.readString();
   int N = s.length();
   ...

 for (int i = 0; i < N; i++)
       for (int j = 0; j < N; j++)
          distance[i][j] = ...
    ...
} 

N time

1024 0.11

2048 0.35

4096 1.6

9182 6.5

N time

256 0.5

512 1.1

1024 1.9

2048 3.9

Jenny Kenny
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Mathematical models for running time

Total running time:  sum of cost × frequency for all operations.

• Need to analyze program to determine set of operations.

• Cost depends on machine, compiler.

• Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available. 

Donald Knuth
1974 Turing Award



Cost of basic operations

operation example nanoseconds  †

integer add a + b 2.1

integer multiply a * b 2.4

integer divide a / b 5.4

floating point add a + b 4.6

floating point multiply a * b 4.2

floating point divide a / b 13.5

sine Math.sin(theta) 91.3

arctangent Math.atan2(y, x) 129.0

... ... ...

22

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM



Novice mistake.  Abusive string concatenation.

Cost of basic operations

23

operation example nanoseconds  †

variable declaration int a c1

assignment statement a = b c2

integer compare a < b c3

array element access a[i] c4

array length a.length c5

1D array allocation new int[N] c6  N

2D array allocation new int[N][N] c7  N 2

string length s.length() c8

substring extraction s.substring(N/2, N) c9

string concatenation s + t c10  N
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Example:  1-sum

Q.  How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
   if (a[i] == 0) count++;

operation frequency

variable declaration 2

assignment statement 2

less than comparison N + 1

equal to comparison N

array access N

increment ≤  2 N

between N  (no zeros)
and 2N (all zeros)
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Example:  2-sum

Q.  How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
   for (int j = i+1; j < N; j++)
      if (a[i] + a[j] == 0) count++;

operation frequency

variable declaration N + 2

assignment statement N + 2

less than comparison 1/2 (N + 1) (N + 2)

equal to comparison 1/2 N (N − 1)

array access N (N − 1)

increment ≤  N 2

tedious to count exactly

0 + 1 + 2 + . . . + (N − 1) =
1
2

N (N − 1)

=
(

N

2

)



• Estimate running time (or memory) as a function of input size N.

• Ignore lower order terms.
- when N is large, terms are negligible

- when N is small, we don't care

Ex 1. 6 N 3   +  20 N   +  16
 
 ~   6 N 3

Ex 2. 6 N 3   +  100 N 4/3  +  56
 ~   6 N 3

Ex 3. 6 N 3   +  17 N  2  lg N  +  7 N
 ~   6 N 3

26

Tilde notation

discard lower-order terms
(e.g., N = 1000  6 trillion vs. 169 million)

Technical definition.   f(N) ~ g(N)  means

€ 

lim
N→ ∞

 f (N)
g(N)

 =  1
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Example:  2-sum

Q.  How long will it take as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
   for (int j = i+1; j < N; j++)
      if (a[i] + a[j] == 0) count++;

operation frequency time per op total time

variable declaration ~  N c1 ~  c1 N

assignment statement ~  N c2 ~  c2 N

less than comparison ~ 1/2 N 2
c3 ~  c3 N 2

equal to comparison ~ 1/2 N 2
c3 ~  c3 N 2

array access ~  N 2 c4 ~  c4 N 2

increment ≤  N 2 c5 ≤  c5 N 2

total ~  c N 2

"inner loop"

depends on input data
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Example:  3-sum

Q.  How many instructions as a function of N?

Remark.  Focus on instructions in inner loop; ignore everything else!

(
N

3

)
=

N(N − 1)(N − 2)
3!

∼ 1
6
N3

int count = 0;

for (int i = 0; i < N; i++)

   for (int j = i+1; j < N; j++)

      for (int k = j+1; k < N; k++)

         if (a[i] + a[j] + a[k] == 0)

            count++;

"inner loop"

~ N 2 / 2

~ N

~ 1

 may be in inner loop, depends on input data



In principle, accurate mathematical models are available.

In practice,

• Formulas can be complicated.

• Advanced mathematics might be required.

• Exact models best left for experts.

Bottom line.  We use approximate models in this course:  TN ~ c  N3.

TN  =  c1 A  +  c2 B  +  c3 C  +  c4 D  +  c5 E
A = variable declarations 
B = assignment statements
C = compare
D = array access
E = increment

Mathematical models for running time

29

frequencies
 (depend on algorithm, input)

costs (depend on machine, compiler)
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Common order-of-growth hypotheses

To determine order-of-growth:

• Assume a power law TN  ~ a N b.

• Estimate exponent b with doubling hypothesis.

• Validate with mathematical analysis.

Ex.   ThreeSumDeluxe.java
Food for precept.  How is it implemented?

Caveat.  Can't identify logarithmic factors with doubling hypothesis.

31

N time (seconds)  †

1,000 0.43

2,000 0.53

4,000 1.01

8,000 2.87

16,000 11.00

32,000 44.64

64,000 177.48

observations



Common order-of-growth hypotheses

Good news.  the small set of functions
                1,  log N,  N,  N log N,  N 2,  N 3, and 2N

suffices to describe order-of-growth of typical algorithms.

32

482 Algorithms and Data Structures

Linearithmic. We use the term linearithmic to describe programs whose running 
time for a problem of size N has order of growth N log N. Again, the base of the 
logarithm is not relevant. For example, CouponCollector (PROGRAM 1.4.2) is lin-
earithmic. The prototypical example is mergesort (see PROGRAM 4.2.6). Several im-
portant problems have natural solutions that are quadratic but clever algorithms 
that are linearithmic. Such algorithms (including mergesort) are critically impor-
tant in practice because they enable us to address problem sizes far larger than 
could be addressed with quadratic solutions. In the next section, we consider a 

general design technique for developing 
linearithmic algorithms.

Quadratic. A typical program whose 
running time has order of growth N 2 
has two nested for loops, used for some 
calculation involving all pairs of N ele-
ments. The force update double loop in 
NBody (PROGRAM 3.4.2) is a prototype of 
the programs in this classification, as is 
the elementary sorting algorithm Inser-
tion (PROGRAM 4.2.4).

Cubic. Our example for this section, 
ThreeSum, is cubic (its running time has 
order of growth N 3) because it has three 
nested for loops, to process all triples of 
N elements. The running time of matrix 
multiplication, as implemented in SEC-
TION 1.4 has order of growth M 3 to mul-

tiply two M-by-M matrices, so the basic matrix multiplication algorithm is often 
considered to be cubic. However, the size of the input (the number of entries in the 
matrices) is proportional to N = M 2, so the algorithm is best classified as N 3/2, not 
cubic.

Exponential. As discussed in SECTION 2.3, both TowersOfHanoi (PROGRAM 2.3.2)
and GrayCode (PROGRAM 2.3.3) have running times proportional to 2N because they 
process all subsets of N elements. Generally, we use the term “exponential” to refer 

1K
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Common order-of-growth hypotheses

33

growth
rate name typical code framework description example

  T(2N) / 
T(N)

1 constant a = b + c; statement
add two 
numbers

1

log N logarithmic while (N > 1)
{   N = N / 2;  ...   } divide in half binary search ~ 1 

N linear
for (int i = 0; i < N; i++)

{  ...       } loop find the 
maximum

2

N log N linearithmic [see lecture 5] divide
and conquer

mergesort ~ 2

N2 quadratic
for (int i = 0; i < N; i++)

   for (int j = 0; j < N; j++)
   {  ...       }

double loop check all pairs 4

N3 cubic

for (int i = 0; i < N; i++)
   for (int j = 0; j < N; j++)

      for (int k = 0; k < N; k++)
      {  ...       }

triple loop check all 
triples

8

2N exponential [see lecture 24]
exhaustive

search
check all 

possibilities
T(N)



Practical implications of order-of-growth

Q.  How many inputs can be processed in minutes?
Ex.  Customers lost patience waiting "minutes" in 1970s; they still do.

Q.  How long to process millions of inputs?
Ex.  Population of NYC was "millions" in 1970s; still is.

For back-of-envelope calculations, assume:

34

decade processor
speed

instructions
per second

1970s 1 MHz 106

1980s 10 MHz 107

1990s 100 MHz 108

2000s 1 GHz 109

seconds equivalent

1 1 second

10 10 seconds

102 1.7 minutes

103 17 minutes

104 2.8 hours

105 1.1 days

106 1.6 weeks

107 3.8 months

108 3.1 years

109 3.1 decades

1010 3.1 centuries

… forever

1017 age of universe



Practical implications of order-of-growth
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growth
problem size solvable in minutesproblem size solvable in minutesproblem size solvable in minutesproblem size solvable in minutes time to process millions of inputstime to process millions of inputstime to process millions of inputstime to process millions of inputs

rate
1970s 1980s 1990s 2000s 1970s 1980s 1990s 2000s

1 any any any any instant instant instant instant

log N any any any any instant instant instant instant

N millions
tens of
millions

hundreds of
millions billions minutes seconds second instant

N log N hundreds of
thousands millions millions

hundreds of
millions hour minutes

tens of
seconds seconds

N2 hundreds thousand thousands
tens of

thousands decades years months weeks

N3 hundred hundreds thousand thousands never never never millennia



Practical implications of order-of-growth
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growth name description

effect on a program that
runs for a few seconds

effect on a program that
runs for a few seconds

rate
name description

time for 100x
more data

size for 100x
faster computer

1 constant independent of input size - -

log N logarithmic nearly independent of input size - -

N linear optimal for N inputs a few minutes 100x

N log N linearithmic nearly optimal for N inputs a few minutes 100x

N2 quadratic not practical for large problems several hours 10x

N3 cubic not practical for medium problems several weeks 4-5x

2N exponential useful only for tiny problems forever 1x
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Types of analyses

Best case.  Lower bound on cost

• determined by “easiest” input

• provides a goal for all inputs

Worst case.  Upper bound on cost

• determined by “most difficult” input

• provides guarantee for all inputs

Average case.  “Expected” cost

• need a model for “random” input

• provides a way to predict performance

38

Ex 2. Compares for insertion sort   

• Best: N-1. 

• Average: ~ ¼ N2

• Worst:  ½N(N-1) ~ ½N2

(Details in Lecture 4)

Ex 1. Array accesses for 3-sum   

• Best: ~ ½N2. 

• Average: ~ ½N2

• Worst:  ~ ½N2



Common mistake.  Interpreting big-Oh as an approximate model.

39

Commonly-used notations

notation provides example shorthand for used to

Tilde leading term ~ 10 N 2
10 N 2

10 N 2 + 22 N log N
10 N 2 + 2 N +37

provide
approximate model

Big Theta
asymptotic
growth rate

Θ(N 2)
N 2

9000 N 2

 5 N 2 + 22 N log N + 3N

classify
algorithms

Big Oh Θ(N 2) and smaller O(N 2)
N 2

100 N
 22 N log N + 3 N

develop
upper bounds

Big Omega Θ(N 2) and larger Ω(N 2)
9000 N 2

N 5

 N 3 + 22 N log N + 3 N

develop
lower bounds



Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.

• Big-Oh notation suppresses leading constant.

• Big-Oh notation only provides upper bound (not lower bound).

40

time/memory

input size

f(N)
values represented

by O(f(N))

input size

c f(N)

values represented
by ~ c f(N)

time/memory
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Typical memory requirements for primitive types in Java

Bit.  0 or 1.
Byte.  8 bits.
Megabyte (MB).  220 bytes ~ 1 million bytes.
Gigabyte (GB).  230 bytes ~ 1 billion bytes.

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8
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Typical memory requirements for arrays in Java

Array overhead.  16 bytes.

Q. What's the biggest double[][] array you can store on your computer?
A. 

typical computer in 2008 has about 2GB memory

type bytes

char[] 2N + 16

int[] 4N + 16

double[] 8N + 16

type bytes

char[][] 2N2 + 20N + 16

int[][] 4N2 + 20N + 16

double[][] 8N2 + 20N + 16

one-dimensional arrays two-dimensional arrays
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Typical memory requirements for objects in Java

Object overhead.  8 bytes.
Reference.  4 bytes.

Ex 1.  A Complex object consumes 24 bytes of memory.

8 bytes

public class Complex
{
   private double re;
   private double im;
   ...
}

8 bytes

8 bytes overhead for object

24 bytes

4914.1  Performance

object, typically 8 bytes. For example, a Charge (PROGRAM 3.2.1) object uses 32 
bytes (8 bytes of overhead and 8 bytes for each of its three double instance vari-
ables). Similarly, a Complex object uses 24 bytes. Since many programs create mil-
lions of Color objects, typical Java implementations pack the information needed 
for them into 32 bits (three bytes for RGB values and one for transparency). A refer-
ence to an object typically uses 4 bytes of memory. When a data type contains a 
reference to an object, we have to account separately for the 4 bytes for the reference 
and the 8 bytes overhead for each object plus the memory needed for the object’s 
instance variables. In particular, a Document 
(PROGRAM 3.3.4) object uses 16 bytes (8 bytes of 
overhead and 4 bytes each for the references to 
the String and Vector objects) plus the mem-
ory needed for the String and Vector objects 
themselves (which we consider next). 

String objects. We account for memory in a 
String object in the same way as for any other 
object. Java's implementation of a String ob-
ject consumes 24 bytes:  a reference to a char-
acter array (4 bytes), three int values (4 bytes 
each), and the object overhead (8 bytes). The 
first int value is an offset into the character ar-
ray; the second is a count (the string length). In 
terms of the instance variable names in the fig-
ure at right, the string that is represented con-
sists of the characters val[offset] through 
val[offset + count - 1]. The third int value 
in String objects is a hash code that saves re-
computation in certain circumstances that 
need not concern us now. In addition to the 24 
bytes for the String object, we must account 
for the memory needed for the characters 
themselves, which are in the array. We account 
for this space next.

        rx 

public class Charge
{
   private double rx;
   private double ry;
   private double q;
...
}

        ry 
       q

Typical object memory requirements

object
overhead

        r g b a  

public class Color
{
   private byte r;
   private byte g;
   private byte b;
   private byte a;
...
}

object
overhead

        re 

public class Complex
{
   private double re;
   private double im;
...
}

        im 

object
overhead

        id 

public class Document
{
   private String id;
   private Vector profile;
...
}

        profile 

object
overhead

32 bytesCharge object (Program 3.2.1)

        value

public class String
{
   private char[] val;
   private int offset;
   private int count;
   private int hash;
...
}

        offset
        count
        hash

object
overhead

24 bytes  +  char arrayString object (Java library)

Complex object (Program 3.2.6)

Color object (Java library)

Document object (Program 3.3.4)

24 bytes

12 bytes

16 bytes  +  string +  vector

references

reference

double
values

double
values

int
values

byte
values
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Typical memory requirements for objects in Java

Object overhead.  8 bytes.
Reference.  4 bytes.

Ex 2.  A virgin String of length N consumes 2N + 40 bytes.

4 bytes

public class String
{
   private int offset;
   private int count;
   private int hash;
   private char[] value;
   ...
}

4 bytes

4 bytes

4 bytes for reference
(plus 2N + 16 bytes for array)

8 bytes overhead for object

2N + 40 bytes

4914.1  Performance

object, typically 8 bytes. For example, a Charge (PROGRAM 3.2.1) object uses 32 
bytes (8 bytes of overhead and 8 bytes for each of its three double instance vari-
ables). Similarly, a Complex object uses 24 bytes. Since many programs create mil-
lions of Color objects, typical Java implementations pack the information needed 
for them into 32 bits (three bytes for RGB values and one for transparency). A refer-
ence to an object typically uses 4 bytes of memory. When a data type contains a 
reference to an object, we have to account separately for the 4 bytes for the reference 
and the 8 bytes overhead for each object plus the memory needed for the object’s 
instance variables. In particular, a Document 
(PROGRAM 3.3.4) object uses 16 bytes (8 bytes of 
overhead and 4 bytes each for the references to 
the String and Vector objects) plus the mem-
ory needed for the String and Vector objects 
themselves (which we consider next). 

String objects. We account for memory in a 
String object in the same way as for any other 
object. Java's implementation of a String ob-
ject consumes 24 bytes:  a reference to a char-
acter array (4 bytes), three int values (4 bytes 
each), and the object overhead (8 bytes). The 
first int value is an offset into the character ar-
ray; the second is a count (the string length). In 
terms of the instance variable names in the fig-
ure at right, the string that is represented con-
sists of the characters val[offset] through 
val[offset + count - 1]. The third int value 
in String objects is a hash code that saves re-
computation in certain circumstances that 
need not concern us now. In addition to the 24 
bytes for the String object, we must account 
for the memory needed for the characters 
themselves, which are in the array. We account 
for this space next.

        rx 

public class Charge
{
   private double rx;
   private double ry;
   private double q;
...
}

        ry 
       q

Typical object memory requirements

object
overhead

        r g b a  

public class Color
{
   private byte r;
   private byte g;
   private byte b;
   private byte a;
...
}

object
overhead

        re 

public class Complex
{
   private double re;
   private double im;
...
}

        im 

object
overhead

        id 

public class Document
{
   private String id;
   private Vector profile;
...
}

        profile 

object
overhead

32 bytesCharge object (Program 3.2.1)

        value

public class String
{
   private char[] val;
   private int offset;
   private int count;
   private int hash;
...
}

        offset
        count
        hash

object
overhead

24 bytes  +  char arrayString object (Java library)

Complex object (Program 3.2.6)

Color object (Java library)

Document object (Program 3.3.4)

24 bytes

12 bytes

16 bytes  +  string +  vector

references

reference

double
values

double
values

int
values

byte
values
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Example 1

Q.  How much memory does this data type use as a function of N ?
A. 

public class QuickUWPC
{
   private int[] id;
   private int[] sz;

   public QuickUnion(int N)
   {
      id = new int[N];
      sz = new int[N];
      for (int i = 0; i < N; i++) id[i] = i;
      for (int i = 0; i < N; i++) sz[i] = 1;  
}
  
   public boolean find(int p, int q) { ... }
   
   public void unite(int p, int q)   { ... }
}
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Example 2

Q.  How much memory does this code fragment use as a function of N ?
A. 

Remark.  Java automatically reclaims memory when it is no longer in use.  

...
int N = Integer.parseInt(args[0]);
for (int i = 0; i < N; i++) {

      int[] a = new int[N];
   ...
}

not always easy for Java to know



Turning the crank:  summary

In principle, accurate mathematical models are available.
In practice,  approximate mathematical models are easily achieved.

Timing may be flawed?

• Limits on experiments insignificant compared to
other sciences.

• Mathematics might be difficult?

• Only a few functions seem to turn up.

• Doubling hypothesis cancels complicated constants.

Actual data might not match input model?

• Need to understand input to effectively process it.

• Approach 1: design for the worst case.

• Approach 2: randomize, depend on probabilistic guarantee.
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‣ stacks
‣ dynamic resizing
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Reference:    Introduction to Programming in Java, Section 4.3
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Stacks and queues

Fundamental data types.

• Values: sets of objects

• Operations: insert, remove, test if empty.

• Intent is clear when we insert.

• Which item do we remove?

Stack.  Remove the item most recently added. 
Analogy.  Cafeteria trays, Web surfing.

Queue.  Remove the item least recently added.
Analogy.  Registrar's line.

FIFO = "first in first out"

LIFO = "last in first out"

enqueue dequeue

pop

push
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Client, implementation, interface

Separate interface and implementation so as to:

• Build layers of abstraction.

• Reuse software.

• Ex:  stack, queue, symbol table, union-find, ....

Client:  program using operations defined in interface.
Implementation:  actual code implementing operations.
Interface:  description of data type, basic operations.
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Client, Implementation, Interface

Benefits.

• Client can't know details of implementation  ⇒
client has many implementation from which to choose.

• Implementation can't know details of client needs  ⇒ 
many clients can re-use the same implementation.

• Design:  creates modular, reusable libraries.

• Performance:  use optimized implementation where it matters.

Client:  program using operations defined in interface.
Implementation:  actual code implementing operations.
Interface:  description of data type, basic operations.
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‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications



Stack operations.

• push()  Insert a new item onto stack.
• pop()  Remove and return the item most recently added.

• isEmpty() Is the stack empty?

6

Stacks

pop

push

public static void main(String[] args)
{
   StackOfStrings stack = new StackOfStrings();
   while (!StdIn.isEmpty())
   { 
      String item = StdIn.readString(); 
      if (item.equals("-")) StdOut.print(stack.pop()); 
      else                  stack.push(item);  
   } 
}

% more tobe.txt 
to be or not to - be - - that - - - is 
 
% java StackOfStrings < tobe.txt 
to be not that or be
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Stack pop:  linked-list implementation

best the was it

best the was it first = first.next;

best the was it return item;

first

first

first

of String item = first.item;
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Stack push:  linked-list implementation

best the was it

oldfirst

best the was it

best the was it

first

of

Node oldfirst = first;

first.item = "of";
first.next = oldfirst;

best the was it

oldfirst

Node first = new Node();

first oldfirst

first

first
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Stack:  linked-list implementation

public class StackOfStrings
{
   private Node first = null;

   private class Node
   {
      String item;
      Node next;
   }
   
   public boolean isEmpty()
   {  return first == null;  }

   public void push(String item)
   {
      Node oldfirst = first;
      first = new Node();
      first.item = item;
      first.next = oldfirst;
   }

   public String pop()
   {
      if (isEmpty()) throw new RuntimeException();
      String item = first.item;
      first = first.next;
      return item;
   }
}

"inner class"
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Stack:  linked-list trace560 Algorithms and Data Structures

Trace of LinkedStackOfStrings test client
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Stack:  array implementation

Array implementation of a stack.

• Use array s[] to store N items on stack.
• push():  add new item at s[N].

• pop():  remove item from s[N-1].

s[]

N capacity = 10

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9



public class StackOfStrings
{
   private String[] s;
   private int N = 0;
   
   public StackOfStrings(int capacity)
   {  s = new String[capacity];  } 
   
   public boolean isEmpty()
   { return N == 0; }
   
   public void push(String item)
   {  s[N++] = item;  }
   
   public String pop()
   {  return s[--N];  }
}

12

Stack:  array implementation

this version avoids "loitering" 

garbage collector only reclaims memory
if no outstanding references

public String pop()
{
   String item = s[--N];
   s[N] = null;
   return item;
} 

decrement N;
then use to index into array
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‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications
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Stack:  dynamic array implementation

Problem.  Requiring client to provide capacity does not implement API!  
Q.  How to grow and shrink array?  

First try. 
• push():   increase size of s[] by 1. 

• pop():     decrease size of s[] by 1. 

Too expensive.

• Need to copy all item to a new array.

• Inserting N items takes time proportional to 1 + 2 + … + N  ~  N2/2.

Goal.  Ensure that array resizing happens infrequently.

infeasible for large N
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Q.  How to grow array?
A.  If array is full, create a new array of twice the size, and copy items.

Consequence.  Inserting N items takes time proportional to N (not N2).

Stack:  dynamic array implementation

1 + 2 + 4 + … + N/2 + N  ~  2N

"repeated doubling"

 public StackOfStrings() {  s = new String[2];  } 

 public void push(String item)
 {
    if (N == s.length) resize(2 * s.length);
    s[N++] = item;
 }

 private void resize(int capacity)
 {
    String[] dup = new String[capacity];
    for (int i = 0; i < N; i++)
       dup[i] = s[i];
    s = dup;
 }



16

Q.  How to shrink array?

First try.

• push():  double size of s[] when array is full.
• pop():    halve size of s[] when array is half full.

Too expensive

• Consider push-pop-push-pop-… sequence when array is full.

• Time proportional to N per operation.

Stack:  dynamic array implementation

"thrashing"

it was the best of null null null

it was the best

it was the best of null null null

it was the best

N = 5

N = 4

N = 5

N = 4
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Q.  How to shrink array?

Efficient solution.

• push():  double size of s[] when array is full.
• pop():    halve size of s[] when array is one-quarter full.

Invariant.  Array is always between 25% and 100% full. 

Stack:  dynamic array implementation

 public String pop()
 {
    String item = s[N-1];
    s[N-1] = null;
    N--;
    if (N > 0 && N == s.length/4) resize(s.length / 2);
    s[N++] = item;
    return item;
 }
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Stack:  dynamic array implementation trace
564 Algorithms and Data Structures

that the appropriate test is whether the stack size is less than one-fourth the array 
size. Then, after the array is halved, it will be about half full and can accommodate 
a substantial number of push() and pop() operations before having to change 
the size of the array again. This characteristic is important: for example, if we were 
to use to policy of halving the array when the stack size is one-half the array size, 
then the resulting array would be full, which would mean it would be doubled for a 
push(), leading to the possibility of an expensive cycle of doubling and halving. 

Amortized analysis. This doubling and halving strategy is a judicious tradeoff 
between wasting space (by setting the size of the array to be too big and leaving 
empty slots) and wasting time (by reorganizing the array after each insertion). 
The specific strategy in DoublingStackOfStrings guarantees that the stack never 
overflows and never becomes less than one-quarter full (unless the stack is empty, 
in which case the array size is 1). If you are mathematically inclined, you might en-
joy proving this fact with mathematical induction (see EXERCISE 4.3.20). More im-
portant, we can prove that the cost of doubling and halving is always absorbed (to 
within a constant factor) in the cost of other stack operations. Again, we leave the 
details to an exercise for the mathematically inclined, but the idea is simple: when 

StdIn StdOut N a.length
a

0 1 2 3 4 5 6 7

0 1 null

to 1 1 to

be 2 2 to be

or 3 4 to be or null

not 4 4 to be or not

to 5 8 to be or not to null null null

- to 4 8 to be or not null null null null

be 5 8 to be or not be null null null

- be 4 8 to be or not null null null null

- not 3 8 to be or null null null null null

that 4 8 to be or that null null null null

- that 3 8 to be or null null null null null

- or 2 4 to be null null

- be 1 2 to null

is 2 2 to is

Trace of DoublingStackOfStrings test client

introJava.indb   564 1/4/08   10:43:12 AM
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Amortized analysis.  Average running time per operation over a worst-case 
sequence of operations.

Proposition.  Starting from empty data structure, any sequence of M ops 
takes time proportional to M.

Remark.  WQUPC used amortized bound: starting from empty data structure, 
any sequence of M union and find ops takes O((M+N) log* N) time.

Amortized analysis

worst best amortized

construct

push

pop

1 1 1

N 1 1

N 1 1

doubling or shrinking

running time for doubling stack with N elements
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Linked list implementation.  ~ 16N bytes.

Doubling array.  Between ~ 4N (100% full) and ~ 16N (25% full).

Remark.  Our analysis doesn't include the memory for the items themselves.

Stack implementations:  memory usage

4 bytes

private class Node
{
   String item;
   Node next;
}

4 bytes

8 bytes overhead for object

16 bytes

public class DoublingStackOfStrings
{
   private String[] s;
   private int N = 0;

4 bytes × array size
4 bytes
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Stack implementations:  dynamic array vs. linked List

Tradeoffs.  Can implement with either array or linked list;
client can use interchangeably.  Which is better?

Linked list.

• Every operation takes constant time in worst-case.

• Uses extra time and space to deal with the links. 

Array.

• Every operation takes constant amortized time.

• Less wasted space.
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‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications



Queue operations.

• enqueue() Insert a new item onto queue.
• dequeue() Delete and return the item least recently added.

• isEmpty() Is the queue empty?

23

Queues

public static void main(String[] args)
{
   QueueOfStrings q = new QueueOfStrings();
   while (!StdIn.isEmpty())
   { 
      String item = StdIn.readString(); 
      if (item.equals("-")) StdOut.print(q.dequeue()); 
      else                   q.enqueue(item); 
      else
   } 
}

% more tobe.txt 
to be or not to - be - - that - - - is 
 
% java QueueOfStrings < tobe.txt 
to be or not to be
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Queue dequeue:  linked list implementation

was the best of

was the best of first = first.next;

was the best of return item;

first

first

first

it String item = first.item;

last

last

last
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Queue enqueue:  linked list implementation

Node last  = new Node();
last.item = "of";
last.next = null;

oldlast.next = last;

Node oldlast = last;

first

it was the best

oldlast

of

last

first

it was the best

last

it was the best of

it was the best of

first last

first last

oldlast

oldlast
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 Queue:  linked list implementation

public class QueueOfStrings
{
   private Node first, last;
   
   private class Node
   { String item; Node next; }
   
   public boolean isEmpty()
   { return first == null; } 
   
   public void enqueue(String item)
   {
      Node oldlast = last;
      last = new Node();
      last.item = item;
      last.next = null;
      if (isEmpty()) first = last;
      else           oldlast.next = last;
   }
   
   public String dequeue()
   {
      String item = first.item;
      first       = first.next;
      if (isEmpty()) last = null;
      return item;
   }
} 
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Queue:  dynamic array implementation

Array implementation of a queue.

• Use array q[] to store items in queue.
• enqueue():  add new item at q[tail].

• dequeue():  remove item from q[head].

• Update head and tail modulo the capacity.

• Add repeated doubling and shrinking.

q[]

head tail capacity = 10

null null the best of times null null null null

0 1 2 3 4 5 6 7 8 9
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‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications
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Parameterized stack

We implemented:  StackOfStrings.
We also want:  StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 1.  Implement a separate stack class for each type.

• Rewriting code is tedious and error-prone.

• Maintaining cut-and-pasted code is tedious and error-prone.

@#$*!  most reasonable approach until Java 1.5.   [hence, used in AlgsJava]



We implemented:  StackOfStrings.
We also want:  StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 2.  Implement a stack with items of type Object.

• Casting is required in client.

• Casting is error-prone:  run-time error if types mismatch.

 StackOfObjects s = new StackOfObjects();
 Apple  a = new Apple();
 Orange b = new Orange();
 s.push(a);
 s.push(b);
 a = (Apple) (s.pop());

30

Parameterized stack

run-time error
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Parameterized stack

We implemented:  StackOfStrings.
We also want:  StackOfURLs, StackOfCustomers, StackOfInts, etc?

Attempt 3.  Java generics.

• Avoid casting in both client and implementation.

• Discover type mismatch errors at compile-time instead of run-time.

Guiding principles.  Welcome compile-time errors; avoid run-time errors.

 Stack<Apple> s = new Stack<Apple>();
 Apple  a = new Apple();
 Orange b = new Orange();
 s.push(a);
 s.push(b);
 a = s.pop();

compile-time error

type parameter



public class Stack<Item>
{
   private Node first = null;

   private class Node
   {
      Item item;
      Node next;
   }
   
   public boolean isEmpty()
   {  return first == null;  }

   public void push(Item item)
   {
      Node oldfirst = first;
      first = new Node();
      first.item = item;
      first.next = oldfirst;
   }

   public Item pop()
   {
      Item item = first.item;
      first = first.next;
      return item;
   }
}
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Generic stack:  linked list implementation

generic type name

public class StackOfStrings
{
   private Node first = null;

   private class Node
   {
      String item;
      Node next;
   }
   
   public boolean isEmpty()
   {  return first == null;  }

   public void push(String item)
   {
      Node oldfirst = first;
      first = new Node();
      first.item = item;
      first.next = oldfirst;
   }

   public String pop()
   {
      String item = first.item;
      first = first.next;
      return item;
   }
}



public class StackOfStrings
{
   private String[] s;
   private int N = 0;
   
   public StackOfStrings(int capacity)
   {  s = new String[capacity];  } 
   
   public boolean isEmpty()
   { return N == 0; }
   
   public void push(String item)
   {  s[N++] = item;  }
   
   public String pop()
   {  return s[--N];  }
}

public class Stack<Item>
{
   private Item[] s;
   private int N = 0;
   
   public Stack(int capacity)
   {  s = new Item[capacity];  } 
   
   public boolean isEmpty()
   { return N == 0; }
   
   public void push(Item item)
   {  s[N++] = item;  }
   
   public Item pop()
   {  return s[--N];  }
}

33

Generic stack:  array implementation

@#$*! generic array creation not allowed in Java

the way it should be
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Generic stack:  array implementation

public class StackOfStrings
{
   private String[] s;
   private int N = 0;
   
   public StackOfStrings(int capacity)
   {  s = new String[capacity];  } 
   
   public boolean isEmpty()
   { return N == 0; }
   
   public void push(String item)
   {  s[N++] = item;  }
   
   public String pop()
   {  return s[--N];  }
}

public class Stack<Item>
{
   private Item[] s;
   private int N = 0;
   
   public Stack(int capacity)
   {  s = (Item[]) new Object[capacity]; } 
   
   public boolean isEmpty()
   { return N == 0; }
   
   public void push(Item item)
   {  s[N++] = item;  }
   
   public Item pop()
   {  return s[--N];  }
}

the ugly cast

the way it is
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Generic data types:  autoboxing

Q.  What to do about primitive types?

Wrapper type.

• Each primitive type has a wrapper object type.

• Ex:  Integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.

Syntactic sugar.  Behind-the-scenes casting.

Bottom line.  Client code can use generic stack for any type of data.

Stack<Integer> s = new Stack<Integer>();
s.push(17);        // s.push(new Integer(17));
int a = s.pop();   // int a = s.pop().intValue();
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‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications



Design challenge.  Support iteration over stack items by client, without 
revealing the internal representation of the stack. 

Java solution.  Make stack Iterable.

Iteration

37

s[]

N

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

i

best the was it

first

of

current

null



public interface Iterator<Item>
{
   boolean hasNext();
   Item next();
   void remove();
}

Iterators

Q.  What is an Iterable ?
A.  Has a method that returns an Iterator.

Q.  What is an Iterator ?
A.  Has methods hasNext() and next().

Q.  Why make data structures Iterable ?
A.  Java supports elegant client code.

38

optional; use
at your own risk

“foreach” statement equivalent code

for (String s : stack)
   StdOut.println(s);

Iterator<String> i = stack.iterator();      
while (i.hasNext())
{
   String s = i.next();
   StdOut.println(s);
}

public interface Iterable<Item>
{
   Iterator<Item> iterator();
}



Stack iterator:  linked list implementation
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import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{
    ...

    public Iterator<Item> iterator() { return new ListIterator();  }

    private class ListIterator implements Iterator<Item>
    {
        private Node current = first;

        public boolean hasNext() {  return current != null;  }
        public void remove()     {  /* not supported */      }      
        public Item next()
        {
            Item item = current.item;
            current   = current.next; 
            return item;
        }
    }
}

best the was it

first

of

current

null



Stack iterator:  array implementation
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import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{
    …

    public Iterator<Item> iterator() { return new ArrayIterator(); }

    private class ArrayIterator implements Iterator<Item>
    {
        private int i = N;

        public boolean hasNext() {  return i > 0;        }
        public void remove()     {  /* not supported */  }
        public Item next()       {  return s[--i];       }
    }
}

s[]

N

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

i
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‣ stacks
‣ dynamic resizing
‣ queues
‣ generics
‣ iterators
‣ applications
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Stack applications

Real world applications.

• Parsing in a compiler.

• Java virtual machine.

• Undo in a word processor.

• Back button in a Web browser.

• PostScript language for printers.

• Implementing function calls in a compiler.
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Function calls

How a compiler implements a function.

• Function call:  push local environment and return address.

• Return:  pop return address and local environment.

Recursive function.  Function that calls itself.
Note.  Can always use an explicit stack to remove recursion.

 static int gcd(int p, int q) {
    if (q == 0) return p;
    else return gcd(q, p % q);
 }

gcd (216, 192)

 static int gcd(int p, int q) {
    if (q == 0) return p;
    else return gcd(q, p % q);
 }

gcd (192, 24)

 static int gcd(int p, int q) {
    if (q == 0) return p;
    else return gcd(q, p % q);
 }

gcd (24, 0)

p = 24, q = 0

p = 192, q = 24

p = 216, q = 192



Goal.  Evaluate infix expressions.

Two-stack algorithm.  [E. W. Dijkstra]

• Value:  push onto the value stack.

• Operator:  push onto the operator stack.

• Left parens:  ignore.

• Right parens:  pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.

Context.  An interpreter!

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
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Arithmetic expression evaluation

5734.3  Stacks and Queues

it is easy to convince yourself that it computes the proper value: any time the algo-
rithm encounters a subexpression consisting of two operands separated by an op-
erator, all surrounded by parentheses, it leaves the result of performing that opera-
tion on those operands on the operand stack. The result is the same as if that value 
had appeared in the input instead of the sub-
expression, so we can think of replacing the 
subexpression by the value to get an expression 
that would yield the same result. We can apply 
this argument again and again until we get a 
single value. For example, the algorithm com-
putes the same value of all of these expres-
sions:

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) ) 
( 1 + ( 5 * ( 4 * 5 ) ) ) 
( 1 + ( 5 * 20 ) ) 
( 1 + 100 ) 
101

Evaluate (PROGRAM 4.3.5) is an implemen-
tation of this method. This code is a simple 
example of an interpreter : a program that in-
terprets the computation specified by a given 
string and performs the computation to ar-
rive at the result. A compiler is a program that 
converts the string into code on a lower-level 
machine that can do the job. This conversion 
is a more complicated process than the step-
by-step conversion used by an interpreter, but 
it is based on the same underlying mechanism. 
Initially, Java was based on using an interpret-
er. Now, however, the Java system includes a 
compiler that converts arithmetic expressions 
(and, more generally, Java programs) into code 
for the Java virtual machine, an imaginary ma-
chine that is easy to simulate on an actual com-
puter. Trace of expression evaluation (Program 4.3.5)

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

+ ( ( 2 + 3 ) * ( 4 * 5 ) ) )

( ( 2 + 3 ) * ( 4 * 5 ) ) )
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operand operator

value stack
operator stack
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Arithmetic expression evaluation

public class Evaluate
{
   public static void main(String[] args)
   {
      Stack<String> ops  = new Stack<String>();
      Stack<Double> vals = new Stack<Double>();
      while (!StdIn.isEmpty()) {
         String s = StdIn.readString();
         if      (s.equals("("))               ;
         else if (s.equals("+"))    ops.push(s);
         else if (s.equals("*"))    ops.push(s);
         else if (s.equals(")"))
         {
            String op = ops.pop();
            if      (op.equals("+")) vals.push(vals.pop() + vals.pop());
            else if (op.equals("*")) vals.push(vals.pop() * vals.pop());
         }
         else vals.push(Double.parseDouble(s));
      }
      StdOut.println(vals.pop());
   }
}

% java Evaluate
( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )
101.0
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Correctness

Q.  Why  correct?
A.  When algorithm encounters an operator surrounded by two values within 
parentheses, it leaves the result on the value stack.

as if the original input were:

Repeating the argument:

Extensions.  More ops, precedence order, associativity.

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

( 1 + ( 5 * ( 4 * 5 ) ) )

( 1 + ( 5 * 20 ) )
( 1 + 100 )
101



47

Stack-based programming languages

Observation 1.  The 2-stack algorithm computes the same value if the 
operator occurs after the two values.

Observation 2.  All of the parentheses are redundant!

Bottom line.  Postfix or "reverse Polish" notation.
Applications.  Postscript, Forth, calculators, Java virtual machine, …

Jan Lukasiewicz

( 1 ( ( 2 3 + ) ( 4 5 * ) * ) + )

1 2 3 + 4 5 * * +



Page description language.

• Explicit stack.

• Full computational model

• Graphics engine.

Basics.

• %!: “I am a PostScript program.”

• Literal: “push me on the stack.”

• Function calls take arguments from stack.

• Turtle graphics built in.

PostScript

48

a PostScript program

%!
72 72 moveto
0 72 rlineto
72 0 rlineto
0 -72 rlineto
-72 0 rlineto
2 setlinewidth
stroke

its output



PostScript

Data types.

• basic: integer, floating point, boolean, ...

• Graphics: font, path, curve, ....

• Full set of built-in operators.

Text and strings.

• Full font support.
• show (display a string, using current font).

• cvs (convert anything to a string).

49

System.out.print()

toString()

Square root of 2:
1.41421

%!
/Helvetica-Bold findfont 16 scalefont setfont
72 168 moveto
(Square root of 2:) show
72 144 moveto
2 sqrt 10 string cvs show



PostScript

Variables (and functions).

• Identifiers start with /.

• def operator associates id with value.

• Braces.

• args on stack.

50

function 
definition

function calls

%!
/box
{
  /sz exch def
  0 sz rlineto
  sz 0 rlineto
  0 sz neg rlineto
  sz neg 0 rlineto
} def

72 144 moveto
72 box
288 288 moveto
144 box
2 setlinewidth
stroke



PostScript

For loop.

• “from, increment, to” on stack.

• Loop body in braces.

• for operator.

If-else conditional.

• Boolean on stack.

• Alternatives in braces.

• if operator.

... (hundreds of operators)
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%!
\box 
{
  ...
}

1 1 20
{ 19 mul dup 2 add moveto 72 box }
for
stroke



PostScript

Application 1.  All figures in Algorithms in Java
Application 2.  Deluxe version of StdDraw also saves to PostScript
for vector graphics.
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See page 218

%!
72 72 translate 

/kochR
  { 
    2 copy ge { dup 0 rlineto }
      { 
        3 div
        2 copy kochR 60 rotate
        2 copy kochR -120 rotate
        2 copy kochR 60 rotate
        2 copy kochR
      } ifelse
    pop pop
  } def

0   0 moveto   81 243 kochR
0  81 moveto   27 243 kochR
0 162 moveto    9 243 kochR
0 243 moveto    1 243 kochR
stroke
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Queue applications

Familiar applications.

• iTunes playlist.

• Data buffers (iPod, TiVo).

• Asynchronous data transfer (file IO, pipes, sockets).

• Dispensing requests on a shared resource (printer, processor).

Simulations of the real world.

• Traffic analysis.

• Waiting times of customers at call center.

• Determining number of cashiers to have at a supermarket.



M/M/1 queue.

• Customers arrive according to Poisson process at rate of λ per minute.

• Customers are serviced with rate of µ per minute.

Q.  What is average wait time W of a customer in system?
Q.  What is average number of customers L in system?

54

M/M/1 queuing model

Arrival rate λ Departure rate μ

Infinite queue Server

interarrival time has exponential distribution Pr[X ≤ x] = 1 - e - λ x

service time has exponential distribution Pr[X ≤ x] = 1 - e - µ x



M/M/1 queuing model:  example simulation
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An M/D/1 queue
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M/M/1 queuing model:  event-based simulation

public class MM1Queue
{ 
    public static void main(String[] args) { 
        double lambda = Double.parseDouble(args[0]);   // arrival rate
        double mu     = Double.parseDouble(args[1]);   // service rate
        double nextArrival = StdRandom.exp(lambda);
        double nextService = nextArrival + StdRandom.exp(mu);

        Queue<Double> queue = new Queue<Double>();
        Histogram hist = new Histogram("M/D/1 Queue", 60);

        while (true)
        {
            while (nextArrival < nextService)
            {
                queue.enqueue(nextArrival);
                nextArrival += StdRandom.exp(lambda);
            } 

            double arrival = queue.dequeue();
            double wait = nextService - arrival;
            hist.addDataPoint(Math.min(60,  (int) (Math.round(wait))));
            if (queue.isEmpty()) nextService = nextArrival + StdRandom.exp(mu);
            else                 nextService = nextService + StdRandom.exp(mu);
        } 
    } 
}

next event is an arrival

next event is a service completion



Observation.  If service rate µ is much larger than arrival rate λ,
customers gets good service.

M/M/1 queuing model: experiments
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% java MM1Queue .2 .333



Observation.  As service rate µ approaches arrival rate λ, services goes to h***.

M/M/1 queuing model: experiments
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% java MM1Queue .2 .25



Observation.  As service rate µ approaches arrival rate λ, services goes to h***.

M/M/1 queuing model: experiments
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% java MM1Queue .2 .21



M/M/1 queue.  Exact formulas known.

More complicated queueing models.  Event-based simulation essential!
Queueing theory.  See ORFE 309.

M/M/1 queuing model:  analysis
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€ 

W  =  λ
2µ (µ −λ)

 +  1
µ

 ,     L  =  λ  W  

Little’s Law

wait time W and queue length L approach infinity
as service rate approaches arrival rate
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‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

Reference:    Algorithms in Java, 4th edition, Section 3.1



Ex.  Student record in a University.

Sort.  Rearrange array of N objects into ascending order.

2

Sorting problem



Goal.  Sort any type of data.
Ex 1.  Sort random numbers in ascending order.

3

Sample sort client

% java Experiment 10
0.08614716385210452
0.09054270895414829
0.10708746304898642
0.21166190071646818
0.363292849257276
0.460954145685913
0.5340026311350087
0.7216129793703496
0.9003500354411443
0.9293994908845686

public class Experiment
{
   public static void main(String[] args)
   {
      int N = Integer.parseInt(args[0]);
      Double[] a = new Double[N];
      for (int i = 0; i < N; i++)
         a[i] = StdRandom.uniform();
      Insertion.sort(a);
      for (int i = 0; i < N; i++)
         StdOut.println(a[i]);
   }
}



Goal.  Sort any type of data.
Ex 2.  Sort strings from standard input in alphabetical order.

4

Sample sort client

% more words3.txt
bed bug dad dot zoo ... all bad bin 

% java StringSort < words.txt
all bad bed bug dad ... yes yet zoo

public class StringSort
{
   public static void main(String[] args)
   {
      String[] a = StdIn.readAll().split("\\s+"); 
      Insertion.sort(a);
      for (int i = 0; i < N; i++) 
         StdOut.println(a[i]);
   }
}



Goal.  Sort any type of data.
Ex 3.  Sort the files in a given directory by filename.
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% java FileSort .
Insertion.class
Insertion.java
InsertionX.class
InsertionX.java
Selection.class
Selection.java
Shell.class
Shell.java
ShellX.class
ShellX.java

Sample sort client

import java.io.File;
public class FileSort
{
   public static void main(String[] args)
   {
      File directory = new File(args[0]);
      File[] files = directory.listFiles();        
      Insertion.sort(files);
      for (int i = 0; i < files.length; i++)
         StdOut.println(files[i]);
   }
}
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Callbacks

Goal.  Sort any type of data.

Q.  How can sort know to compare data of type String, Double, and File 
without any information about the type of an item?

Callbacks.

• Client passes array of objects to sorting routine.

• Sorting routine calls back object's compare function as needed.

Implementing callbacks.

• Java:  interfaces.

• C:  function pointers.

• C++:  class-type functors.

• ML:  first-class functions and functors.



Callbacks:  roadmap
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sort implementation

client object implementation

import java.io.File;
public class FileSort
{
   public static void main(String[] args)
   {
      File directory = new File(args[0]);
      File[] files = directory.listFiles();        
      Insertion.sort(files);
      for (int i = 0; i < files.length; i++)
         StdOut.println(files[i]);
   }
}

Key point: no reference to File 

public static void sort(Comparable[] a)
{
   int N = a.length;
   for (int i = 0; i < N; i++)
      for (int j = i; j > 0; j--)
         if (a[j].compareTo(a[j-1]) < 0)
              exch(a, j, j-1);
         else break;
}

public class File
implements Comparable<File> 
{
   ...
   public int compareTo(File b)
   {
      ...
      return -1;
      ...
      return +1;
      ...
      return 0;
   }
}

interface

public interface Comparable<Item>
{
   public int compareTo(Item);
}

built in to Java
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Comparable interface API

Comparable interface.  Implement compareTo() so that v.compareTo(w):

• Returns a negative integer if v is less than w.

• Returns a positive integer if v is greater than w.

• Returns zero if v is equal to w.

Total order.  Implementation must ensure a total order.

• Reflexive:  (a = a).

• Antisymmetric:  if (a < b) then (b < a); if (a = b) then (b = a).

• Transitive:  if (a ≤ b) and (b ≤ c) then (a ≤ c).

Built-in comparable types.  String, Double, Integer, Date, File, ...
User-defined comparable types.  Implement the Comparable interface.

public interface Comparable<Item>
{
   public int compareTo(Item that);
}



Date data type.  Simplified version of java.util.Date.

public class Date implements Comparable<Date>
{
   private final int month, day, year;

   public Date(int m, int d, int y)
   {
      month = m; 
      day   = d;
      year  = y;
   }

   public int compareTo(Date that)
   {
      if (this.year  < that.year ) return -1;
      if (this.year  > that.year ) return +1;
      if (this.month < that.month) return -1;
      if (this.month > that.month) return +1;
      if (this.day   < that.day  ) return -1;
      if (this.day   > that.day  ) return +1;
      return 0;
   }
}

9

Implementing the Comparable interface:  example 1

only compare dates
to other dates
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Implementing the Comparable interface:  example 2

Domain names.

• Subdomain:  bolle.cs.princeton.edu.

• Reverse subdomain:  edu.princeton.cs.bolle.

• Sort by reverse subdomain to group by category.
subdomains

reverse-sorted subdomains

public class Domain implements Comparable<Domain>
{
   private final String[] fields;
   private final int N;

   public Domain(String name)
   {
       fields = name.split("\\.");
       N = fields.length;
   }

   public int compareTo(Domain that)
   {
      for (int i = 0; i < Math.min(this.N, that.N); i++)
      {
         String s = fields[this.N - i - 1];
         String t = fields[that.N - i - 1];
         int cmp = s.compareTo(t);
         if      (cmp < 0) return -1;
         else if (cmp > 0) return +1;
      }
      return this.N - that.N;
   }
}

ee.princeton.edu
cs.princeton.edu
princeton.edu
cnn.com
google.com
apple.com
www.cs.princeton.edu
bolle.cs.princeton.edu

com.apple
com.cnn
com.google
edu.princeton
edu.princeton.cs
edu.princeton.cs.bolle
edu.princeton.cs.www
edu.princeton.ee

only use this trick
when no danger

of overflow



Helper functions.  Refer to data through compares and exchanges.

Less.  Is object v less than w ?

Exchange.  Swap object in array a[] at index i with the one at index j.
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Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)
{
   return v.compareTo(w) < 0;
}

private static void exch(Comparable[] a, int i, int j)
{
   Comparable t = a[i];
   a[i] = a[j];
   a[j] = t;
}



Q.  How to test if an array is sorted?

Q.  If the sorting algorithm passes the test, did it correctly sort its input?
A.  Yes, if data accessed only through exch() and less().

12

Testing

private static boolean isSorted(Comparable[] a)
{
   for (int i = 1; i < a.length; i++)
      if (less(a[i], a[i-1])) return false;
   return true;
}



‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort
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Selection sort

Algorithm.  ↑ scans from left to right.

Invariants.

• Elements to the left of ↑ (including ↑) fixed and in ascending order.

• No element to right of ↑ is smaller than any element to its left.

in final order
↑
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Selection sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right. 

• Identify index of minimum item on right.

• Exchange into position.

i++;

↑

int min = i;
for (int j = i+1; j < N; j++)
   if (less(a[j], a[min]))
      min = j;            

↑↑

exch(a, i, min);
↑↑

in final order

in final order

in final order
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Selection sort:  Java implementation

public class Selection {

   public static void sort(Comparable[] a)
   {
      int N = a.length;
      for (int i = 0; i < N; i++)
      {
         int min = i;
         for (int j = i+1; j < N; j++)
            if (less(a[j], a[min]))
               min = j;
         exch(a, i, min);
      }
   }

   private boolean less(Comparable v, Comparable w)
   {  /* as before */  }

   private boolean exch(Comparable[] a, int i, int j)
   {  /* as before */  }
}



Selection sort:  mathematical analysis

Proposition A.  Selection sort uses  (N-1) + (N-2) +  ... + 1 + 0  ~  N2/2 
compares and N exchanges.

Running time insensitive to input.  Quadratic time, even if array is presorted.
Data movement is minimal.   Linear number of exchanges.
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Trace of selection sort (array contents just after each exchange)

                       a[]
 i min   0  1  2  3  4  5  6  7  8  9 10

         S  O  R  T  E  X  A  M  P  L  E 

 0   6   S  O  R  T  E  X  A  M  P  L  E 
 1   4   A  O  R  T  E  X  S  M  P  L  E 
 2  10   A  E  R  T  O  X  S  M  P  L  E 
 3   9   A  E  E  T  O  X  S  M  P  L  R 
 4   7   A  E  E  L  O  X  S  M  P  T  R 
 5   7   A  E  E  L  M  X  S  O  P  T  R 
 6   8   A  E  E  L  M  O  S  X  P  T  R 
 7  10   A  E  E  L  M  O  P  X  S  T  R 
 8   8   A  E  E  L  M  O  P  R  S  T  X 
 9   9   A  E  E  L  M  O  P  R  S  T  X 
10  10   A  E  E  L  M  O  P  R  S  T  X 

         A  E  E  L  M  O  P  R  S  T  X  

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]



‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort
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Insertion sort

Algorithm.  ↑ scans from left to right.

Invariants.

• Elements to the left of ↑ (including ↑) are in ascending order.

• Elements to the right of ↑ have not yet been seen.

in order ↑ not yet seen
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Insertion sort inner loop

To maintain algorithm invariants:
 

• Move the pointer to the right.

• Moving from right to left, exchange
a[i] with each larger element to its left.

for (int j = i; j > 0; j--)
   if (less(a[j], a[j-1]))
        exch(a, j, j-1);
   else break;

i++;

in order not yet seen

↑

in order not yet seen

↑↑↑↑



Insertion sort: Java implementation
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public class Insertion {

   public static void sort(Comparable[] a)
   {
      int N = a.length;
      for (int i = 0; i < N; i++)
         for (int j = i; j > 0; j--)
            if (less(a[j], a[j-1]))
               exch(a, j, j-1);
            else break;
   }

   private boolean less(Comparable v, Comparable w)
   {  /* as before */  }

   private boolean exch(Comparable[] a, int i, int j)
   {  /* as before */  }
}



Proposition B.  For randomly-ordered data with distinct keys, insertion sort
uses ~ N2/4 compares and N2/4 exchanges on the average.

Pf.  For randomly data, we expect each element to move halfway back.

Insertion sort:  mathematical analysis
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Trace of insertion sort (array contents just after each insertion)

                       a[]
 i   j   0  1  2  3  4  5  6  7  8  9 10

         S  O  R  T  E  X  A  M  P  L  E 

 1   0   O  S  R  T  E  X  A  M  P  L  E 
 2   1   O  R  S  T  E  X  A  M  P  L  E 
 3   3   O  R  S  T  E  X  A  M  P  L  E 
 4   0   E  O  R  S  T  X  A  M  P  L  E 
 5   5   E  O  R  S  T  X  A  M  P  L  E 
 6   0   A  E  O  R  S  T  X  M  P  L  E 
 7   2   A  E  M  O  R  S  T  X  P  L  E 
 8   4   A  E  M  O  P  R  S  T  X  L  E 
 9   2   A  E  L  M  O  P  R  S  T  X  E 
10   2   A  E  E  L  M  O  P  R  S  T  X  

         A  E  E  L  M  O  P  R  S  T  X  

entries in black
moved one position
right for insertion

entries in gray
do not move 

entry in red 
is a[j]



Best case.  If the input is in ascending order, insertion sort makes
N-1 compares and 0 exchanges.

Worst case.  If the input is in descending order (and no duplicates),
insertion sort makes ~ N2/2 compares and ~ N2/2 exchanges.

Insertion sort:  best and worst case
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 X T S R P O M L E E A 

 A E E L M O P R S T X 



Def.  An inversion is a pair of keys that are out of order.

Def. An array is partially sorted if the number of inversions is O(N).

• Ex 1.  A small array appended to a large sorted array.

• Ex 2. An array with only a few elements out of place.

Proposition C.  For partially-sorted arrays, insertion sort runs in linear time.
Pf.  Number of exchanges equals the number of inversions.

Insertion sort: partially sorted inputs
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 A E E L M O T R X P S 

T-R T-P T-S R-P X-P X-S

(6 inversions)

number of compares = exchanges + (N-1)



‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort
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Sorting challenge 0

Input.  Array of doubles.
Plot.  Data proportional to length.

Name the sorting method.

• Insertion sort.

• Selection sort.

black entries
are involved 
in compares

gray entries
are untouched

Visual traces of elementary sorting algorithms

insertion sort selection sort
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Sorting challenge 1

Problem.  Sort a file of huge records with tiny keys.
Ex.  Reorganize your MP3 files.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.
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Sorting challenge 2

Problem.  Sort a huge randomly-ordered file of small records.
Ex.  Process transaction records for a phone company.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.
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Sorting challenge 3

Problem.  Sort a huge number of tiny files (each file is independent)
Ex.  Daily customer transaction records.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.
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Sorting challenge 4

Problem.  Sort a huge file that is already almost in order.
Ex.  Resort a huge database after a few changes.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.



‣ rules of the game
‣ selection sort
‣ insertion sort
‣ animations
‣ shellsort
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Insertion sort animation
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i

a[i]

left of pointer is in sorted order right of pointer is untouched



Reason it is slow:  excessive data movement.

Insertion sort animation
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Idea.  Move elements more than one position at a time by h-sorting the file.

Shellsort.  h-sort the file for a decreasing sequence of values of h.

Shellsort overview
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L  E  E  A  M  H  L  E  P  S  O  L  T  S  X  R
L           M           P           T  
   E           H           S           S  
      E           L           O           X 
         A           E           L           R

P  H  E  L  L  S  O  R  T  E  X  A  M  S  L  E
P                                      S
   H                                      L
      E                                      E
         L                                       
            L                                 

h = 4

h = 13

An h-sorted !le is h interleaved sorted !les

(8 additional files of size 1)

Shellsort trace (array contents after each pass)

P  H  E  L  L  S  O  R  T  E  X  A  M  S  L  E  

A  E  E  E  H  L  L  L  M  O  P  R  S  S  T  X  

L  E  E  A  M  H  L  E  P  S  O  L  T  S  X  R  

S  H  E  L  L  S  O  R  T  E  X  A  M  P  L  Einput

13-sort

4-sort

1-sort

an h-sorted file is h interleaved sorted files



How to h-sort a file?  Insertion sort, with stride length h.

Why insertion sort?

• Big increments  ⇒  small subfiles.

• Small increments  ⇒  nearly in order.  [stay tuned]

h-sorting
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M  O  L  E  E  X  A  S  P  R  T 
E  O  L  M  E  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T

3-sorting a file



Shellsort example: increments 7, 3, 1
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S  O  R  T  E  X  A  M  P  L  E

input

S  O  R  T  E  X  A  M  P  L  E
M  O  R  T  E  X  A  S  P  L  E
M  O  R  T  E  X  A  S  P  L  E
M  O  L  T  E  X  A  S  P  R  E
M  O  L  E  E  X  A  S  P  R  T

7-sort

M  O  L  E  E  X  A  S  P  R  T 
E  O  L  M  E  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T

3-sort

A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  E  L  O  P  M  S  X  R  T
A  E  E  L  O  P  M  S  X  R  T
A  E  E  L  O  P  M  S  X  R  T
A  E  E  L  M  O  P  S  X  R  T
A  E  E  L  M  O  P  S  X  R  T
A  E  E  L  M  O  P  S  X  R  T
A  E  E  L  M  O  P  R  S  X  T
A  E  E  L  M  O  P  R  S  T  X

1-sort

A  E  E  L  M  O  P  R  S  T  X

result
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Shellsort:  intuition

Proposition.  A g-sorted array remains g-sorted after h-sorting it.
Pf.  Harder than you'd think!

M  O  R  T  E  X  A  S  P  L  E
M  O  R  T  E  X  A  S  P  L  E
M  O  L  T  E  X  A  S  P  R  E
M  O  L  E  E  X  A  S  P  R  T
M  O  L  E  E  X  A  S  P  R  T

7-sort

M  O  L  E  E  X  A  S  P  R  T
E  O  L  M  E  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
E  E  L  M  O  X  A  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  X  M  S  P  R  T
A  E  L  E  O  P  M  S  X  R  T 
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T
A  E  L  E  O  P  M  S  X  R  T

3-sort

still 7-sorted



What increments to use?

1, 2, 4, 8, 16, 32 . . . 
No.

1, 3, 7, 15, 31, 63, . . .
Maybe.

1, 4, 13, 40, 121, 363, . . .
OK, easy to compute.

1, 5, 19, 41, 109, 209, 505, . . .
Tough to beat in empirical studies.

Interested in learning more?

• See Algs 3 section 6.8 or Knuth volume 3 for details.
38



public class Shell
{  // Shellsort.
   public static void sort(Comparable[] a)
   {  // Sort a[] into increasing order.
      int N = a.length;

      int h = 1;
      while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, 1093, ...

      while (h >= 1)
      {  // h-sort the file.
         for (int i = h; i < N; i++)
         {  // Insert a[i] among a[i-h], a[i-2*h], a[i-3*h]... .
            for (int j = i; j > 0 && less(a[j], a[j-h]); j -= h)
               exch(a, j, j-h);
         }
         
         h = h/3;
      }
   }

   private boolean less(Comparable v, Comparable w)
   // As before.
   private boolean exch(Comparable[] a, int i, int j)
   // As before.
}

Shellsort:  Java implementation

39

insertion sort

magic increment 
sequence

move to next
increment



Visual trace of shellsort

40Visual trace of shellsort

input

40-sorted

13-sorted

4-sorted

result



Shellsort animation

41

big increment

small increment



Shellsort animation

Bottom line:  substantially faster than insertion sort!
42



Proposition.  The worst-case number of compares for shellsort using
the increments 1, 4, 13, 40, ... is O(N3/2).

Property. The number of compares used by shellsort with the 3x+1 increments 
is at most by a small multiple of N times the # of increments used. 

Remark.  Accurate model has not yet been discovered (!)
43

Shellsort:  analysis

measured in thousands

N compares N1.289 2.5 N lg N

5,000 93 58 106

10,000 209 143 230

20,000 467 349 495

40,000 1022 855 1059

80,000 2266 2089 2257



Why are we interested in shellsort?

Example of simple idea leading to substantial performance gains.

Useful in practice.

• Fast unless file size is huge.

• Tiny, fixed footprint for code (used in embedded systems).

• Hardware sort prototype.

Simple algorithm, nontrivial performance, interesting questions

• Asymptotic growth rate?

• Best sequence of increments?

• Average case performance?

Lesson.  Some good algorithms are still waiting discovery.

44

open problem:  find a better increment sequence
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Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

• Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

• Quicksort honored as one of top 10 algorithms of 20th century
in science and engineering.

Mergesort.

• Java sort for objects.

• Perl, Python stable sort.

Quicksort.

• Java sort for primitive types. 

• C qsort, Unix, g++, Visual C++, Python.

today

next lecture
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Basic plan.

• Divide array into two halves.

• Recursively sort each half.

• Merge two halves.

4

Mergesort

M  E  R  G  E  S  O  R  T  E  X  A  M  P  L  E

E  E  G  M  O  R  R  S  T  E  X  A  M  P  L  E

E  E  G  M  O  R  R  S  A  E  E  L  M  P  T  X

A  E  E  E  E  G  L  M  M  O  P  R  R  S  T  X

input

sort left  half

sort right half

merge results

Mergesort overview
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Mergesort trace

result after recursive call

Trace of merge results for top-down mergesort

                                                    a[]
                               0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  
                               M  E  R  G  E  S  O  R  T  E  X  A  M  P  L  E
        merge(a,  0,  0,  1)   E  M  R  G  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  2,  2,  3)   E  M  G  R  E  S  O  R  T  E  X  A  M  P  L  E  
      merge(a,  0,  1,  3)     E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  4,  4,  5)   E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  6,  6,  7)   E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E  
      merge(a,  4,  5,  7)     E  G  M  R  E  O  R  S  T  E  X  A  M  P  L  E  
    merge(a,  0,  3,  7)       E  E  G  M  O  R  R  S  T  E  X  A  M  P  L  E  
        merge(a,  8,  8,  9)   E  E  G  M  O  R  R  S  E  T  X  A  M  P  L  E  
        merge(a, 10, 10, 11)   E  E  G  M  O  R  R  S  E  T  A  X  M  P  L  E  
      merge(a,  8,  9, 11)     E  E  G  M  O  R  R  S  A  E  T  X  M  P  L  E  
        merge(a, 12, 12, 13)   E  E  G  M  O  R  R  S  A  E  T  X  M  P  L  E  
        merge(a, 14, 14, 15)   E  E  G  M  O  R  R  S  A  E  T  X  M  P  E  L  
      merge(a, 12, 13, 15)     E  E  G  M  O  R  R  S  A  E  T  X  E  L  M  P 
    merge(a,  8, 11, 15)       E  E  G  M  O  R  R  S  A  E  E  L  M  P  T  X  
  merge(a,  0,  7, 15)         A  E  E  E  E  G  L  M  M  O  P  R  R  S  T  X 

lo hi



Goal.  Combine two sorted subarrays into a sorted whole.

Q.  How to merge efficiently? 
A.  Use an auxiliary array.

6

Merging

                 a[]                                 aux[]

k   0  1  2  3  4  5  6  7  8  9   i  j   0  1  2  3  4  5  6  7  8  9

    E  E  G  M  R  A  C  E  R  T          -  -  -  -  -  -  -  -  -  -

    E  E  G  M  R  A  C  E  R  T          E  E  G  M  R  A  C  E  R  T

                                   0  5

0   A                              0  6   E  E  G  M  R  A  C  E  R  T

1   A  C                           0  7   E  E  G  M  R     C  E  R  T     

2   A  C  E                        1  7   E  E  G  M  R        E  R  T    

3   A  C  E  E                     2  7      E  G  M  R        E  R  T   

4   A  C  E  E  E                  2  8         G  M  R        E  R  T  

5   A  C  E  E  E  G               3  8         G  M  R           R  T        

6   A  C  E  E  E  G  M            4  8            M  R           R  T      

7   A  C  E  E  E  G  M  R         5  8               R           R  T         

8   A  C  E  E  E  G  M  R  R      5  9                           R  T         

9   A  C  E  E  E  G  M  R  R  T   6 10                              T 

    A  C  E  E  E  G  M  R  R  T                         

input

copy

Abstract in-place merge trace

merged result
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Merging:  Java implementation

A G L O R H I M S T

A G H I L M

i j

k

lo him

aux[]

a[]

public static void merge(Comparable[] a, int lo, int m, int hi)
{  // Merge a[lo..m] with a[m+1..hi].

   for (int k = lo; k < hi; k++)
      aux[k] = a[k];

   int i = lo, j = mid;
   for (int k = lo; k < hi; k++) 
      if      (i == mid)             a[k] = aux[j++];
      else if (j == hi )             a[k] = aux[i++];
      else if (less(aux[j], aux[i])) a[k] = aux[j++];
      else                           a[k] = aux[i++];

} 

copy

merge
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Mergesort:  Java implementation

lo m hi

10 11 12 13 14 15 16 17 18 19

public class Merge
{
   private static Comparable[] aux;

   private static void merge(Comparable[] a, int lo, int m, int hi)
   {  /* as before */  }
   
   private static void sort(Comparable[] a, int lo, int hi)
   {
      if (hi <= lo) return;
      int m = lo + (hi - lo) / 2;
      sort(a, lo, m);
      sort(a, m+1, hi);
      merge(a, lo, m, hi);
   }

   public static void sort(Comparable[] a)
   {
      aux = new Comparable[a.length];
      sort(a, 0, a.length - 1);
   }
}
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Mergesort visualization

Visual trace of top-down mergesort with cuto! for small sub"les

"rst sub"le

second sub"le

"rst merge

"rst half sorted

second half sorted

result
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Mergesort animation

merge in progress output auxiliary array

done merge in progress inputuntouched
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Mergesort animation
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Mergesort:  empirical analysis

Running time estimates:

• Home pc executes 108 comparisons/second.

• Supercomputer executes 1012 comparisons/second.

Bottom line.  Good algorithms are better than supercomputers.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N)

computer thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min

super instant 1 second 1 week instant instant instant
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Mergesort:  mathematical analysis

Proposition.  Mergesort uses ~ N lg N compares to sort any array of size N.

Def.  T(N) = number of compares to mergesort an array of size N.
                  =  T(N / 2)   +   T(N / 2)   +    N

Mergesort recurrence.  T(N) = 2 T(N / 2) + N  for N > 1, with T(1) = 0.

• Not quite right for odd N.

• Same recurrence holds for many divide-and-conquer algorithms.

Solution.  T(N) ~ N lg N.

• For simplicity, we'll prove when N is a power of 2.

• True for all N.  [see COS 340]

left half right half merge



Mergesort recurrence.  T(N) = 2 T(N / 2) + N  for N > 1, with T(1) = 0.

Proposition.  If N is a power of 2, then T(N) = N lg N.
Pf.

14

Mergesort recurrence:  proof 1

T(N)

T(N/2)T(N/2)

T(N/4)T(N/4)T(N/4) T(N/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2)

N

T(N / 2k)

2 (N/2)

2k (N/2k)

N/2 (2)

...

lg N

N lg N

= N

= N

= N

= N

...

T(2)

4 (N/4) = N



Mergesort recurrence.  T(N) = 2 T(N / 2) + N  for N > 1, with T(1) = 0.

Proposition.  If N is a power of 2, then T(N) = N lg N.
Pf. 
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Mergesort recurrence:  proof 2

    T(N)    =  2 T(N/2)  +  N

T(N) / N  =  2 T(N/2) / N  +  1

                =  T(N/2) / (N/2)  +  1

                =  T(N/4) / (N/4)  +  1  +  1

                =  T(N/8) / (N/8)  +  1  +  1  +  1

              . . .

                =  T(N/N) / (N/N) +  1  + 1  + ... +  1

                =  lg N

given

divide both sides by N

algebra

apply to first term

apply to first term again

stop applying, T(1) = 0



Mergesort recurrence.  T(N) = 2 T(N / 2) + N  for N > 1, with T(1) = 0.

Proposition.  If N is a power of 2, then T(N) = N lg N.
Pf.  [by induction on N]

• Base case:  N = 1.

• Inductive hypothesis:  T(N) = N lg N.

• Goal:  show that T(2N) = 2N lg (2N).

16

Mergesort recurrence:  proof 3

T(2N)  =  2 T(N)  +  2N                    

           =  2 N lg N + 2 N                 

           =  2 N (lg (2N)  -  1)  + 2N   

           =  2 N lg (2N)               

given

inductive hypothesis

algebra

QED
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Mergesort analysis:  memory

Proposition G.  Mergesort uses extra space proportional to N.
Pf.  The array aux[] needs to be of size N for the last merge.

Def.  A sorting algorithm is in-place if it uses O(log N) extra memory.
Ex.  Insertion sort, selection sort, shellsort.

Challenge for the bored.  In-place merge.  [Kronrud, 1969]

 A  C  D  G  H  I  M  N  U  V

  A  B  C  D  E  F  G  H  I  J  M  N  O  P  Q  R  S  T  U  V     

 B  E  F  J  O  P  Q  R  S  T 

two sorted subarrays

merged result
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Mergesort:  practical improvements

Use insertion sort for small subarrays.

• Mergesort has too much overhead for tiny subarrays.

• Cutoff to insertion sort for ≈ 7 elements.

Stop if already sorted.

• Is biggest element in first half ≤ smallest element in second half?

• Helps for nearly ordered lists.

Eliminate the copy to the auxiliary array.  Save time (but not space) by 
switching the role of the input and auxiliary array in each recursive call.

Ex.   See Arrays.sort().

 A  B  C  D  E  F  G  H  I  J 

  A  B  C  D  E  F  G  H  I  J  M  N  O  P  Q  R  S  T  U  V     

 M  N  O  P  Q  R  S  T  U  V 
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Basic plan.

• Pass through array, merging subarrays of size 1.

• Repeat for subarrays of size 2, 4, 8, 16, ....

Bottom line.  No recursion needed!
20

Bottom-up mergesort

Trace of merge results for bottom-up mergesort

                                                    a[i]
                               0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  
                               M  E  R  G  E  S  O  R  T  E  X  A  M  P  L  E
        merge(a,  0,  0,  1)   E  M  R  G  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  2,  2,  3)   E  M  G  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  4,  4,  5)   E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  6,  6,  7)   E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  8,  8,  9)   E  E  G  M  O  R  R  S  E  T  X  A  M  P  L  E  
        merge(a, 10, 10, 11)   E  E  G  M  O  R  R  S  E  T  A  X  M  P  L  E  
        merge(a, 12, 12, 13)   E  E  G  M  O  R  R  S  A  E  T  X  M  P  L  E  
        merge(a, 14, 14, 15)   E  E  G  M  O  R  R  S  A  E  T  X  M  P  E  L  
      merge(a,  0,  1,  3)     E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E 
      merge(a,  4,  5,  7)     E  G  M  R  E  O  R  S  T  E  X  A  M  P  L  E  
      merge(a,  8,  9, 11)     E  E  G  M  O  R  R  S  A  E  T  X  M  P  L  E  
      merge(a, 12, 13, 15)     E  E  G  M  O  R  R  S  A  E  T  X  E  L  M  P 
    merge(a,  0,  3,  7)       E  E  G  M  O  R  R  S  T  E  X  A  M  P  L  E  
    merge(a,  8, 11, 15)       E  E  G  M  O  R  R  S  A  E  E  L  M  P  T  X  
  merge(a,  0,  7, 15)         A  E  E  E  E  G  L  M  M  O  P  R  R  S  T  X 

lo m hi



Bottom line.  Concise industrial-strength code, if you have the space.

21

Bottom-up mergesort:  Java implementation

public class MergeBU
{
   private static Comparable[] aux;

   private static void merge(Comparable[] a, int lo, int m, int hi)
   {  /* as before */  }
 
   public static void sort(Comparable[] a)
   {
      int N = a.length;
      aux = new Comparable[N];
      for (int m = 1; m < N; m = m+m)
         for (int i = 0; i < N-m; i += m+m)
            merge(a, i, i+m, Math.min(i+m+m, N));
   }
}
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Bottom-up mergesort:  visual trace

2

4

8

16

32

Visual trace of bottom-up mergesort
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Botom-up mergesort animation

auxiliary array

this pass last pass

merge in progress output

merge in progress input
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Botom-up mergesort animation
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Computational complexity.  Framework to study efficiency of algorithms for 
solving a particular problem X.

Machine model.  Focus on fundamental operations.
Upper bound.  Cost guarantee provided by some algorithm for X.
Lower bound.  Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm.  Algorithm with best cost guarantee for X.

Example:  sorting.

• Machine model = # compares.

• Upper bound = ~ N lg N from mergesort.

• Lower bound = ~ N lg N ?

• Optimal algorithm = mergesort ? 

lower bound ~ upper bound

access information only through compares

Complexity of sorting
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Decision tree (for 3 distinct elements)

b < c

yes no

a < c

yes no

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

worst-case number 
of compares

a < b

yes no

code between comparisons
(e.g., sequence of exchanges)
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Compare-based lower bound for sorting

Proposition.  Any compare-based sorting algorithm must use more than
N lg N - 1.44 N comparisons in the worst-case.

Pf.

• Assume input consists of N distinct values a1 through aN.

• Worst case dictated by height h of decision tree.

• Binary tree of height h has at most 2 h leaves.

• N ! different orderings  ⇒  at least N ! leaves.

at least N! leaves no more than 2h leaves

h
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Compare-based lower bound for sorting

Proposition.  Any compare-based sorting algorithm must use more than
N lg N - 1.44 N comparisons in the worst-case.

Pf.

• Assume input consists of N distinct values a1 through aN.

• Worst case dictated by height h of decision tree.

• Binary tree of height h has at most 2 h leaves.

• N ! different orderings  ⇒  at least N ! leaves.

2 h  ≥  N !

h  ≥  lg N !

    ≥  lg (N / e) N

    = N lg N - N lg e

    ≥ N lg N - 1.44 N

Stirling's formula
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Complexity of sorting

Machine model.  Focus on fundamental operations.
Upper bound.  Cost guarantee provided by some algorithm for X.
Lower bound.  Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm.  Algorithm with best cost guarantee for X.

Example:  sorting.

• Machine model = # compares.

• Upper bound = ~ N lg N from mergesort.

• Lower bound = ~ N lg N.

• Optimal algorithm = mergesort.

First goal of algorithm design:  optimal algorithms.
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Complexity results in context

Other operations?  Mergesort optimality is only about number of compares.

Space?

• Mergesort is not optimal with respect to space usage.

• Insertion sort, selection sort, and shellsort are space-optimal.

Challenge.  Find an algorithm that is both time- and space-optimal.

Lessons.  Use theory as a guide.
Ex.  Don't try to design sorting algorithm that uses ½ N lg N compares.
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Complexity results in context (continued)

Lower bound may not hold if the algorithm has information about:

• The key values.

• Their initial arrangement.

Partially ordered arrays.  Depending on the initial order of the input,
we may not need N lg N compares.

Duplicate keys.  Depending on the input distribution of duplicates,
we may not need N lg N compares.

Digital properties of keys.  We can use digit/character compares instead of 
key compares for numbers and strings.

insertion sort requires O(N) compares on
an already sorted array

stay tuned for 3-way quicksort

stay tuned for radix sorts



‣ mergesort
‣ bottom-up mergesort
‣ sorting complexity 
‣ comparators

33



Comparable interface:  sort uses type’s natural order.

34

Natural order

public class Date implements Comparable<Date>
{
   private final int month, day, year;

   public Date(int m, int d, int y)
   {
      month = m; 
      day   = d;
      year  = y;
   }
      …
   public int compareTo(Date that)
   {
      if (this.year  < that.year ) return -1;
      if (this.year  > that.year ) return +1;
      if (this.month < that.month) return -1;
      if (this.month > that.month) return +1;
      if (this.day   < that.day  ) return -1;
      if (this.day   > that.day  ) return +1;
      return 0;
   }
}

natural order
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Generalized compare

Comparable interface:  sort uses type’s natural order.

Problem 1.  May want to use a non-natural order.
Problem 2.  Desired data type may not come with a “natural” order.

Ex.  Sort strings by:

• Natural order.  Now is the time

• Case insensitive. is Now the time

• Spanish.  café cafetero cuarto churro nube ñoño

• British phone book. McKinley Mackintosh

String[] a;
...
Arrays.sort(a);
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
Arrays.sort(a, Collator.getInstance(Locale.SPANISH));

pre-1994 order for digraphs
ch and ll and rr

import java.text.Collator;
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Comparators

Solution.  Use Java's Comparator interface.

Remark.  The compare() method implements a total order like compareTo().

Advantages.  Decouples the definition of the data type from the
definition of what it means to compare two objects of that type.

• Can add any number of new orders to a data type.

• Can add an order to a library data type with no natural order.

public interface Comparator<Key>
{
   public int compare(Key v, Key w);
}
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Comparator example

Reverse order.  Sort an array of strings in reverse order.

public class ReverseOrder implements Comparator<String>
{
   public int compare(String a, String b)
   {   
       return b.compareTo(a);
   }
}

   ...
   Arrays.sort(a, new ReverseOrder());
   ...

comparator implementation

client
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Sort implementation with comparators

To support comparators in our sort implementations:

• Pass Comparator to sort() and less().

• Use it in less().

Ex.  Insertion sort.

public static <Key> void sort(Key[] a, Comparator<Key> comparator)
{
   int N = a.length;
   for (int i = 0; i < N; i++)
      for (int j = i; j > 0; j--)
         if (less(comparator, a[j], a[j-1]))
              exch(a, j, j-1);
         else break;
}   

private static <Key> boolean less(Comparator<Key> c, Key v, Key w)
{  return c.compare(v, w) < 0;   }

private static <Key> void exch(Key[] a, int i, int j)
{  Key swap = a[i]; a[i] = a[j]; a[j] = swap;  }

pedantic Java code (see book for simpler version)
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Generalized compare

Comparators enable multiple sorts of a single file (by different keys).

Ex.  Sort students by name or by section.

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

sort by name then sort by section

Arrays.sort(students, Student.BY_NAME);
Arrays.sort(students, Student.BY_SECT);



Ex.  Enable sorting students by name or by section.

public class Student
{   
   public static final Comparator<Student> BY_NAME = new ByName();
   public static final Comparator<Student> BY_SECT = new BySect();

   private final String name;
   private final int section;
   ...
   private static class ByName implements Comparator<Student>
   {
      public int compare(Student a, Student b)
      {  return a.name.compareTo(b.name);  }
   }

   private static class BySect implements Comparator<Student>
   {
      public int compare(Student a, Student b)
      {  return a.section - b.section;  }
   }
}

40

Generalized compare

only use this trick if no danger of overflow
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Generalized compare problem

A typical application.  First, sort by name; then sort by section.

@#%&@!!.  Students in section 3 no longer in order by name.

A stable sort preserves the relative order of records with equal keys.

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Andrews

Battle

Chen

Fox

Furia

Gazsi

Kanaga

Rohde

3

4

2

1

3

4

3

3

A

C

A

A

A

B

B

A

664-480-0023

874-088-1212

991-878-4944

884-232-5341

766-093-9873

665-303-0266

898-122-9643

232-343-5555

097 Little

121 Whitman

308 Blair

11 Dickinson

101 Brown

22 Brown

22 Brown

343 Forbes

Arrays.sort(students, Student.BY_NAME); Arrays.sort(students, Student.BY_SECT);
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Stability

Q.  Which sorts are stable?

• Selection sort?

• Insertion sort?

• Shellsort?

• Mergesort?

Open problem.  Stable, inplace, N log N, practical sort??

Chicago  09:00:00
Phoenix  09:00:03
Houston  09:00:13
Chicago  09:00:59
Houston  09:01:10
Chicago  09:03:13
Seattle  09:10:11
Seattle  09:10:25
Phoenix  09:14:25
Chicago  09:19:32
Chicago  09:19:46
Chicago  09:21:05
Seattle  09:22:43
Seattle  09:22:54
Chicago  09:25:52
Chicago  09:35:21
Seattle  09:36:14
Phoenix  09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

sorted by time sorted by location (not stable) sorted by location (stable)

no 
longer
sorted

by time

still
sorted

by time

Stability when sorting on a second key
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Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

• Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

• Quicksort honored as one of top 10 algorithms of 20th century
in science and engineering.

Mergesort.

• Java sort for objects.

• Perl, Python stable sort.

Quicksort.

• Java sort for primitive types. 

• C qsort, Unix, g++, Visual C++, Python.

last lecture

this lecture



‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts
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Quicksort

Basic plan.

• Shuffle the array.

• Partition so that, for some i 

- element a[i] is in place
- no larger element to the left of i

- no smaller element to the right of i

• Sort each piece recursively.
Sir Charles Antony Richard Hoare

1980 Turing Award

Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E

K  R  A  T  E  E  L  P  U  I  M  Q  C  X  O  S

E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

not greater not less

partitioning element

input

shu!e

partition

sort left

sort right

result

Quicksort overview



Quicksort partitioning

Basic plan.

• Scan from left for an item that belongs on the right.

• Scan from right for item item that belongs on the left.

• Exchange.

• Continue until pointers cross.

5

                              a[i]
 i   j    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

-1  15    K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S

 1  12    K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S

 1  12    K  C  A  T  E  L  E  P  U  I  M  Q  R  X  O  S

 3   9    K  C  A  T  E  L  E  P  U  I  M  Q  R  X  O  S

 3   9    K  C  A  I  E  L  E  P  U  T  M  Q  R  X  O  S

 7   6    K  C  A  I  E  L  E  P  U  T  M  Q  R  X  O  S

 7   6    K  C  A  I  E  E  L  P  U  T  M  Q  R  X  O  S

 7   6    K  C  A  I  E  E  L  P  U  T  M  Q  R  X  O  S

 7   6    E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S

          E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S

Partitioning trace (array contents before and after each exchange)

initial values

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

!nal exchange

result

v
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Quicksort:  Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)
{
   int i = lo, j = hi+1;
   while(true)
   {
      while (less(a[++i], a[lo]))
         if (i == hi) break;

      while (less(a[lo], a[--j]))
         if (j == lo) break;
     
      if (i >= j) break;
      exch(a, i, j);
   }

   exch(a, lo, j);
   return j;
} 

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview
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Quicksort:  Java implementation

public class Quick
{
   public static void sort(Comparable[] a)
   {
      StdRandom.shuffle(a);
      sort(a, 0, a.length - 1);
   }

   private static void sort(Comparable[] a, int lo, int hi)
   {
      if (hi <= lo) return;
      int j = partition(a, lo, hi);
      sort(a, lo, j-1);
      sort(a, j+1, hi);
  }
} 



Quicksort trace

8

 lo   j  hi   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
              Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E
              K  R  A  T  E  E  L  P  U  I  M  Q  C  X  O  S 
  0   5  15   E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S  
  0   2   4   A  C  E  I  E  K  L  P  U  T  M  Q  R  X  O  S  
  0   0   1   A  C  E  I  E  K  L  P  U  T  M  Q  R  X  O  S  
  1       1   A  C  E  I  E  K  L  P  U  T  M  Q  R  X  O  S  
  3   4   4   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  3       3   A  C  E  E  I  K  S  P  U  T  M  Q  L  X  O  R  
  6  12  15   A  C  E  E  I  K  L  P  O  R  M  Q  S  X  U  T  
  6  10  11   A  C  E  E  I  K  L  P  O  M  Q  R  S  X  U  T  
  6   7   9   A  C  E  E  I  K  L  M  O  P  Q  R  S  X  U  T  
  6       6   A  C  E  E  I  K  L  M  O  P  Q  R  S  X  U  T  
  8   9   9   A  C  E  E  I  K  L  M  O  P  Q  R  S  X  U  T  
  8       8   A  C  E  E  I  K  L  M  O  P  Q  R  S  X  U  T  
 11      11   A  C  E  E  I  K  L  M  O  P  Q  R  S  X  U  T  
 13  13  15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 14  15  15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 14      14   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
              A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X 

no partition
 for subarrays

 of size 1

initial values

random shu!e

result

Quicksort trace (array contents after each partition)



Quicksort animation

9

j

i

v

done

first partition

second partition
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Quicksort animation
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Quicksort:  implementation details

Partitioning in-place.  Using a spare array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop.  Testing whether the pointers cross is a bit trickier
than it might seem.

Staying in bounds.  The (i == hi) test is redundant,
but the (j == lo) test is not.

Preserving randomness.  Shuffling is needed for performance guarantee.

Equal keys.  When duplicates are present, it is (counter-intuitively) best
to stop on elements equal to the partitioning element.
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Quicksort:  empirical analysis

Running time estimates:

• Home pc executes 108 comparisons/second.

• Supercomputer executes 1012 comparisons/second.

Lesson 1.  Good algorithms are better than supercomputers.
Lesson 2.  Great algorithms are better than good ones.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N) quicksort (N log N)quicksort (N log N)quicksort (N log N)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.3 sec 6 min

super instant 1 second 1 week instant instant instant instant instant instant



Proposition I.  The average number of compares CN to quicksort an array of N 

elements is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf.  CN satisfies the recurrence C0 = C1 = 0 and for N ≥ 2:

• Multiply both sides by N and collect terms:

• Subtract this from the same equation for N-1: 

• Rearrange terms and divide by N(N+1):

13

Quicksort:  average-case analysis

partitioning right partitioning probabilityleft

CN

N + 1
=

CN−1

N
+

2
N + 1

NCN − (N − 1)CN = 2N + 2CN−1

NCN = N(N + 1) + 2(C0 + C1 + . . . + CN−1)

CN = (N + 1) +
C0 + C1 + . . . + CN−1

N
+

CN−1 + CN−2 + . . . + C0

N



CN

N + 1
=

CN−1

N
+

2
N + 1

=
CN−2

N − 1
+

2
N

+
2

N + 1

=
CN−3

N − 2
+

2
N − 1

+
2
N

+
2

N + 1

=
2
1

+
2
2

+
2
3

+ . . . +
2

N + 1

• Repeatedly apply above equation:

• Approximate by an integral:

• Finally, the desired result:

14

Quicksort:  average-case analysis

CN ∼ 2(N + 1)
(

1 +
1
2

+
1
3

+ . . .
1
N

)

∼ 2(N + 1)
∫ N

1

1
x

dx

CN ∼ 2(N + 1) lnN ≈ 1.39N lg N

previous equation
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Quicksort:  summary of performance characteristics

Worst case.  Number of compares is quadratic.

• N + (N-1) + (N-2) + … + 1  ~ N2 / 2.

• More likely that your computer is struck by lightning.

Average case.  Number of compares is ~ 1.39 N lg N.

• 39% more compares than mergesort.

• But faster than mergesort in practice because of less data movement.

Random shuffle.

• Probabilistic guarantee against worst case.

• Basis for math model that can be validated with experiments.

Caveat emptor.  Many textbook implementations go quadratic if input:

• Is sorted or reverse sorted

• Has many duplicates (even if randomized!)   [stay tuned]
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Quicksort:  practical improvements

Median of sample.

• Best choice of pivot element = median.

• Estimate true median by taking median of sample.

Insertion sort small files.

• Even quicksort has too much overhead for tiny files.

• Can delay insertion sort until end.

Optimize parameters.

• Median-of-3 random elements.

• Cutoff to insertion sort for ≈ 10 elements.

Non-recursive version.

• Use explicit stack.

• Always sort smaller half first.

guarantees O(log N) stack size

~  12/7  N ln N comparisons



Quicksort with cutoff to insertion sort:  visualization

17

partitioning element

Quicksort with median-of-3 partitioning and cuto! for small sub"les

input

result

result of
"rst partition

left sub"le
partially sorted

both sub"les 
partially sorted



‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts
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Selection

Goal.  Find the kth largest element.
Ex.  Min (k = 0), max (k = N-1), median (k = N/2).

Applications.

• Order statistics.

• Find the “top k.”

Use theory as a guide.

• Easy O(N log N) upper bound.

• Easy O(N) upper bound for k = 1, 2, 3.

• Easy Ω(N) lower bound.

Which is true?

• Ω(N log N) lower bound?

• O(N) upper bound?
is selection as hard as sorting?

is there a linear-time algorithm for all k?



Partition array so that:

• Element a[i] is in place.

• No larger element to the left of i.

• No smaller element to the right of i.

Repeat in one subarray, depending on i; finished when i equals k.

20

Quick-select

public static Comparable select(Comparable[] a, int k)
{
    StdRandom.shuffle(a);
    int lo = 0, hi = a.length - 1;
    while (hi > lo)
    {
       int i = partition(a, lo, hi);
       if      (i < k) lo = i + 1;
       else if (i > k) hi = i - 1;
       else            return a[k];
    }
    return a[k];
}

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

if a[k] is here
set hi to i-1

if a[k] is here
set lo to i+1



21

Quick-select:  mathematical analysis

Proposition.  Quick-select takes linear time on average.
Pf sketch.

• Intuitively, each partitioning step roughly splits array in half:
N + N/2 + N/4 + … + 1  ~ 2N compares.

• Formal analysis similar to quicksort analysis yields:

Ex.  (2 + 2 ln 2) N compares to find the median.

Remark.  Quick-select might use ~ N2/2 compares, but as with quicksort,
the random shuffle provides a probabilistic guarantee.

CN   =  2 N  + k ln ( N / k)  + (N - k) ln (N / (N - k))



22

Theoretical context for selection

Challenge.  Design algorithm whose worst-case running time is linear.

Proposition.  [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a 
compare-based selection algorithm whose worst-case running time is linear.

Remark.  But, algorithm is too complicated to be useful in practice.

Use theory as a guide.

• Still worthwhile to seek practical linear-time (worst-case) algorithm.

• Until one is discovered, use quick-select if you don’t need a full sort.
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Generic methods

In our select() implementation, client needs a cast.

The compiler also complains.

Q.  How to fix?

 % javac Quick.java
 Note: Quick.java uses unchecked or unsafe operations.
 Note: Recompile with -Xlint:unchecked for details.

 Double[] a = new Double[N];
 for (int i = 0; i < N; i++)
    a[i] = StdRandom.uniform();
 Double median = (Double) Quick.select(a, N/2);

hazardous cast
required
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Generic methods

Pedantic (safe) version.  Compiles cleanly, no cast needed in client.

Remark.  Obnoxious code needed in system sort; not in this course (for brevity).

public class Quick
{
    public  static <Key extends Comparable<Key>> Key select(Key[] a, int k)
    {  /* as before */  }

    public  static <Key extends Comparable<Key>> void sort(Key[] a)
    {  /* as before */  }

    private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)
    {  /* as before */  }
  
    private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
    {  /* as before */  }
    
    private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)
    {  Key swap = a[i]; a[i] = a[j]; a[j] = swap;  } 

}  

generic type variable
(value inferred from argument a[])

return type matches array type

can declare variables of generic type



‣ quicksort
‣ selection
‣ duplicate keys
‣ system sorts
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Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.

• Sort population by age.

• Find collinear points.

• Remove duplicates from mailing list.

• Sort job applicants by college attended.

 Typical characteristics of such applications.

• Huge file.

• Small number of key values.

see Assignment 3

Chicago  09:00:00
Phoenix  09:00:03
Houston  09:00:13
Chicago  09:00:59
Houston  09:01:10
Chicago  09:03:13
Seattle  09:10:11
Seattle  09:10:25
Phoenix  09:14:25
Chicago  09:19:32
Chicago  09:19:46
Chicago  09:21:05
Seattle  09:22:43
Seattle  09:22:54
Chicago  09:25:52
Chicago  09:35:21
Seattle  09:36:14
Phoenix  09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key
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Duplicate keys

Mergesort with duplicate keys.  Always ~ N lg N compares.

Quicksort with duplicate keys.

• Algorithm goes quadratic unless partitioning stops on equal keys!

• 1990s C user found this defect in qsort().

several textbook and system implementations
also have this defect

S T O P O N E Q U A L K E Y S

swap swap



Duplicate keys:  the problem

Mistake.  Put all keys equal to the partitioning element on one side.
Consequence.   ~ N2 / 2 compares when all keys equal.

Recommended.  Stop scans on keys equal to the partitioning element.
Consequence.  ~ N lg N compares when all keys equal.

Desirable.  Put all keys equal to the partitioning element in place.

28

B A A B A B B B C C C        A A A A A A A A A A A

B A A B A B C C B C B        A A A A A A A A A A A

A A A B B B B B C C C        A A A A A A A A A A A



Goal.  Partition array into 3 parts so that:

• Elements between lt and gt equal to partition element v.

• No larger elements to left of lt.

• No smaller elements to right of gt.

Dutch national flag problem.  [Edsger Dijkstra]

• Convention wisdom until mid 1990s:  not worth doing.

• New approach discovered when fixing mistake in C library qsort().

• Now incorporated into qsort() and Java system sort.
29

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning
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3-way partitioning:  Dijkstra's solution

3-way partitioning.

• Let v be partitioning element a[lo].

• Scan i from left to right.
- a[i] less than v : exchange a[lt] with a[i] and increment both lt and i
- a[i] greater than v : exchange a[gt] with a[i] and decrement gt
- a[i] equal to v : increment i

All the right properties.

• In-place.

• Not much code.

• Small overhead if no equal keys.

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning
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3-way partitioning:  trace

                              a[]
lt   i  gt    0  1  2  3  4  5  6  7  8  9 10 11 
 0   0  11    R  B  W  W  R  W  B  R  R  W  B  R
 0   1  11    R  B  W  W  R  W  B  R  R  W  B  R
 1   2  11    B  R  W  W  R  W  B  R  R  W  B  R
 1   2  10    B  R  R  W  R  W  B  R  R  W  B  W
 1   3  10    B  R  R  W  R  W  B  R  R  W  B  W
 1   3   9    B  R  R  B  R  W  B  R  R  W  W  W
 2   4   9    B  B  R  R  R  W  B  R  R  W  W  W
 2   5   9    B  B  R  R  R  W  B  R  R  W  W  W
 2   5   8    B  B  R  R  R  W  B  R  R  W  W  W
 2   5   7    B  B  R  R  R  R  B  R  W  W  W  W
 2   6   7    B  B  R  R  R  R  B  R  W  W  W  W
 3   7   7    B  B  B  R  R  R  R  R  W  W  W  W
 3   8   7    B  B  B  R  R  R  R  R  W  W  W  W

v

3-way partitioning trace (array contents after each loop iteration)



private static void sort(Comparable[] a, int lo, int hi) 
{ 
   if (hi <= lo) return; 
   int lt = lo, gt = hi;
   Comparable v = a[lo]; 
   int i = lo; 
   while (i <= gt) 
   { 
      int cmp = a[i].compareTo(v); 
      if      (cmp < 0) exch(a, lt++, i++); 
      else if (cmp > 0) exch(a, i, gt--); 
      else              i++; 
   }

   sort(a, lo, lt - 1); 
   sort(a, gt + 1, hi); 
} 
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3-way quicksort:  Java implementation

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning
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3-way quicksort:  visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning
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Duplicate keys:  lower bound

Sorting lower bound.  If there are n distinct keys and the ith smallest one 
occurs xi times, any compare-based sorting algorithm must use at least

compares in the worst case.

Proposition.  [Sedgewick-Bentley, 1997]
Quicksort with 3-way partitioning is entropy-optimal. 
Pf.  [beyond scope of course] 

Bottom line.  Randomized quicksort with 3-way partitioning reduces running 
time from linearithmic to linear in broad class of applications.

−
n∑

i=1

xi lg
xi

N
N lg N when all distinct;
linear when only a constant number of distinct keys



‣ selection
‣ duplicate keys
‣ comparators
‣ system sorts
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Sorting algorithms are essential in a broad variety of applications:
• Sort a list of names.

• Organize an MP3 library.

• Display Google PageRank results.

• List RSS news items in reverse chronological order.

• Find the median. 

• Find the closest pair.

• Binary search in a database.

• Identify statistical outliers.

• Find duplicates in a mailing list.

• Data compression.

• Computer graphics. 

• Computational biology.

• Supply chain management.

• Load balancing on a parallel computer.
. . .

Every system needs (and has) a system sort!
36

obvious applications

problems become easy once items 
are in sorted order

non-obvious applications

Sorting applications
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Java system sorts

Java uses both mergesort and quicksort.

•  Arrays.sort() sorts array of Comparable or any primitive type.

• Uses quicksort for primitive types; mergesort for objects.

Q.  Why use different algorithms, depending on type?

 import java.util.Arrays;

 public class StringSort
 {
    public static void main(String[] args)
    {
       String[] a = StdIn.readAll().split("\\s+"); 
       Arrays.sort(a);
       for (int i = 0; i < N; i++) 
          StdOut.println(a[i]);
    }
 }
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Java system sort for primitive types

Engineering a sort function.  [Bentley-McIlroy, 1993]

• Original motivation:  improve qsort().

• Basic algorithm = 3-way quicksort with cutoff to insertion sort.

• Partition on Tukey's ninther:  median of the medians of 3 samples,
each of 3 elements.

Why use Tukey's ninther?

• Better partitioning than sampling.

• Less costly than random.

approximate median-of-9

LR A P M C AG X JK R BZ E

A MR X KG J EB

K EM

Kninther

medians

groups of 3

nine evenly
spaced elements R J



39

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Based on all this research, Java’s system sort is solid, right?

A killer input.

• Blows function call stack in Java and crashes program.

• Would take quadratic time if it didn’t crash first.

more disastrous consequences in C

% more 250000.txt
0
218750
222662
11
166672
247070
83339
...

% java IntegerSort < 250000.txt
Exception in thread "main" 
java.lang.StackOverflowError
   at java.util.Arrays.sort1(Arrays.java:562)
   at java.util.Arrays.sort1(Arrays.java:606)
   at java.util.Arrays.sort1(Arrays.java:608)
   at java.util.Arrays.sort1(Arrays.java:608)
   at java.util.Arrays.sort1(Arrays.java:608)
   ...

Java's sorting library crashes, even if
you give it as much stack space as Windows allows

250,000 integers
between 0 and 250,000
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Achilles heel in Bentley-McIlroy implementation (Java system sort)

McIlroy's devious idea.  [A Killer Adversary for Quicksort]

• Construct malicious input while running system quicksort,
in response to elements compared.

• If v is partitioning element, commit to (v < a[i]) and (v < a[j]), but don't 
commit to (a[i] < a[j]) or (a[j] > a[i]) until a[i] and a[j] are compared.

Consequences.

• Confirms theoretical possibility.

• Algorithmic complexity attack:  you enter linear amount of data;
server performs quadratic amount of work.

Remark.  Attack is not effective if array is shuffled before sort.

Q.  Why do you think system sort is deterministic?
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System sort: Which algorithm to use?

Many sorting algorithms to choose from:

Internal sorts.

• Insertion sort, selection sort, bubblesort, shaker sort.

• Quicksort, mergesort, heapsort, samplesort, shellsort.

• Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts.  Poly-phase mergesort, cascade-merge, oscillating sort.

Radix sorts.  Distribution, MSD, LSD, 3-way radix quicksort.

Parallel sorts.

• Bitonic sort, Batcher even-odd sort.

• Smooth sort, cube sort, column sort.

• GPUsort.
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System sort: Which algorithm to use?

Applications have diverse attributes.

• Stable?

• Multiple keys?

• Deterministic?

• Keys all distinct?

• Multiple key types?

• Linked list or arrays?

• Large or small records?

• Is your file randomly ordered?

• Need guaranteed performance?

Elementary sort may be method of choice for some combination.
Cannot cover all combinations of attributes.

Q.  Is the system sort good enough?
A.  Usually.

many more combinations of
attributes than algorithms
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Sorting summary

inplace? stable? worst average best remarks

selection

insertion

shell

quick

3-way quick

merge

???

x N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

x x N 2 / 2 N 2 / 4 N use for small N or partially ordered

x ? ? N tight code, subquadratic

x N 2 / 2 2 N ln N N lg N N log N  probabilistic guarantee
fastest in practice

x N 2 / 2 2 N ln N N improves quicksort in presence of 
duplicate keys

x N lg N N lg N N lg N N log N  guarantee, stable

x x N lg N N lg N N lg N holy sorting grail



44

Which sorting algorithm?

data
type
hash
heap
sort
link
list
push
find
root
leaf
tree
null
path
node
left
less
exch
sink
swim
next
swap
fifo
lifo

data
fifo
hash
heap
exch
less
left
leaf
find
lifo
push
tree
null
path
node
list
link
sort
sink
swim
next
swap
type
root

data
find
hash
heap
leaf
link
list
push
root
sort
tree
type
exch
fifo
left
less
lifo
next
node
null
path
sink
swap
swim

data
find
hash
heap
leaf
link
list
push
root
sort
tree
type
null
path
node
left
less
exch
sink
swim
next
swap
fifo
lifo

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
null
path
node
push
tree
type
sink
swim
next
swap
sort
root

data
hash
heap
type
link
list
push
sort
find
leaf
root
tree
left
node
null
path
exch
less
sink
swim
fifo
lifo
next
swap

data
exch
fifo
heap
find
link
hash
left
less
path
leaf
lifo
next
root
list
push
null
swap
node
swim
sort
type
sink
tree

data
exch
fifo
find
hash
heap
leaf
left
less
lifo
link
list
next
node
null
path
push
root
sink
sort
swap
swim
tree
type

original sorted? ? ? ? ? ?
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Priority Queues

‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation
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Priority queue API

Remove by (largest) value.  

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create a priority queue

MaxPQ(maxN) create a priority queue of initial capacity maxN

void insert(Key v) insert a key into the priority queue

Key max() return the largest key

Key delMax() return and remove the largest key

boolean isEmpty() is the priority queue empty?

int size() number of entries in the priority queue

API for a generic priority queue

P          1     P                        P
Q          2     P  Q                     P  Q
E          3     P  Q  E                  E  P  Q  
      Q    2     P  E                     E  P
X          3     P  E  X                  E  P  X
A          4     P  E  X  A               A  E  P  X
M          5     P  E  X  A  M            A  E  M  P  X
      X    4     P  E  M  A               A  E  M  P
P          5     P  E  M  A  P            A  E  M  P  P
L          6     P  E  M  A  P  L         A  E  L  M  P  P
E          7     P  E  M  A  P  L  E      A  E  E  L  M  P  P
      P    6     E  M  A  P  L  E         A  E  E  L  M  P   

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation  argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue

stack last in, first out

queue first in, first out

priority queue largest out
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Priority queue applications

• Event-driven simulation.  [customers in a line, colliding particles]

• Numerical computation.  [reducing roundoff error]

• Data compression.  [Huffman codes]

• Graph searching.  [Dijkstra's algorithm, Prim's algorithm]

• Computational number theory. [sum of powers]

• Artificial intelligence.  [A* search]

• Statistics.   [maintain largest M values in a sequence]

• Operating systems.  [load balancing, interrupt handling]

• Discrete optimization.  [bin packing, scheduling]

• Spam filtering.   [Bayesian spam filter]

Generalizes:  stack, queue, randomized queue.



Problem.  Find the largest M in a stream of N elements.

• Fraud detection:  isolate $$ transactions.

• File maintenance:  find biggest files or directories.

Constraint.  Not enough memory to store N elements.
Solution.  Use a min-oriented priority queue.

4

Priority queue client example

implementation time space

sort N log N N

elementary PQ M N M

binary heap N log M M

best in theory N M

cost of finding the largest M
in a stream of N items

MinPQ<String> pq = new MinPQ<String>();

while(!StdIn.isEmpty())
{
   String s = StdIn.readString();
   pq.insert(s);
   if (pq.size() > M)
      pq.delMin();
}

while (!pq.isEmpty())
   System.out.println(pq.delMin());



‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation
‣

5
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Priority queue:  unordered and ordered array implementation

P          1     P                        P
Q          2     P  Q                     P  Q
E          3     P  Q  E                  E  P  Q  
      Q    2     P  E                     E  P
X          3     P  E  X                  E  P  X
A          4     P  E  X  A               A  E  P  X
M          5     P  E  X  A  M            A  E  M  P  X
      X    4     P  E  M  A               A  E  M  P
P          5     P  E  M  A  P            A  E  M  P  P
L          6     P  E  M  A  P  L         A  E  L  M  P  P
E          7     P  E  M  A  P  L  E      A  E  E  L  M  P  P
      P    6     E  M  A  P  L  E         A  E  E  L  M  P   

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation  argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue
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Priority queue:  unordered array implementation

public class UnorderedMaxPQ<Key extends Comparable<Key>>
{
   private Key[] pq;   // pq[i] = ith element on pq
   private int N;      // number of elements on pq

   public UnorderedPQ(int capacity)
   {  pq = (Key[]) new Comparable[capacity];  }

   public boolean isEmpty()
   {  return N == 0; }

   public void insert(Key x) 
   {  pq[N++] = x;  }

   public Key delMax()
   {
      int max = 0;
      for (int i = 1; i < N; i++)
         if (less(max, i)) max = i;
      exch(max, N-1);
      return pq[--N];
   }
}

no generic
array creation

less() and exch()
as for sorting
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Priority queue elementary implementations

Challenge.  Implement all operations efficiently.

order-of-growth running time for PQ with N items

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

goal log N log N log N



‣ API
‣ elementary implementations
‣ binary heaps
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‣ event-based simulation
‣
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Binary tree.  Empty or node with links to left and right binary trees.

Complete tree.  Perfectly balanced, except for bottom level.

Property.  Height of complete tree with N nodes is 1 + lg N.
Pf.  Height only increases when N is exactly a power of 2.

10

Binary tree

complete tree of height 5
 N = 16 

lg N = 4
height = 5
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Binary heap

Binary heap.  Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

• Keys in nodes.

• No smaller than children’s keys.

Array representation.

• Take nodes in level order.

• No explicit links needed!

  i   0  1  2  3  4  5  6  7  8  9 10 11
a[i]  -  T  S  R  P  N  O  A  E  I  H  G

 E  I  H  G

P  N  O  A

S  R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations
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Binary heap properties

Property A.  Largest key is at root.

Property B.  Can use array indices to move through tree.

• Parent of node at k is at k/2.

• Children of node at k are at 2k and 2k+1.

indices start at 1

  i   0  1  2  3  4  5  6  7  8  9 10 11
a[i]  -  T  S  R  P  N  O  A  E  I  H  G

 E  I  H  G

P  N  O  A

S  R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations



Scenario.  Exactly one node has a larger key than its parent.

To eliminate the violation:

• Exchange with its parent.

• Repeat until heap order restored.

Peter principle.  Node promoted to level of incompetence.

private void swim(int k)
{
   while (k > 1 && less(k/2, k))
   {
      exch(k, k/2);
      k = k/2;
   }
}

13

Promotion in a heap

parent of node at k is at k/2

5

E

G

I

P

H

T

G

S

O

R

A

violates heap order
(larger key than parent)

E

G

I

S

H

P

G

T

O

R

A5

2

1

Bottom-up heapify (swim)
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Insertion in a heap

Insert.  Add node at end, then promote.

public void insert(Key x)
{
   pq[++N] = x;
   swim(N);
}

Heap operations

E

P

I

N

G

H

S

T

O

R

A

key to insert

E

P

I

N

G

H

S

T

O

R

A

add key to heap
violates heap order

E

P

I

S

G

N

H

T

O

R

A

swim up

E

P

I

S

G

N

H

T

O

R

A

key to remove

violates
heap order

exchange keys
with root

E

P

I

S

G

N

T

H

O

R

A

remove node
from heap

E

H

I

P

G

N

S

O

R

A

sink down

insert remove the maximum



Scenario.  Exactly one node has a smaller key than does a child.

To eliminate the violation:

• Exchange with larger child.

• Repeat until heap order restored.

Power struggle.  Better subordinate promoted.

private void sink(int k)
{
   while (2*k <= N)
   {
      int j = 2*k;
      if (j < N && less(j, j+1)) j++;
      if (!less(k, j)) break;
      exch(k, j);
      k = j;
   }
}

15

Demotion in a heap

children of node
at k are 2k and 2k+1

5

E

P

I

H

N

S

G

T

O

R

A

violates heap order
(smaller than a child)

E

P

I

S

H

N

G

T

O

R

A5

10

2

2

Top-down reheapify (sink)



Delete max.  Exchange root with node at end, then demote.

16

Delete the maximum in a heap

public Key delMax()
{
   Key max = pq[1];
   exch(1, N--);
   sink(1);
   pq[N+1] = null;
   return max;
} 

prevent loitering

Heap operations

E

P

I

N

G

H

S

T

O

R

A

key to insert

E

P

I

N

G

H

S

T

O

R

A

add key to heap
violates heap order

E

P

I

S

G

N

H

T

O

R

A

swim up

E

P

I

S

G

N

H

T

O

R

A

key to remove

violates
heap order

exchange keys
with root

E

P

I

S

G

N

T

H

O

R

A

remove node
from heap

E

H

I

P

G

N

S

O

R

A

sink down

insert remove the maximum
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Heap operations

P

Q

P

Q

E

E

P

E

X

P

A

M

E

X

P

A

M

P

E

A

P

M

P

E

A

P

M

P

E

L

A

P

M

P

E

L

E

A

M

E

P

L

L

P

E

X

P

A

Priority queue operations
in a heap

insert   P

insert   Q

insert   E

remove max   (Q)

insert   X

insert   A

insert   M

remove max   (X)

insert   P

insert   L

insert   E

remove max   (P)

P

Q

P

Q

E

E

P

E

X

P

A

M

E

X

P

A

M

P

E

A

P

M

P

E

A

P

M

P

E

L

A

P

M

P

E

L

E

A

M

E

P

L

L

P

E

X

P

A

Priority queue operations
in a heap

insert   P

insert   Q

insert   E

remove max   (Q)

insert   X

insert   A

insert   M

remove max   (X)

insert   P

insert   L

insert   E

remove max   (P)
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Binary heap:  Java implementation 

public class MaxPQ<Key extends Comparable<Key>>
{
   private Key[] pq;
   private int N;

   public MaxPQ(int capacity)
   {  pq = (Key[]) new Comparable[capacity+1];  }

   public boolean isEmpty()
   {   return N == 0;   }
   public void insert(Key key)
   {   /* see previous code */  }
   public Key delMax()
   {   /* see previous code */  }

   private void swim(int k)
   {   /* see previous code */  }
   private void sink(int k)
   {   /* see previous code */  }

   private boolean less(int i, int j)
   {   return pq[i].compareTo(pq[j] < 0;  }
   private void exch(int i, int j)
   {   Key t = pq[i]; pq[i] = pq[j]; pq[j] = t;  }
}

array helper functions

heap helper functions

PQ ops
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Binary heap considerations

Minimum-oriented priority queue.

• Replace less() with greater().

• Implement greater().

Dynamic array resizing.

• Add no-arg constructor.

• Apply repeated doubling and shrinking.

Immutability of keys. 

• Assumption:  client does not change keys while they're on the PQ.

• Best practice:  use immutable keys.

Other operations.

• Remove an arbitrary item.

• Change the priority of an item.

leads to O(log N) amortized time per op

easy to implement with sink() and swim() [stay tuned]
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Priority queues implementation cost summary

Hopeless challenge.  Make all operations constant time.
Q.  Why hopeless?

order-of-growth running time for PQ with N items

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

binary heap log N log N 1
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‣
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Heapsort

Basic plan for in-place sort.

• Create max-heap with all N keys.

• Repeatedly remove the maximum key.

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
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Heapsort: constructing (left) and sorting down (right) a heap
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heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

start with keys
in arbitrary order

build a max-heap
(in place)

sorted result
(in place)
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Heapsort

First pass.  Build heap using bottom-up method.

for (int k = N/2; k >= 1; k--)
   sink(a, k, N);

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)
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Heapsort

Second pass.  Sort.

• Remove the maximum, one at a time.

• Leave in array, instead of nulling out.

while (N > 1)
{
   exch(a, 1, N--);
   sink(a, 1, N);
}

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)
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Heapsort:  Java implementation

public class Heap
{
   public static void sort(Comparable[] pq)
   {
      int N = pq.length;
      for (int k = N/2; k >= 1; k--)
         sink(pq, k, N);
       while (N > 1)
       {
          exch(pq, 1, N);
          sink(pq, 1, --N);
       }
   }

   private static void sink(Comparable[] pq, int k, int N)
   {  /* as before */  }

   private static boolean less(Comparable[] pq, int i, int j)
   {  /* as before */  }

   private static void exch(Comparable[] pq, int i, int j)
   {  /* as before */  }
 
}

but use 1-based indexing
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Heapsort:  trace

                       a[i]
  N   k   0  1  2  3  4  5  6  7  8  9 10 11
             S  O  R  T  E  X  A  M  P  L  E
 11   5      S  O  R  T  L  X  A  M  P  E  E  
 11   4      S  O  R  T  L  X  A  M  P  E  E 
 11   3      S  O  X  T  L  R  A  M  P  E  E  
 11   2      S  T  X  P  L  R  A  M  O  E  E  
 11   1      X  T  S  P  L  R  A  M  O  E  E
             X  T  S  P  L  R  A  M  O  E  E
 10   1      T  P  S  O  L  R  A  M  E  E  X
  9   1      S  P  R  O  L  E  A  M  E  T  X  
  8   1      R  P  E  O  L  E  A  M S  T  X  
  7   1      P  O  E  M  L  E  A  R  S  T  X 
  6   1      O  M  E  A  L  E  P  R  S  T  X  
  5   1      M  L  E  A  E  O  P  R  S  T  X  
  4   1      L  E  E  A  M  O  P  R  S  T  X 
  3   1      E  A  E  L  M  O  P  R  S  T  X  
  2   1      E  A  E  L  M  O  P  R  S  T  X  
  1   1      A  E  E  L  M  O  P  R  S  T  X
             A  E  E  L  M  O  P  R  S  T  X 

initial values

heap-ordered

sorted result

Heapsort trace (array contents just after each sink)



Property D.  At most 2 N lg N compares.

Significance.  Sort in N log N worst-case without using extra memory.

• Mergesort:  no, linear extra space.

• Quicksort:  no, quadratic time in worst case.

• Heapsort:  yes!

Bottom line.  Heapsort is optimal for both time and space, but:

• Inner loop longer than quicksort’s.

• Makes poor use of cache memory.

• Not stable

27

Heapsort:  mathematical analysis

in-place merge possible, not practical

N log N worst-case quicksort possible, 
not practical
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Sorting algorithms: summary

# key comparisons to sort N distinct randomly-ordered keys

inplace? stable? worst average best remarks

selection

insertion

shell

quick

3-way quick

merge

heap

???

x N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

x x N 2 / 2 N 2 / 4 N use for small N or partially ordered

x ? ? N tight code, subquadratic

x N 2 / 2 2 N ln N N lg N N log N  probabilistic guarantee
fastest in practice

x N 2 / 2 2 N ln N N improves quicksort in presence
of duplicate keys

x N lg N N lg N N lg N N log N  guarantee, stable

x 2 N lg N 2 N lg N N lg N N log N  guarantee, in-place

x x N lg N N lg N N lg N holy sorting grail



‣ API
‣ elementary implementations
‣ binary heaps
‣ heapsort
‣ event-based simulation

29
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Molecular dynamics simulation of hard discs

Goal.  Simulate the motion of N moving particles that behave
according to the laws of elastic collision.



31

Molecular dynamics simulation of hard discs

Goal.  Simulate the motion of N moving particles that behave
according to the laws of elastic collision.

Hard disc model.

• Moving particles interact via elastic collisions with each other and walls.

• Each particle is a disc with known position, velocity, mass, and radius.

• No other forces are exerted.

Significance.  Relates macroscopic observables to microscopic dynamics.

• Maxwell-Boltzmann:  distribution of speeds as a function of temperature.

• Einstein:  explain Brownian motion of pollen grains.

motion of individual
atoms and molecules

temperature, pressure,
diffusion constant



Time-driven simulation.  N bouncing balls in the unit square.

Warmup:  bouncing balls

32

public class BouncingBalls
{ 
   public static void main(String[] args)
   {
      int N = Integer.parseInt(args[0]);
      Ball balls[] = new Ball[N];
      for (int i = 0; i < N; i++)
         balls[i] = new Ball();
      while(true)
      {
         StdDraw.clear();
         for (int i = 0; i < N; i++)
         {
            balls[i].move(0.5);
            balls[i].draw();
         }
         StdDraw.show(50);
      }
   }
}

% java BouncingBalls 100

main simulation loop



Missing.  Check for balls colliding with each other.

• Physics problems: when? what effect?

• CS problems: what object does the checks? too many checks?

Warmup:  bouncing balls

33

public class Ball
{
    private double rx, ry;        // position
    private double vx, vy;        // velocity
    private final double radius;  // radius
    public Ball()
    {  /* initialize position and velocity */  }

    public void move(double dt)
    {
        if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
        if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
        rx = rx + vx*dt;
        ry = ry + vy*dt;
    }
    public void draw()
    {  StdDraw.filledCircle(rx, ry, radius);  }
}

check for collision
 with walls
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Time-driven simulation

• Discretize time in quanta of size dt.

• Update the position of each particle after every dt units of time,
and check for overlaps.

• If overlap, roll back the clock to the time of the collision, update the 
velocities of the colliding particles, and continue the simulation.

t t + dt t + 2 dt
(collision detected)

t + Δt
(roll back clock)



Main drawbacks.

• ~ N2/2 overlap checks per time quantum.

• Simulation is too slow if dt is very small. 

• May miss collisions if dt is too large and colliding particles fail to overlap
when we are looking.

35

Time-driven simulation

dt too small: excessive computation

dt too large: may miss collisions

Fundamental challenge for
time-driven simulation

dt too small: excessive computation

dt too large: may miss collisions

Fundamental challenge for
time-driven simulation



Change state only when something happens.

• Between collisions, particles move in straight-line trajectories.

• Focus only on times when collisions occur.

• Maintain PQ of collision events, prioritized by time. 

• Remove the min = get next collision.

Collision prediction.  Given position, velocity, and radius of a particle,
when will it collide next with a wall or another particle?

Collision resolution.  If collision occurs, update colliding particle(s) according 
to laws of elastic collisions.

36

Event-driven simulation

prediction  (at time t)
    particles hit unless one passes
    intersection point before the other
    arrives (see Exercise 3.6.X)

resolution (at time t + dt)
     velocities of both particles
     change after collision (see Exercise 3.6.X)

Predicting and resolving a particle-particle collision
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Particle-wall collision

Collision prediction and resolution.

• Particle of radius σ at position (rx, ry).

• Particle moving in unit box with velocity (vx, vy).

• Will it collide with a vertical wall?  If so, when?

Predicting and resolving a particle-wall collision

prediction:
    t0  ! time to hit wall
         = distance/velocity

resolution:
     velocity after collision   = ( − vx , vy) 
     position after collision  = ( 1 − s , ry + t0vy)

 = (1 − s − rx )/vx

1 − s − rx 

(rx , ry 
)

s

wall at
x = 1

vx

vy
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Particle-particle collision prediction

Collision prediction.

• Particle i:  radius σi, position (rxi, ryi), velocity (vxi, vyi).

• Particle j:  radius σj, position (rxj, ryj), velocity (vxj, vyj).

• Will particles i and j collide? If so, when?

σj

σi

(rxi , ryi)

time = t

(vxi , vyi )

m i

i

j

(rxi', ryi')

time = t + Δt

(vxj', vyj')

(vxi', vyi')

(vxj , vyj)



Collision prediction.

• Particle i:  radius σi, position (rxi, ryi), velocity (vxi, vyi).

• Particle j:  radius σj, position (rxj, ryj), velocity (vxj, vyj).

• Will particles i and j collide? If so, when?

Particle-particle collision prediction

39
€ 

Δv = (Δvx, Δvy)  =  (vxi − vx j , vyi − vyj )

€ 

Δr = (Δrx, Δry)  =  (rxi − rx j , ryi − ryj )

€ 

Δv ⋅ Δv = (Δvx)2 +  (Δvy)2

€ 

Δr ⋅ Δr = (Δrx)2 +  (Δry)2

€ 

Δv ⋅ Δr = (Δvx)(Δrx)+  (Δvy)(Δry)

€ 

Δt  =  
 ∞  if Δv ⋅Δr ≥ 0
 ∞  if d < 0
 -  Δv ⋅Δr  +  d

Δv ⋅Δv
 otherwise

 

 
  

 
 
 

€ 

d  = (Δv ⋅Δr)2  −  (Δv ⋅Δv)  (Δr ⋅Δr  −  σ2 )

€ 

σ = σ i +σ j

Important note: This is high-school physics, so we won’t be testing you on it!



Collision resolution.  When two particles collide, how does velocity change?

40

Particle-particle collision resolution

€ 

vxi′ = vxi  +  Jx / mi

vyi′ = vyi  +  Jy / mi

vx j′ = vx j  −  Jx / mj

vyj′ = vx j  −  Jy / mj

€ 

Jx  =  J Δrx
σ

,  Jy  =  J Δry
σ

,  J  =  
2mi mj (Δv ⋅Δr)
σ(mi +mj )

impulse due to normal force
(conservation of energy, conservation of momentum)

Newton's second law
(momentum form)

Important note: This is high-school physics, so we won’t be testing you on it!



Particle data type skeleton
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public class Particle
{
    private double rx, ry;       // position
    private double vx, vy;       // velocity
    private final double radius; // radius
    private final double mass;   // mass
    private int count;           // number of collisions

    public Particle(...) { }

    public void move(double dt) { }
    public void draw()          { }
  
    public double dt(Particle that) { }
    public double dtX() { }
    public double dtY() { }
    
    public void bounce(Particle that) { }
    public void bounceX() { }
    public void bounceY() { }
 
}

predict collision with 
particle or wall

resolve collision with 
particle or wall



Particle-particle collision and resolution implementation
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 public double dt(Particle that)
 {
    if (this == that) return INFINITY;
    double dx  = that.rx - this.rx, dy  = that.ry - this.ry;
    double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;
    if( dvdr > 0) return INFINITY;
    double dvdv = dvx*dvx + dvy*dvy;
    double drdr = dx*dx + dy*dy;
    double sigma = this.radius + that.radius;
    double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);
    if (d < 0) return INFINITY;
    return -(dvdr + Math.sqrt(d)) / dvdv;
 }

 public void bounce(Particle that)
 {
    double dx  = that.rx - this.rx, dy  = that.ry - this.ry;
    double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;       
    double dist = this.radius + that.radius;   
    double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist);
    double Jx = J * dx / dist;
    double Jy = J * dy / dist;
    this.vx += Jx / this.mass;
    this.vy += Jy / this.mass;
    that.vx -= Jx / that.mass;
    that.vy -= Jy / that.mass;
    this.count++;
    that.count++;
 }

no collision

Important note: This is high-school physics, so we won’t be testing you on it!
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Collision system: event-driven simulation main loop

Initialization.

• Fill PQ with all potential particle-wall collisions.

• Fill PQ with all potential particle-particle collisions.

Main loop.

• Delete the impending event from PQ (min priority = t).

• If the event has been invalidated, ignore it.

• Advance all particles to time t, on a straight-line trajectory.

• Update the velocities of the colliding particle(s).

• Predict future particle-wall and particle-particle collisions involving the 
colliding particle(s) and insert events onto PQ.

“potential” since collision may not happen if
some other collision intervenes

An invalidated event

two particles on a collision course

third particle interferes: no collision



Conventions.

• Neither particle null ⇒  particle-particle collision.

• One particle null ⇒  particle-wall collision.

• Both particles null ⇒  redraw event.

Event data type
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public class Event implements Comparable<Event>
{
    private double time;         // time of event
    private Particle a, b;       // particles involved in event
    private int countA, countB;  // collision counts for a and b
                
    public Event(double t, Particle a, Particle b) { }

    public double time()   { return time; }
    public Particle a()    { return a;    }
    public Particle b()    { return b;    }
     
    public int compareTo(Event that)
    {   return this.time - that.time;   }
        
    public boolean isValid()
    {   }
}

ordered by time

invalid if intervening 
collision

accessor methods

create event



public class CollisionSystem
{
    private MinPQ<Event> pq;        // the priority queue
    private double t  = 0.0;        // simulation clock time
    private Particle[] particles;   // the array of particles

    public CollisionSystem(Particle[] particles) { }
      
    private void predict(Particle a)
    {
       if (a == null) return;
       for (int i = 0; i < N; i++)
       {
          double dt = a.dt(particles[i]);
          pq.insert(new Event(t + dt, a, particles[i]));
       }
       pq.insert(new Event(t + a.dtX(), a, null));
       pq.insert(new Event(t + a.dtY(), null, a));
 }
   
    private void redraw()  { }

    public void simulate() {  /* see next slide */  }
}

Collision system implementation:  skeleton

45

add all particle-wall
and particle-particle
collisions involving this 
particle to the PQ



public void simulate()
{
   pq = new MinPQ<Event>();
   for(int i = 0; i < N; i++) predict(particles[i]);
   pq.insert(new Event(0, null, null));
 
   while(!pq.isEmpty())
   { 
      Event event = pq.delMin();
      if(!event.isValid()) continue;
      Particle a = event.a();
      Particle b = event.b();
            
      for(int i = 0; i < N; i++)
         particles[i].move(event.time() - t);
      t = event.time();
            
      if      (a != null && b != null) a.bounce(b);
      else if (a != null && b == null) a.bounceX()
      else if (a == null && b != null) b.bounceY();
      else if (a == null && b == null) redraw();
      
      predict(a);
      predict(b);
   }
}

Collision system implementation:  main event-driven simulation loop

46

initialize PQ with 
collision events and 
redraw event

get next event

update positions 
and time

process event

predict new events 
based on changes
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Simulation example 1

% java CollisionSystem 100
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Simulation example 2

% java CollisionSystem < billiards.txt
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Simulation example 3

% java CollisionSystem < brownian.txt
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Simulation example 4

% java CollisionSystem < diffusion.txt
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Symbol Tables

‣ API
‣ sequential search
‣ binary search
‣ BSTs 
‣ ordered operations
‣ deletion in BSTs
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Symbol tables

Key-value pair abstraction.

• Insert a value with specified key.

• Given a key, search for the corresponding value.

Ex.  DNS lookup.

• Insert URL with specified IP address.

• Given URL, find corresponding IP address.

key

URL IP address

www.cs.princeton.edu 128.112.136.11

www.princeton.edu 128.112.128.15

www.yale.edu 130.132.143.21

www.harvard.edu 128.103.060.55

www.simpsons.com 209.052.165.60

value
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Symbol table applications

application purpose of search key value

dictionary look up word word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name value and type

routing table route Internet packets destination best route

DNS find IP address given URL URL IP address

reverse DNS find URL given IP address IP address URL

genomics find markers DNA string known positions

file system find file on disk filename location on disk
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Symbol table API

Associative array abstraction.  Associate one value with each key.

a[key] = val;

a[key]

public class ST<Key, Value>

ST() create a symbol table

void put(Key key, Value val)
put key-value pair into the symbol table 
(remove key from table if value is null)

Value get(Key key)
value paired with key
(null if  key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs in the table
Iterable<Key> keys() all the keys in the symbol table

API for a generic basic symbol table
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Conventions

• Values are not null.

• Method get() returns null if key not present.

• Method put() overwrites old value with new value.

Intended consequences.

• Easy to implement contains().

• Can implement lazy version of delete().

 public boolean contains(Key key)
 {  return get(key) != null;  }

 public boolean delete(Key key)
 {  put(key, null);          }
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Keys and values

Value type.  Any generic type.

Key type:  several natural assumptions.

• Assume keys are Comparable, use compareTo().

• Assume keys are any generic type, use equals() to test equality.

• Assume keys are any generic type, use equals() to test equality
and hashCode() to scramble key.

Best practices.  Use immutable types for symbol table keys. 

• Immutable in Java:  String, Integer, BigInteger, …

• Mutable in Java:  Date, GregorianCalendar, StringBuilder, ...



ST test client for traces

Build ST by associating value i with ith command-line argument.
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public static void main(String[] args) 
{ 
   ST<String, Integer> st = new ST<String, Integer>(); 
   for (int i = 0; i < args.length; i++) 
      st.put(args[i], i); 
   for (String s : st) 
      StdOut.println(s + " " + st.get(s));
}

Keys, values, and output for test client

STunordered output
(one possibility)

ST output

keys

values

S  E  A  R  C  H  E  X  A  M  P  L  E

0  1  2  3  4  5  6  7  8  9 10 11 12

L  11
P  10
M  9
X  7
H  5
C  4
R  3
A  8
E  12
S  0

A  8
C  4
E  12
H  5
L  9
M  11
P  10
R  3
S  0
X  7

Keys, values, and output for test client

STunordered output
(one possibility)

ST output

keys

values

S  E  A  R  C  H  E  X  A  M  P  L  E

0  1  2  3  4  5  6  7  8  9 10 11 12

L  11
P  10
M  9
X  7
H  5
C  4
R  3
A  8
E  12
S  0

A  8
C  4
E  12
H  5
L  9
M  11
P  10
R  3
S  0
X  7

keys

values

output



ST test client for analysis

Frequency Counter.
Read a sequence of strings from standard input and print out the number of 
times each string appears.
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% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness

% java FrequencyCounter 0 < tiny.txt
2 age
1 best
1 foolishness
4 it
4 of
4 the
2 times
4 was
1 wisdom
1 worst

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
...

% java FrequencyCounter 0 < tale.txt
2941 a
1 aback
1 abandon
10 abandoned
1 abandoning
1 abandonment
1 abashed
1 abate
1 abated
...

tiny example
24 words
10 distinct

real example
137177 words
9888 distinct



public class FrequencyCounter
{
   public static void main(String[] args)
   {
      int minlen = Integer.parseInt(args[0]);
      ST<String, Integer> st = new ST<String, Integer>();
      while (!StdIn.isEmpty())
      {
         String word = StdIn.readString();
         if (word.length() < minlen) continue;
         if (!st.contains(word)) st.put(word, 1);
         else                    st.put(word, st.get(word) + 1);
      }
      String max = "";
      for (String word : st.keys())
         if (st.get(word) > st.get(max))
            max = word;
      StdOut.println(max + " " + st.get(max));
   }
}

9

Frequency counter implementation

read string and
update frequency

print all strings

create ST

ignore short strings
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‣ API
‣ sequential search
‣ binary search
‣ BSTs
‣ applications



Data structure.  Maintain an (unordered) linked list of key-value pairs.

Search.  Scan through all keys until find a match.
Insert.  Scan through all keys until find a match; if no match add to front.

11

Sequential search in a linked list

Trace of linked-list ST implementation for standard indexing client 

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S  0

E  1

A  2

R  3

C  4

H  5

E  6

X  7

A  8

M  9

P 10

L 11

E 12
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Elementary ST implementations:  summary

Challenge.  Efficient implementations of both search and insert.

ST implementation
worst caseworst case average caseaverage case ordered operations

ST implementation
search insert search hit insert iteration? on keys

sequential search
(unordered list)

N N  N / 2  N no equals()

Costs for java FrequencyCounter 8 < tale.txt using LinkedListST

5000

2246

0
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‣ API
‣ sequential search
‣ binary search
‣ BSTs
‣ applications
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Binary search

Data structure.  Maintain an ordered array of key-value pairs.

Search.  Binary search.
Insert.  Binary search for key; if no match insert and shift larger keys.

loop exits with lo > hi: return  7  

entries in black 
are a[lo..hi]

entry in red is a[m]

successful search for P

loop exits with keys[m] = P: return 6  

lo hi m

unsuccessful search for Q

lo hi m

                      keys[]
           0  1  2  3  4  5  6  7  8  9

0  9  4    A  C  E  H  L  M  P  R  S  X
5  9  7    A  C  E  H  L  M  P  R  S  X
5  6  5    A  C  E  H  L  M  P  R  S  X
6  6  6    A  C  E  H  L  M  P  R  S  X

0  9  4    A  C  E  H  L  M  P  R  S  X
5  9  7    A  C  E  H  L  M  P  R  S  X
5  6  5    A  C  E  H  L  M  P  R  S  X
7  6  6    A  C  E  H  L  M  P  R  S  X

Trace of  binary search for rank in an ordered array
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Binary search:  Java implementation

  public Value get(Key key)
  {
     int i = bsearch(key);
     if (i == -1) return null;
     return vals[i];
  } 

  private int bsearch(Key key)
  {
     int lo = 0, hi = N-1;
     while (lo <= hi)
     {
         int m = lo + (hi - lo) / 2;
         int cmp = key.compareTo(keys[m]);
         if      (cmp  < 0) hi = m - 1;
         else if (cmp  > 0) lo = m + 1;
         else if (cmp == 0) return m;
    }
    return -1;
 }

symbol table method

helper binary search method

not found
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Binary search:  mathematical analysis

Proposition.  Binary search uses ~ lg N compares to search any array of size N.

Def.  T(N)  ≡  number of compares to binary search in a sorted array of size N.
                  ≤   T(N / 2)    +   1

Binary search recurrence.  T(N)  ≤  T(N / 2)  +  1  for N > 1, with T(1) = 1.

• Not quite right for odd N.

• Same recurrence holds for many algorithms.

Solution.  T(N)  ~  lg N.

• For simplicity, we'll prove when N is a power of 2.

• True for all N.  [see COS 340]

left or right  half



Binary search recurrence.  T(N) ≤ T(N / 2) + 1  for N  >  1, with T(1) = 1.

Proposition.  If N is a power of 2, then T(N) ≤  lg N  + 1.
Pf. 
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Binary search recurrence

    T(N)    ≤  T(N / 2)  +  1

                ≤  T(N / 4)  +  1  +  1

                ≤  T(N / 8)  +  1  +  1  +  1

              . . .

                ≤  T(N / N)  +  1  +  1  +  …  +  1

                =  lg N  +  1

given

apply recurrence to first term

apply recurrence to first term 

stop applying, T(1) = 1



Problem.  To insert, need to shift all greater keys over.
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Binary search:  trace of standard indexing client

Trace of  ordered-array ST implementation for standard indexing client

                      keys[]                               vals[]
           0  1  2  3  4  5  6  7  8  9    N    0  1  2  3  4  5  6  7  8  9

 S   0     S                               1    0
 E   1     E  S                            2    1  0 
 A   2     A  E  S                         3    2  1  0 
 R   3     A  E  R  S                      4    2  1  3  0 
 C   4     A  C  E  R  S                   5    2  4  1  3  0
 H   5     A  C  E  H  R  S                6    2  4  1  5  3  0 
 E   6     A  C  E  H  R  S                6    2  4  6  5  3  0 
 X   7     A  C  E  H  R  S  X             7    2  4  6  5  3  0  7    
 A   8     A  C  E  H  R  S  X             7    8  4  6  5  3  0  7         
 M   9     A  C  E  H  M  R  S  X          8    8  4  6  5  9  3  0  7     
 P  10     A  C  E  H  M  P  R  S  X       9    8  4  6  5  9 10  3  0  7  
 L  11     A  C  E  H  L  M  P  R  S  X   10    8  4  6  5 11  9 10  3  0  7 
 E  12     A  C  E  H  L  M  P  R  S  X   10    8  4 12  5 11  9 10  3  0  7

           A  C  E  H  L  M  P  R  S  X         8  4 12  5 11  9 10  3  0  7

entries in gray 
did not move circled entries are

changed values

entries in black 
moved to the rightentries in red

were inserted

key value
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Elementary ST implementations:  summary

Challenge.  Efficient implementations of both search and insert.

ST implementation
worst caseworst case average caseaverage case ordered operationsST implementation

search insert search hit insert iteration? on keys

sequential search
(unordered list)

N N  N / 2  N no equals()

binary search
(ordered array)

 log N N  log N  N / 2 yes compareTo()

Costs for java FrequencyCounter 8 < tale.txt using OrderedArrayST

5000

484
0
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‣ API
‣ sequential search
‣ binary search
‣ challenges



Searching challenge 1A

Problem.  Maintain symbol table of song names for an iPod.
Assumption A.  Hundreds of songs.

Which searching method to use?
1)   Sequential search in a linked list.
2)  Binary search in an ordered array.
3)  Need better method, all too slow.
4)  Doesn’t matter much, all fast enough.

21



Searching challenge 1B

Problem.  Maintain symbol table of song names for an iPod.
Assumption B.  Thousands of songs.

Which searching method to use?
1)   Sequential search in a linked list.
2)  Binary search in an ordered array.
3)  Need better method, all too slow.
4)  Doesn’t matter much, all fast enough.

22



Searching challenge 2A:

Problem.  IP lookups in a web monitoring device.
Assumption A.  Billions of lookups, millions of distinct addresses.

Which searching method to use?
1)   Sequential search in a linked list.
2)  Binary search in an ordered array.
3)  Need better method, all too slow.
4)  Doesn’t matter much, all fast enough.
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Searching challenge 2B

Problem.  IP lookups in a web monitoring device.
Assumption B.  Billions of lookups, thousands of distinct addresses.

Which searching method to use?
1)   Sequential search in a linked list.
2)  Binary search in an ordered array.
3)  Need better method, all too slow.
4)  Doesn’t matter much, all fast enough.
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Searching challenge 3

Problem.  Frequency counts in “Tale of Two Cities.”
Assumptions.  Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1)   Sequential search in a linked list.
2)  Binary search in an ordered array.
3)  Need better method, all too slow.
4)  Doesn’t matter much, all fast enough.
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Searching challenge 4

Problem.  Spell checking for a book.
Assumptions.  Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?
1)   Sequential search in a linked list.
2)  Binary search in an ordered array.
3)  Need better method, all too slow.
4)  Doesn’t matter much, all fast enough.

26
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‣ API
‣ sequential search
‣ binary search
‣ challenges
‣ BSTs



Def.  A BST is a binary tree in symmetric order.

A binary tree is either:

• Empty.

• Two disjoint binary trees (left and right).

Symmetric order.  
Each node has a key, and every node’s key is:

• Larger than all keys in its left subtree.

• Smaller than all keys in its right subtree.

28

Binary search trees

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E

key

A
C

E

H
R

S
X

9

Anatomy of a binary search tree



A BST is a reference to a root node.

A Node is comprised of four fields:

• A Key and a Value.

• A reference to the left and right subtree.
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BST representation in Java

smaller keys larger keys

private class Node
{
   private Key key;
   private Value val;
   private Node left, right;
   public Node(Key key, Value val)
   {
      this.key = key;
      this.val = val;
   }
}

Key and Value are generic types; Key is Comparable

Binary search tree

BST with smaller keys BST with larger keys

key

left right

val

BST

Node



public class BST<Key extends Comparable<Key>, Value>
{
    private Node root;

   private class Node
   {  /* see previous slide */  }
 
   public void put(Key key, Value val) 
   {  /* see next slides */  }

   public Value get(Key key)
   {  /* see next slides */  }

   public void delete(Key key)
   {  /* see next slides */  }

   public Iterable<Key> iterator()
   {  /* see next slides */  }

}
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BST implementation (skeleton)

root of BST



Get.  Return value corresponding to given key, or null if no such key.
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BST search

R is less than S
so look to the left 

black nodes could
match the search key 

gray nodes cannot
match the search key 

found R
(search hit)

so return value

R is greater than E
so look to the right 

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

T is less than X
so look to the left 

link is null
so T is not in tree

(search miss)

T is greater than S
so look to the right 

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Successful (left) and unsuccessful (right ) search in a BST

successful search for R unsuccessful search for T



Get.  Return value corresponding to given key, or null if no such key.

Running time.  Proportional to depth of node.
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BST search:  Java implementation

 public Value get(Key key)
 {
    Node x = root;
    while (x != null)
    {
       int cmp = key.compareTo(x.key);
       if      (cmp  < 0) x = x.left;
       else if (cmp  > 0) x = x.right;
       else if (cmp == 0) return x.val;
    }
    return null;
 }



Put.  Associate value with key.

Search for key, then two cases:

• key in tree: reset value

• key not in tree: add new node
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BST insert

search for L ends
at this null link 

reset links and 
increment counts

on the way up 

create new node 
1

3

2

4

3

5

4

8

7

10

9

A
C

E

H
M

P

R

S
X

A
C

E

H

L

M
P

R

S
X

A
C

E

H

L
M

P

R

S
X

Insertion into a BST

inserting L



Put.  Associate value with key. 

Running time.  Proportional to depth of node.
34

BST insert:  Java implementation

 public void put(Key key, Value val)
 {  root = put(root, key, val);  }

 private Node put(Node x, Key key, Value val)
 {
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if      (cmp  < 0)
       x.left  = put(x.left,  key, val);
    else if (cmp  > 0)
       x.right = put(x.right, key, val);
    else if (cmp == 0)
       x.val = val;
    return x;
 }

concise, but tricky, 
recursive code;
read carefully!

search for L ends
at this null link 

reset links and 
increment counts

on the way up 

create new node 
1

3

2

4

3

5

4

8

7

10

9

A
C

E

H
M

P

R

S
X

A
C

E

H

L

M
P

R

S
X

A
C

E

H

L
M

P

R

S
X

Insertion into a BST

inserting L
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BST trace:  standard indexing client

S

A
C

E

H
R

S
X

A
C

E

H
R

S

A
C

E

H
R

S

A
C

E
R

S

A
E

R

A
E

S

S

E
S

S

6

S   0

E   1

A   2

R   3

C   4
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BST trace for standard indexing client

key value key value



• Many BSTs correspond to same set of keys.

• Cost of search/insert is proportional to depth of node.

Remark.  Tree shape depends on order of insertion.
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Tree shape
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Observation.  If keys inserted in random order, tree stays relatively flat.
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BST insertion:  random order

Typical BST built from random keys (N = 256)
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BST insertion:  random order visualization

Ex.  Insert keys in random order.
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Correspondence between BSTs and quicksort partitioning

Remark.  Correspondence is 1-1 if no duplicate keys.

A

C

E

I

K

L

M

O

P

Q

R

S

T

U

UE
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BSTs:  mathematical analysis

Proposition.  If keys are inserted in random order, the expected number of 
compares for a search/insert is ~ 2 ln N.

Pf.  1-1 correspondence with quicksort partitioning.

Proposition.  [Reed, 2003]  If keys are inserted in random order,
expected height of tree is ~  4.311 ln N.

But…   Worst-case for search/insert/height is N.
(exponentially small chance when keys are inserted in random order)
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ST implementations:  summary

Next challenge.   Ordered symbol tables ops in BSTs.

implementation
guaranteeguarantee average caseaverage case ordered operations

implementation
search insert search hit insert ops? on keys

sequential search
(unordered list)

N N N/2 N no equals()

binary search
(ordered array)

lg N N lg N N/2 yes compareTo()

BST N N 1.39 lg N 1.39 lg N ? compareTo()

Costs for java FrequencyCounter 8 < tale.txt using BST 

20

13

0
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‣ basic implementations
‣ randomized BSTs
‣ ordered symbol table ops



Minimum.  Smallest key in table.
Maximum.  Largest key in table.
Floor.  Largest key ≤ to a given key.
Ceiling.  Smallest key ≥ to a given key.
Rank.  Number of keys < than given key.
Select.  Key of given rank.
Size.  Number of keys in a given range.
Iterator.  All keys in order.

Ordered symbol table operations

43

09:00:00  Chicago  
09:00:03  Phoenix  
09:00:13  Houston  
09:00:59  Chicago  
09:01:10  Houston  
09:03:13  Chicago  
09:10:11  Seattle  
09:10:25  Seattle  
09:14:25  Phoenix  
09:19:32  Chicago  
09:19:46  Chicago  
09:21:05  Chicago  
09:22:43  Seattle  
09:22:54  Seattle  
09:25:52  Chicago  
09:35:21  Chicago  
09:36:14  Seattle  
09:37:44  Phoenix  

keys values

get(09:00:13)

ceiling(09:30:00)

keys(09:15:00, 09:25:00)

size(09:15:00, 09:25:00) is 5
rank(09:10:25) is 7

floor(09:05:00)

min()

select(7)

max()

Examples of ordered symbol-table operations



Minimum.  Smallest key in table.
Maximum.  Largest key in table.

Q.  How to find the min / max.
A.  

Minimum and maximum
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Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()max

min



Floor.  Largest key ≤ to a given key.
Ceiling.  Smallest key ≥ to a given key.

Q.  How to find the floor /ceiling.
A.  

Floor and ceiling
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Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()

floor(D)

ceiling(Q)



Computing the floor
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floor(G)in left
subtree is null

result

!nding floor(G)

G is greater than E so 
floor(G) could be

on the right 

G is less than S so 
floor(G) must be

on the left

A
C
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H
M

R

S
X

A
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R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Computing the "oor function

public Key floor(Key key)
{  
   Node x = floor(root, key);
   if (x == null) return null;
   return x.key;
}
private Node floor(Node x, Key key)
{  
   if (x == null) return null;
   int cmp = key.compareTo(x.key);

   if (cmp == 0) return x;

   if (cmp < 0)  return floor(x.left, key);

   Node t = floor(x.right, key);
   if (t != null) return t;
   else           return x;

} 



In each node, we store the number of nodes in the subtree rooted at that node.
To implement size(), return the count at the root.

Remark.  This facilitates efficient implementation of rank() and select().
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Subtree counts and size()
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22

2

node count N

Two BSTs that represent
the same set of keys



  public int size()
  {  return size(root);  }

  private int size(Node x)
  {
     if (x == null) return 0;
     return x.N;
  }
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BST implementation:  subtree counts and size()

private class Node
{
   private Key key;
   private Value val;
   private Node left;
   private Node right;
   private int N;
}

 private Node put(Node x, Key key, Value val)
 {
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if      (cmp  < 0) x.left  = put(x.left,  key, val);
    else if (cmp  > 0) x.right = put(x.right, key, val);
    else if (cmp == 0) x.val = val;
    x.N = 1 + size(x.left) + size(x.right);
    return x;
 }

nodes in subtree
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Rank

How many keys < k ?

Easy recursive algorithm (4 cases!)

public int rank(Key key) 
{  return rank(key, root);  } 

private int rank(Key key, Node x) 
{ 
   if (x == null) return 0; 

   int cmp = key.compareTo(x.key);
   if      (cmp < 0) return rank(key, x.left); 

   else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right); 

   else              return size(x.left); 
} 
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Two BSTs that represent
the same set of keys
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Range count

How many keys between lo and hi?

public int size(Key lo, Key hi) 
{ 
   if (contains(hi)) return rank(hi) - rank(lo) - 1; 
   else              return rank(hi) - rank(lo); 
} 

number of keys < hi

A
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Two BSTs that represent
the same set of keys



• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Property.  Inorder traversal of a BST yields keys in ascending order.

key

key

val

BST with smaller keys

smaller keys, in order larger keys, in order

all keys, in order

BST with larger keys

left right

BST

Inorder traversal
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public Iterable<Key> allKeys() 
{ 
    Queue<Key> q = new Queue<Key>(); 
    inorder(root, queue); 
    return q;
}

private void inorder(Node x, Queue<Key> q) 
{ 
   if (x == null) return; 
   inorder(x.left, q); 
   q.enqueue(x.key); 
   inorder(x.right, q); 
} 



• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Inorder traversal

52

function call stack

visit(S)
  visit(E)
    visit(A)
      enqueue A
      visit(C)
        enqueue C
    enqueue E
    visit(R)
      visit(H)
        enqueue H
        visit(M)
          enqueue M
      print R
  enqueue S
  visit(X)
    enqueue X

 

 A
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 X
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S E
S E A

S E A C

S E R
S E R H
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S X

queuerecursive calls
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ST implementations:  summary

Next.

• Deletion in BSTs

• Can we guarantee logarithmic performance?

implementation

guaranteeguarantee average caseaverage caseaverage case
ordered operations

implementation

search insert delete
search 

hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()



Problem.  Frequency counts in “Tale of Two Cities”
Assumptions.  Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1)   Sequential search in a linked list.
2)  Binary search in an ordered array.
3)  Need better method, all too slow.
4)  Doesn’t matter much, all fast enough.
5)  BSTs.

Searching challenge 3 (revisited):

54

insertion cost <  10000 * 1.38 * lg 10000 < .2 million
lookup cost < 135000 * 1.38 * lg 10000 <  2.5 million

✓
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‣ basic implementations
‣ randomized BSTs
‣ deletion in BSTs
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BST deletion:  lazy approach

To remove a node with a given key:

• Set its value to null.

• Leave key in tree to guide searches (but don't consider it equal to search key).

Cost. O(log N') per insert, search, and delete (if keys in random order),
where N' is the number of elements ever inserted in the BST.

Unsatisfactory solution.  Tombstone overload.

delete I

S

E

C

A

N

RH

I

S

E

C

A

N

RH

☠ tombstone



To delete the minimum key:

• Go left until finding a node with a null left link.

• Replace that node by its right link.

• Update subtree counts.
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Deleting the minimum

 public void deleteMin()
 {  root = deleteMin(root);  }

 private Node deleteMin(Node x)
 {
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.N = 1 + size(x.left) + size(x.right);
    return x;
 }

go left until
reaching null

left link

return that
node’s right link

available for
garbage collection

5

7

update links and counts
after recursive calls

A
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H
M
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S
X
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H
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S
X

C
E

H
M

R

S
X

Deleting the minimum in a BST



node to delete

replace with
null link

available for
garbage

collection

update counts after
recursive calls

5

1
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H
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X

A
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S
X

A
E

H
M

R

S
X

deleting C

To delete a node with key k:  search for node t containing key k.

Case 0.  [0 children]  Delete t by setting parent link to null.
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Hibbard deletion



To delete a node with key k:  search for node t containing key k.

Case 1.  [1 child]  Delete t by replacing parent link.
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Hibbard deletion

node to delete
replace with

child link available for
garbage

collection

A
C C C

E

H
M

R
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S
X
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E

H
M

S
X

A
E

H
M

S
X

deleting R
update counts after

recursive calls

5

7



To delete a node with key k:  search for node t containing key k.

Case 2.  [2 children]

• Find successor x of t.

• Delete the minimum in t's right subtree.

• Put x in t's spot.
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Hibbard deletion

x has no left child

but don't garbage collect x

still a BST

search for key E

node to delete

deleteMin(t.right)

t
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successor
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t.left

x

update links and
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Deletion in a BST

go right, then
go left until

reaching null
left link

search for key E

node to delete
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Deletion in a BST

go right, then
go left until

reaching null
left link
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Hibbard deletion:  Java implementation

 public void delete(Key key)
 {  root = delete(root, key);  }

 private Node delete(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if      (cmp < 0) x.left  = delete(x.left,  key);
    else if (cmp > 0) x.right = delete(x.right, key);
    else { 
       if (x.right == null) return x.left;

       Node t = x;
       x = min(t.right);
       x.right = deleteMin(t.right);
       x.left = t.left;
    } 
    x.N = size(x.left) + size(x.right) + 1;
    return x;
 } 

no right child

replace with 
successor

search for key

update subtree 
counts
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Hibbard deletion:  analysis

Unsatisfactory solution.  Not symmetric.

Surprising consequence.  Trees not random (!)  ⇒  sqrt(N) per op.
Longstanding open problem.  Simple and efficient delete for BSTs.
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ST implementations:  summary

Next lecture.   Guarantee logarithmic performance for all operations.

implementation

guaranteeguarantee average caseaverage caseaverage case
ordered operations

implementation

search insert delete
search 

hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N √N yes compareTo()

other operations also become √N
if deletions allowed



Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · January 30, 2009 11:04:09 AM

Balanced Trees

‣ 2-3 trees
‣ red-black trees
‣ B-trees

Except as otherwise noted, the content of this presentation
is licensed under the Creative Commons Attribution 2.5 License.

Reference:
    Algorithms in Java. 4th Edition, Section 3.2

    http://www.cs.princeton.edu/algs4
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Symbol table review

Challenge.  Guarantee performance.
This lecture.  2-3 trees, left-leaning red-black trees, B-trees.

introduced to the world in
COS 226, Fall 2007

(see handout)

implementation

guarantee average case
ordered operationsimplementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

Goal log N log N log N log N log N log N yes compareTo()



3

‣ 2-3 trees
‣ red-black trees
‣ B-trees



Allow 1 or 2 keys per node.

• 2-node:  one key, two children.

• 3-node:  two keys, three children.

Symmetric order.  Inorder traversal yields keys in ascending order.
Perfect balance.  Every path from root to null link has same length.

2-3 tree

4

between E and J

larger than Jsmaller than E
E J

H L

2-node3-node

null link

M

R

P S XA C

Anatomy of a 2-3 search tree



• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

5

Search in a 2-3 tree

found H so return value (search hit)

H is less than M so
look to the left

H is between E and L so
look in the middle

B is between A and C so look in the middle

B is less than M so
look to the left

B is less than E
so look to the left

link is null so B is not in the tree (search miss)

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

successful search for H unsuccessful search for B

Successful (left) and unsuccessful (right) search in a 2-3 tree
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Insertion in a 2-3 tree

Case 1.  Insert into a 2-node at bottom.

• Search for key, as usual.

• Replace 2-node with 3-node.

search for K ends here

replace 2-node with
new 3-node containing K

E J

H L

M

R

P S XA C

E J

H

M

R

P S XK LA C

inserting K

Insert into a 2-node
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Insertion in a 2-3 tree

Case 2.  Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

why middle key?

split 4-node into two 2-nodes
pass middle key to parent

replace 3-node with
temporary 4-node

containing Z

replace 2-node
with new 3-node

containing
middle key

S X Z

S Z

E J

H L

L

M

R

PA C

search for Z ends
at this 3-nodeE J

H L

M

R

P S XA C

E J

H

M

P

R X

A C

inserting Z

Insert into a 3-node whose parent is a 2-node
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Insertion in a 2-3 tree

Case 2.  Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary.

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

inserting D

Insert into a 3-node whose parent is a 3-node

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

inserting D

Insert into a 3-node whose parent is a 3-node



Case 2.  Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary. 

• If you reach the root and it's a 4-node, split it into three 2-nodes.

Remark.  Splitting the root increases height by 1.
9

Insertion in a 2-3 tree

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root



Standard indexing client.
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2-3 tree construction trace
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The same keys inserted in ascending order.
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2-3 tree construction trace
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Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation:  constant number of steps.

b c d

a e

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

b d

a c e

Splitting a  4-node is a local transformation that preserves balance 



Invariant.   Symmetric order.
Invariant.   Perfect balance.

Pf.   Each transformation maintains order and balance.
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Global properties in a 2-3 tree

d

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary) 

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e
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2-3 tree:  performance

Perfect balance.  Every path from root to null link has same length.

Tree height.

• Worst case:

• Best case:

Typical 2-3 tree built from random keys
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2-3 tree:  performance

Perfect balance.  Every path from root to null link has same length.

Tree height.

• Worst case: lg N.       [all 2-nodes]

• Best case: log3 N ≈ .631 lg N.     [all 3-nodes]

• Between 12 and 20 for a million nodes.

• Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

Typical 2-3 tree built from random keys



ST implementations:  summary
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constants depend upon 
implementation

implementation

guarantee average case
ordered operationsimplementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()
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2-3 tree:  implementation?

Direct implementation is complicated, because:

• Maintaining multiple node types is cumbersome.

• Need multiple compares to move down tree.

• Need to move back up the tree to split 4-nodes.

• Large number of cases for splitting.

Bottom line.  Could do it, but there's a better way.
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‣ 2-3-4 trees
‣ red-black trees
‣ B-trees



1.  Represent 2–3 tree as a BST.
2.  Use "internal" left-leaning links as "glue" for 3–nodes.

Key property.  1–1 correspondence between 2–3 and LLRB.

19

Left-leaning red-black trees (Guibas-Sedgewick 1979 and Sedgewick 2007)

larger key is root

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

1−1 correspondence between red-black and 2-3 trees
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red−black tree
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1−1 correspondence between red-black and 2-3 trees

X
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C
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XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

black links connect
2-nodes and 3-nodes

red links "glue" 
nodes within a 3-node



A BST such that:

• No node has two red links connected to it.

• Every path from root to null link has the same number of black links.

• Red links lean left.
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An equivalent definition

"perfect black balance"

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C



Search implementation for red-black trees

Observation.  Search is the same as for elementary BST (ignore color).

Remark.  Many other ops (e.g., ceiling, selection, iteration) are also identical.
21

public Val get(Key key)
{
   Node x = root;
   while (x != null)
   {
      int cmp = key.compareTo(x.key);
      if      (cmp  < 0) x = x.left;
      else if (cmp  > 0) x = x.right;
      else if (cmp == 0) return x.val;
   }
   return null;
}

but runs faster because of better balance

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C



Red-black tree representation

Each node is pointed to by precisely one link (from its parent)  ⇒
can encode color of links in nodes.
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 private static final boolean RED   = true;
 private static final boolean BLACK = false;

 private class Node
 {
    Key key;
    Value val;
    Node left, right;
    boolean color;
 }

 private boolean isRed(Node x)
 {
    if (x == null) return false;
    return x.color == RED;
 }

null links are black

private static final boolean RED   = true;
private static final boolean BLACK = false;

private class Node
{
   Key key;          // key
   Value val;        // associated data
   Node left, right; // subtrees
   int N;            // # nodes in this subtree
   boolean color;    // color of link from
                     //   parent to this node

   Node(Key key, Value val)
   {
      this.key   = key;
      this.val   = val;
      this.N     = 1;
      this.color = RED;
   }
}

private boolean isRed(Node x)
{
   if (x == null) return false;
   return x.color == RED;
}

J
G

E

A D
C

Node representation for red−black trees

h
h.left.color

is RED
h.right.color

is BLACK



Elementary red-black tree operations

Left rotation.   Orient a (temporarily) right-leaning red link to lean left.

Invariants.  Maintains symmetric order and perfect black balance.
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 private Node rotateLeft(Node h)
 {
    x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
 }

Left rotate (right link of h)

Node rotateLeft(Node h)
{
   x = h.right;
   h.right = x.left;
   x.left = h;
   x.color = h.color;
   h.color = RED;
   x.N = h.N;
   h.N = 1 + size(h.left)
           + size(h.right);
   return x;
}

h

x

x

h

E

S

between
E and S

less
than E

greater
than S

E
S

between
E and S

could be right or left,
red or black

less
than E

greater
than S

Left rotate (right link of h)

Node rotateLeft(Node h)
{
   x = h.right;
   h.right = x.left;
   x.left = h;
   x.color = h.color;
   h.color = RED;
   x.N = h.N;
   h.N = 1 + size(h.left)
           + size(h.right);
   return x;
}

h

x

x

h

E

S

between
E and S

less
than E

greater
than S

E
S

between
E and S

could be right or left,
red or black

less
than E

greater
than S



Elementary red-black tree operations

Right rotation.   Orient a left-leaning red link to (temporarily) lean right.

Invariants.  Maintains symmetric order and perfect black balance.
24

 private Node rotateRight(Node h)
 {
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
 }

Node rotateRight(Node h)
{
   x = h.left;
   h.left = x.right;
   x.right = h;
   x.color = h.color;
   h.color = RED;
   x.N = h.N;
   h.N = 1 + size(h.left)
           + size(h.right);
   return x;
}

x

h

h

x

E

S

between
S and E

less
than E

greater
than S

E
S

between
S and E

less
than E

greater
than S

Right rotate (left link of h)Node rotateRight(Node h)
{
   x = h.left;
   h.left = x.right;
   x.right = h;
   x.color = h.color;
   h.color = RED;
   x.N = h.N;
   h.N = 1 + size(h.left)
           + size(h.right);
   return x;
}

x

h

h

x

E

S

between
S and E

less
than E

greater
than S

E
S

between
S and E

less
than E

greater
than S

Right rotate (left link of h)



Elementary red-black tree operations

Color flip.  Recolor to split a (temporary) 4-node.

Invariants.  Maintains symmetric order and perfect black balance.
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 private void flipColors(Node h)
 {
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
 }

void flipColors(Node h)
{
   h.color = RED;
   h.left.color = BLACK;
   h.right.color = BLACK;
}

h

A

E

between
A and E

less
than A

S

between
E and S

could be left
or right link

red link attaches
middle node

to parent

black links split
to 2-nodes

greater
than S

A

E

between
A and E

less
than A

S

between
E and S

greater
than S

Flipping colors to split a 4-node
void flipColors(Node h)
{
   h.color = RED;
   h.left.color = BLACK;
   h.right.color = BLACK;
}

h

A

E

between
A and E

less
than A

S

between
E and S

could be left
or right link

red link attaches
middle node

to parent

black links split
to 2-nodes

greater
than S

A

E

between
A and E

less
than A

S

between
E and S

greater
than S

Flipping colors to split a 4-node



Basic strategy.  Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black tree operations

Insertion in a LLRB tree:  overview

26

E

A

LLRB tree

 insert C

E

R
S
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A
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R
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add new
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rotate left

E

A R S

E

R SA C

2-3 tree

E

A

E

R
S

R
S

A
C

E
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S

C
A

add new
node here

right link red
so rotate left

insert C

Insert into a 2-node
at the bottom



Warmup 1.  Insert into a tree with exactly 1 node.

Insertion in a LLRB tree
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search ends
at this null link

red link to
 new node
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converts 2-node
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search ends
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right

Insert into a single
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Insertion in a LLRB tree
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Warmup 2.  Insert into a tree with exactly 2 nodes.

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left 

rotated
right 

rotated
right 

colors flipped
to black 

colors flipped
to black 

search ends
at this

null link
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Insert into a single 3-node (three cases)



Case 1.  Insert into a 2-node at the bottom.

• Do standard BST insert; color new link red.

• If new red link is a right link, rotate left.

Insertion in a LLRB tree
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Insertion in a LLRB tree

Case 2.  Insert into a 3-node at the bottom.

• Do standard BST insert; color new link red.
• Rotate to balance the 4-node (if needed).

• Flip colors to pass red link up one level.
• Rotate to make lean left (if needed).
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Insertion in a LLRB tree

Case 2.  Insert into a 3-node at the bottom.

• Do standard BST insert; color new link red.
• Rotate to balance the 4-node (if needed).

• Flip colors to pass red link up one level.
• Rotate to make lean left (if needed).
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Case 2.  Insert into a 3-node at the bottom.

• Do standard BST insert; color new link red.

• Rotate to balance the 4-node (if needed).

• Flip colors to pass red link up one level.

• Rotate to make lean left (if needed).

• Repeat Case 1 or Case 2 up the tree (if needed).

Insertion in a LLRB tree: passing red links up the tree
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Standard indexing client.
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 standard indexing client  same keys in increasing order
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Standard indexing client (continued).
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 standard indexing client  same keys in increasing order
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Insertion in a LLRB tree:  Java implementation

Same code for both cases.

• Right child red, left child black: rotate left.

• Left child, left-left grandchild red: rotate right.

• Both children red: flip colors.
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 private Node put(Node h, Key key, Value val)
 {
    if (h == null) return new Node(key, val, RED);
    int cmp = key.compareTo(h.key);
    if      (cmp < 0) h.left  = put(h.left,  key, val);
    else if (cmp > 0) h.right = put(h.right, key, val);
    else h.val = val;

    if (isRed(h.right) && !isRed(h.left))     h = rotateLeft(h);
    if (isRed(h.left)  && isRed(h.left.left)) h = rotateRight(h);
    if (isRed(h.left)  && isRed(h.right))     h = flipColors(h);
   
    return h;
 }

insert at bottom

split 4-node
balance 4-node
lean left

only a few extra lines of code 
to provide near-perfect balance

flip
colors

right
rotate

left
rotate

Passing a red link up a red-black tree

h

h

h



Insertion in a LLRB tree:  visualization
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255 insertions in ascending order
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Insertion in a LLRB tree:  visualization

255 insertions in descending order



Insertion in a LLRB tree:  visualization
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50 random insertions
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Insertion in a LLRB tree:  visualization

255 random insertions
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Balance in LLRB trees

Proposition.  Height of tree is ≤ 2 lg N in the worst case. 
Pf.

• Every path from root to null link has same number of black links.

• Never two red links in-a-row.

Property.  Height of tree is ~ 1.00 lg N in typical applications.



ST implementations:  summary
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implementation
guaranteeguarantee average caseaverage case ordered operationsimplementation

search insert delete search hit insert delete iteration? on keys

sequential search
(linked list) N N N N/2 N N/2 no equals()

binary search
(ordered array) lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N  * 1.00 lg N  * 1.00 lg N  * yes compareTo()

* exact value of coefficient unknown but extremely close to 1

Costs for java FrequencyCounter 8 < tale.txt using RedBlackBST 

20

12

0



Why left-leaning trees?
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private Node put(Node x, Key key, Value val, boolean sw)
{ 
   if (x == null)
      return new Node(key, value, RED);
   int cmp = key.compareTo(x.key);

   if (isRed(x.left) && isRed(x.right))
   { 
      x.color = RED;
      x.left.color  = BLACK;
      x.right.color = BLACK;
   }
   if (cmp < 0)
   { 
      x.left = put(x.left, key, val, false); 
      if (isRed(x) && isRed(x.left) && sw)
         x = rotateRight(x);
      if (isRed(x.left) && isRed(x.left.left))         
      {
         x = rotateRight(x);
         x.color = BLACK; x.right.color = RED;  
      }
   }
   else if (cmp > 0)
   { 
      x.right = put(x.right, key, val, true);
      if (isRed(h) && isRed(x.right) && !sw)
         x = rotateLeft(x);
      if (isRed(h.right) && isRed(h.right.right)) 
      {
         x = rotateLeft(x);
         x.color = BLACK; x.left.color = RED;   
      }
   }
   else x.val = val;
   return x;
}

 public Node put(Node h, Key key, Value val)
 {
    if (h == null)
       return new Node(key, val, RED);
    int cmp = kery.compareTo(h.key);
    if (cmp < 0)
       h.left  = put(h.left,  key, val);
    else if (cmp > 0)
       h.right = put(h.right, key, val);
    else h.val = val;

    if (isRed(h.right) && !isRed(h.left))
       h = rotateLeft(h);
    if (isRed(h.left) && isRed(h.left.left))
       h = rotateRight(h);
    if (isRed(h.left) && isRed(h.right))
       h = flipColors(h);
   
   return h;
 }

old code (that students had to learn in the past) new code (that you have to learn)

extremely tricky

straightforward
 (if you’ve paid attention)



Why left-leaning trees?
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Simplified code.

• Left-leaning restriction reduces number of cases. 

• Short inner loop.

Same ideas simplify implementation of other operations.

• Delete min/max.

• Arbitrary delete.

Improves widely-used algorithms.

• AVL trees, 2-3 trees, 2-3-4 trees.

• Red-black trees.

Bottom line.   Left-leaning red-black trees are the simplest balanced BST
to implement and the fastest in practice.

new

1972

1978

2008
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‣ 2-3-4 trees
‣ red-black trees
‣ B-trees
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File system model

Page.  Contiguous block of data (e.g., a file or 4096-byte chunk).
Probe.  First access to a page (e.g., from disk to memory).

Model.  Time required for a probe is much larger than time to accessdata 
within a page.

Goal.  Access data using minimum number of probes.

slow fast



B-tree.  Generalize 2-3 trees by allowing up to M links per node.

• At least 1 entry at root.

• At least M/2 links in other nodes.

• External nodes contain client keys.

• Internal nodes contain copies of keys to guide search.

46

B-trees (Bayer-McCreight, 1972)

choose M as large as possible so
that M links fit in a page, e.g., M = 1000

Anatomy of a B-tree set (M = 6)

2-node

external
3-node external 5-node (full)

 internal 3-node

 external 4-node

all nodes except the root are 3-, 4- or 5-nodes

* B C

 sentinel key

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X Y

each red key is a copy
of min key in subtree

client keys (black)
are in external nodes



• Start at root.

• Find interval for search key and take corresponding link.

• Search terminates in external node.
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Searching in a B-tree

* B C

searching for E

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X

search for E in
this external node

follow this link because
E is between * and K

follow this link because
E is between D and H

Searching in a B-tree set (M = 6)



• Search for new key.

• Insert at bottom.

• Split (M+1)-nodes on the way up the tree.
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Insertion in a B-tree

* A B C E F H I J K M N O P Q R T

* C H

* K

K Q U

U W X

* A B C E F H I J K M N O P Q R T U W X

* C H K Q U

* A B C E F H I J K M N O P Q R T U W X

* H K Q U

* B C E F H I J K M N O P Q R T U W X

* H K Q U

new key (A) causes
overflow and split

root split causes
a new root to be created

new key (C) causes
overflow and split

Inserting a new key into a B-tree set

inserting A



Probes.  A search or insert in a B-tree of order M with N items requires 
between logMN and logM/2N probes.

Pf.  All internal nodes (besides root) have between M/2 and M links.
 

In practice.  Number of probes is at most 4!

Optimization.  Always keep root page in memory.

49

Balance in B-tree

M = 1000; N = 62 billion
log M/2 N  ≤  4
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Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

• Java:  java.util.TreeMap, java.util.TreeSet.

• C++ STL:  map, multimap, multiset.

• Linux kernel:  completely fair scheduler, linux/rbtree.h.

B-tree variants.  B+ tree, B*tree, B# tree, …

B-trees (and variants) are widely used for file systems and databases.

• Windows:  HPFS.

• Mac:  HFS, HFS+. 

• Linux:  ReiserFS, XFS, Ext3FS, JFS.

• Databases:  ORACLE, DB2, INGRES, SQL, PostgreSQL.
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Red-black trees in the wild

Common sense. Sixth sense.
Together they're the
FBI's newest team.



Red-black trees in the wild
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Hashing

References:
    Algorithms in Java, Chapter 14
  http://www.cs.princeton.edu/algs4/44hash

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications
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Optimize judiciously

Reference:  Effective Java by Joshua Bloch

“ More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason— 
including blind stupidity.  ”    — William A. Wulf

“ We should forget about small efficiencies, say about 97% of the time:  
premature optimization is the root of all evil.  ”    —  Donald E. Knuth

“ We follow two rules in the matter of optimization:
    Rule 1:  Don't do it.
    Rule 2 (for experts only).  Don't do it yet - that is, not until
    you have a perfectly clear and unoptimized solution. ”   — M. A. Jackson



ST implementations:  summary

Q.  Can we do better?
A.  Yes, but with different access to the data.

3

implementation

guarantee average case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()
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Hashing:  basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function.  Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test:  Method for checking whether two keys are equal.

hash("it") = 3

0

1

2

3 "it"

4

5
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Hashing:  basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function.  Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test:  Method for checking whether two keys are equal.

• Collision resolution:  Algorithm and data structure
to handle two keys that hash to the same array index.

Classic space-time tradeoff.

• No space limitation:  trivial hash function with key as index.

• No time limitation:  trivial collision resolution with sequential search.

• Limitations on both time and space:  hashing (the real world).

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3
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‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications
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Equality test

Needed because hash methods do not use CompareTo().

All Java classes have a method equals(), inherited from Object.

Java requirements.  For any references x, y and z:

• Reflexive:  x.equals(x) is true.

• Symmetric:  x.equals(y) iff y.equals(x).

• Transitive:  if x.equals(y) and y.equals(z), then  x.equals(z).

• Non-null:  x.equals(null) is false.

Default implementation (inherited from Object).  (x == y) 
Customized implementations.   Integer, Double, String, URI, Date, …
User-defined implementations.  Some care needed.

do x and y refer to
the same object?



Seems easy

public       class Record
{
   private final String name;
   private final int id;
   private final double value;
   ...

   public boolean equals(Record y)
   {

      Record that =          y;
      return (this.id == that.id) &&
             (this.value == that.value) &&
             (this.equals(that.name));
   }
}

Implementing equals for user-defined types

8

check that all significant
fields are the same



Seems easy, but requires some care.

public final class Record
{
   private final String name;
   private final int id;
   private final double value;
   ...

   public boolean equals(Object y)
   {
      if (y == this) return true;

      if (y == null) return false;

      if (y.getClass() != this.getClass())
         return false;

      Record that = (Record) y;
      return (this.id == that.id) &&
             (this.value == that.value) &&
             (this.equals(that.name));
   }
}

Implementing equals for user-defined types

9

check for null

optimize for true object equality

no safe way to use equals() with inheritance

must be Object.
Why? Experts still debate.

objects must be in the same class

check that all significant
fields are the same
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Computing the hash function

Idealistic goal.  Scramble the keys uniformly to produce a table index.

• Efficiently computable.

• Each table index equally likely for each key.

Ex 1.  Phone numbers.

• Bad:  first three digits.

• Better:  last three digits.

Ex 2.  Social Security numbers.

• Bad:  first three digits.

• Better:  last three digits.

Practical challenge.   Need different approach for each key type.

573 = California, 574 = Alaska
(assigned in chronological order within geographic region)

thoroughly researched problem,
still problematic in practical applications

key

table
index
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Java’s hash code conventions

All Java classes have a method hashCode(), which returns an int.

Requirement.  If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable.   If !x.equals(y), then (x.hashCode() != y.hashCode()).

Default implementation (inherited from Object).  Memory address of x.
Customized implementations.  Integer, Double, String, URI, Date, …
User-defined types.  Users are on their own.

x.hashCode()

x

y.hashCode()

y
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Implementing hash code:  integers and doubles

public final class Integer
{
   private final int value;  
   ...
   
   public int hashCode()
   {  return value;  }
}

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

public final class Double
{
   private final double value;
   ...
   
   public int hashCode()
   {  
      long bits = doubleToLongBits(value);
      return (int)(bits ^ (bits >>> 32));
   }
}



• Horner's method to hash string of length L:  L multiplies/adds.

• Equivalent to  h = 31L-1 · s0  + … + 312 · sL-3  +  311 · sL-2  +  310 · sL-1.

Ex. 

public final class String
{  
   private final char[] s;
   ...

   public int hashCode()
   {
      int hash = 0;
      for (int i = 0; i < length(); i++)
         hash = s[i] + (31 * hash);
      return hash;
   }
} 

13

Implementing hash code:  strings

3045982 = 99·313 + 97·312 + 108·311 + 108·310

               = 108 + 31· (108 + 31 · (97 + 31 · (99)))

ith character of s

String s = "call";
int code = s.hashCode();

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...



Ex.  Strings (in Java 1.1).

• For long strings:  only examine 8-9 evenly spaced characters.

• Benefit:  saves time in performing arithmetic.

• Downside:  great potential for bad collision patterns.
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A poor hash code

public int hashCode()
{
   int hash = 0;
   int skip = Math.max(1, length() / 8);
   for (int i = 0; i < length(); i += skip)
      hash = s[i] + (37 * hash);
   return hash;
}

http://www.cs.princeton.edu/introcs/13loop/Hello.java
http://www.cs.princeton.edu/introcs/13loop/Hello.class
http://www.cs.princeton.edu/introcs/13loop/Hello.html
http://www.cs.princeton.edu/introcs/13loop/index.html
http://www.cs.princeton.edu/introcs/12type/index.html
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Implementing hash code:  user-defined types

public final class Record
{
   private String name;
   private int id; 
   private double value;

   public Record(String name, int id, double value)
   {  /* as before */  }

   ...

   public boolean equals(Object y)
   {  /* as before */  }
   
   public int hashCode()
   {  
      int hash = 17;
      hash = 31*hash + name.hashCode();
      hash = 31*hash + id;
      hash = 31*hash + Double.valueOf(value).hashCode();
      return hash;
   }
} typically a small prime

nonzero constant
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Hash code design

"Standard" recipe for user-defined types.

• Combine each significant field using the 31x + y rule.

• If field is a primitive type, use built-in hash code.

• If field is an array, apply to each element.

• If field is an object, apply rule recursively.

In practice.   Recipe works reasonably well; used in Java libraries.
In theory.  Need a theorem for each type to ensure reliability.

Basic rule.  Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.



Hash code.  An int between -231 and 231-1.
Hash function.  An int between 0 and M-1 (for use as array index).

Bug.

1-in-a billion bug. 

Correct.

 private int hash(Key key)
 {  return key.hashCode() % M;  }

17

Hash functions

 private int hash(Key key)
 {  return (key.hashCode() & 0x7ffffffff) % M;  }

 private int hash(Key key)
 {  return Math.abs(key.hashCode()) % M;  }

typically a prime or power of 2
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‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications



19

Helpful results from probability theory

Uniform hashing assumption.  Each key is equally likely to hash to an integer 
between 0 and M-1.

Bins and balls.  Throw balls uniformly at random into M bins.

Birthday problem.  Expect two balls in the same bin after ~     π M / 2  tosses.

Coupon collector.  Expect every bin has ≥ 1 ball after ~ M ln M tosses.

Load balancing.  After M tosses, expect most loaded bin has
Θ(log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Collisions

Collision.  Two distinct keys hashing to same index.

• Birthday problem ⇒  can't avoid collisions unless you have
a ridiculous amount (quadratic) of memory.

• Coupon collector + load balancing  ⇒  collisions will be evenly distributed.

Challenge.  Deal with collisions efficiently.

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3



Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

• Hash:  map key to integer i between 0 and M-1.

• Insert:  put at front of ith chain (if not already there).

• Search:  only need to search ith chain.
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Separate chaining ST

Hashing with separate chaining for standard indexing client 

st

first

0

1

2

3

4

S 0X 7

E 12

first

first

first

first

A 8

P 10L 11

R 3C 4H 5M 9

independent
LinkedListST

objects

S  2   0

E  0   1

A  0   2

R  4   3

C  4   4

H  4   5

E  0   6

X  2   7

A  0   8

M  4   9

P  3  10

L  3  11

E  0  12

null

key hash value



public class SeparateChainingHashST<Key, Value>
{
   private int N;              // number of key-value pairs
   private int M;              // hash table size
   private LinkedListST[] st;  // array of STs
   public SCHashST()
   {  this(997);  }

   public SCHashST(int M)
   {  // Create M sequential-search-with-linked-list STs.
      this.M = M;
      st = new LinkedListST[M];
      for (int i = 0; i < M; i++)
         st[i] = new LinkedListST();
   }
   private int hash(Key key)
   {  return (key.hashCode() & 0x7fffffff) % M; }

   public Value get(Key key)
   {  return (Value) st[hash(key)].get(key);  }

   public void put(Key key, Value value)
   {  st[hash(key)].put(key, value);  }

   public Iterable<Key> keys()
   {  return st[i].keys());  }

}

Separate chaining ST:  Java implementation
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Proposition.  Under uniform hashing assumption, probability that the number 
of keys in a list is within a constant factor of N/M is extremely close to 1.

Pf sketch.  Distribution of list size obeys a binomial distribution.

Consequence.  Number of compares for search/insert is proportional to N/M.

• M too large  ⇒  too many empty chains.

• M too small  ⇒  chains too long.

• Typical choice:  M ~ N/5  ⇒  constant-time ops.
23

Analysis of separate chaining

M times faster than
sequential search

Binomial distribution (N = 104 , M = 103 , ! = 10) 

.125

0

0 10 20 30

(10, .12511...)
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‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications



Open addressing.  [Amdahl-Boehme-Rocherster-Samuel, IBM 1953] 
When a new key collides, find next empty slot, and put it there.
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Collision resolution:  open addressing

null

null

linear probing (M = 30001, N = 15000)

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30001]

st[3]
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Linear probing

Use an array of size M > N.

• Hash:  map key to integer i between 0 and M-1.

• Insert:  put in slot i if free; if not try i+1, i+2, etc.

• Search:  search slot i; if occupied but no match, try i+1, i+2, etc.

- - - S H - - A C E R - -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert I
hash(I) = 11

- - - S H - - A C E R I -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert N
hash(N) = 8

- - - S H - - A C E R I N

0 1 2 3 4 5 6 7 8 9 10 11 12
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Linear probing:  trace of standard indexing client

0  1  2  3  4  5  6  7  8  9  
                  S                                                
                  0                                                
                  S           E
                  0           1   
            A     S           E
            2     0           1
            A     S           E           R
            2     0           1           3    
            A  C  S           E           R           
            2  5  0           1           3      
            A  C  S  H        E           R    
            2  5  0  5        1           3   
            A  C  S  H        E           R
            2  5  0  5        6           3
            A  C  S  H        E           R  X          
            2  5  0  5        6           3  7         
            A  C  S  H        E           R  X              
            8  5  0  5        6           3  7      
   M        A  C  S  H        E           R  X
   9        8  5  0  5        6           3  7
P  M        A  C  S  H        E           R  X  
   9        8  5  0  5        6           3  7 
P  M        A  C  S  H  L     E           R  X       
   9        8  5  0  5        6           3  7 
P  M        A  C  S  H  L     E           R  X        
   9        8  5  0  5                    3  7  

10 11 12 13 14 15

11    12

1110

10

10

Trace of  linear-probing ST implementation for standard indexing client

entries in gray 
are untouched

probe sequence 
wraps to 0

entries in red
are new

keys in black
are probes

S   6   0

E  10   1

A   4   2

R  14   3

C   5   4

H   4   5

E  10   6

X  15   7

A   4   8

M   1   9

P  14  10

L   6  11

E  10  12 keys[]
vals[]

key hash value



public class LinearProbingST<Key, Value>
{
   private int M = 30001;
   private Value[] vals = (Value[]) new Object[M];
   private Key[]   keys = (Key[])   new Object[M];

   private int hash(Key key) {  /* as before */  }

   public void put(Key key, Value val) 
   {
      int i;
      for (i = hash(key); keys[i] != null; i = (i+1) % M)
         if (key.equals(keys[i]))
             break;
      vals[i] = val;
      keys[i] = key;
   }

   public Value get(Key key)
   {
      for (int i = hash(key); keys[i] != null; i = (i+1) % M)
         if (key.equals(keys[i]))
             return vals[i];
      return null;
   }
}

Linear probing ST implementation
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array doubling
code omitted



Cluster.  A contiguous block of items.
Observation.  New keys likely to hash into middle of big clusters.

29

Clustering



Model.  Cars arrive at one-way street with M parking spaces.  Each desires a 
random space i:  if space i is taken, try i+1, i+2, …

Q.  What is mean displacement of a car? 

Empty.  With M/2 cars, mean displacement is ~ 3/2.
Full.      With M cars, mean displacement is ~      π M / 8 

30

Knuth's parking problem

displacement =3



Proposition.  Under uniform hashing assumption,  the average number of 
probes in a hash table of size M that contains N = α M keys is:

Pf.  [Knuth 1962]   A landmark in analysis of algorithms.

Parameters.

• M too large  ⇒  too many empty array entries.

• M too small  ⇒  search time blows up. 

• Typical choice:  α  =  N/M  <  1/2   ⇒  constant-time ops.
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Analysis of linear probing

∼ 1
2

(
1 +

1
1− α

)
∼ 1

2

(
1 +

1
(1− α)2

)

search hit search miss / insert



ST implementations:  summary
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implementation

guarantee average case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

hashing lg N * lg N * lg N * 3-5 * 3-5 * 3-5 * no equals()

*  under uniform hashing assumption
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Algorithmic complexity attacks

Q.  Is the uniform hashing assumption important in practice?
A. Obvious situations:  aircraft control, nuclear reactor, pacemaker.
A. Surprising situations:  denial-of-service attacks.

Real-world exploits.  [Crosby-Wallach 2003] 

• Bro server:  send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

• Perl 5.8.0:  insert carefully chosen strings into associative array.

• Linux 2.4.20 kernel:  save files with carefully chosen names.

malicious adversary learns your hash function
(e.g., by reading Java API) and causes a big pile-up

in single slot that grinds performance to a halt



Goal.  Find family of strings with the same hash code.
Solution.  The base-31 hash code is part of Java's string API.
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Algorithmic complexity attack on Java

2N strings of length 2N that hash to same value!

key hashCode()

"AaAaAaAa" -540425984

"AaAaAaBB" -540425984

"AaAaBBAa" -540425984

"AaAaBBBB" -540425984

"AaBBAaAa" -540425984

"AaBBAaBB" -540425984

"AaBBBBAa" -540425984

"AaBBBBBB" -540425984

key hashCode()

"BBAaAaAa" -540425984

"BBAaAaBB" -540425984

"BBAaBBAa" -540425984

"BBAaBBBB" -540425984

"BBBBAaAa" -540425984

"BBBBAaBB" -540425984

"BBBBBBAa" -540425984

"BBBBBBBB" -540425984

key hashCode()

"Aa" 2112

"BB" 2112



35

Diversion:  one-way hash functions

One-way hash function.  Hard to find a key that will hash to a desired value, 
or to find two keys that hash to same value.

Ex.  MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.

Applications.  Digital fingerprint, message digest, storing passwords.
Caveat.  Too expensive for use in ST implementations.

known to be insecure

String password = args[0]; 
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */



Separate chaining vs. linear probing

Separate chaining.

• Easier to implement delete.

• Performance degrades gracefully.

• Clustering less sensitive to poorly-designed hash function.

Linear probing.

• Less wasted space.

• Better cache performance.
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Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing.  (separate chaining variant)

• Hash to two positions, put key in shorter of the two chains.

• Reduces average length of the longest chain to log log N.

Double hashing.   (linear probing variant)

• Use linear probing, but skip a variable amount, not just 1 each time.

• Effectively eliminates clustering.

• Can allow table to become nearly full.
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Hashing vs. balanced trees

Hashing.

• Simpler to code.

• No effective alternative for unordered keys.

• Faster for simple keys (a few arithmetic ops versus log N compares).

• Better system support in Java for strings (e.g., cached hash code).

Balanced trees.

• Stronger performance guarantee.

• Support for ordered ST operations.

• Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.

• Red-black trees:  java.util.TreeMap, java.util.TreeSet.

• Hashing:  java.util.HashMap, java.util.IdentityHashMap.

38
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‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications
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Set API

Mathematical set.  A collection of distinct keys.

Q.  How to implement?

        public class SET<Key extends Comparable<Key>>        public class SET<Key extends Comparable<Key>>        public class SET<Key extends Comparable<Key>>

SET() create an empty set

void add(Key key) add the key to the set

boolean contains(Key key) is the key in the set?

void remove(Key key) remove the key from the set

int size() return the number of keys in the set

Iterator<Key> iterator() iterator through keys in the set



Problem.  Index for a PC or the web.
Assumptions.  1 billion++ words to index.

Which searching method to use?

• Hashing 

• Red-black-trees

• Doesn’t matter much.

Searching challenge 5
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Solution.  Symbol table with:

• Key = query string.

• Value = set of pointers to files.
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Index for a PC or the web

 ST<String, SET<File>> st = new ST<String, SET<File>>();
 for (File file : filesystem)
 {
    In in = new In(file);
    String[] words = in.readAll().split("\\s+");
    for (int i = 0; i < words.length; i++)
    {
        String s = words[i];
        if (!st.contains(s)) 
           st.put(s, new SET<File>());
        SET<File> files = st.get(s);
        files.add(file);
    }
 }

 SET<File> files = st.get(query);
 for (File file : files) ...

build index

process lookup 
request



Searching challenge 6

Problem.  Index for an e-book.
Assumptions.  Book has 100,000+ words.

Which searching method to use?
1. Hashing 
2. Red-black-tree 
3. Doesn’t matter much.
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Problem.  Sparse matrix-vector multiplication.
Assumptions.  Matrix dimension is 10,000; average nonzeros per row ~ 10.

Searching challenge 2

44

  A    *    x   =   b



Matrix-vector multiplication (standard implementation)
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  0 .90   0   0   0

  0   0 .36 .36 .18

  0   0   0 .90   0

.90   0   0   0   0

.47   0 .47   0   0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

...
double[][] a = new double[N][N];
double[] x = new double[N];
double[] b = new double[N];
...
// Initialize a[][] and x[].
...
for (int i = 0; i < N; i++)
{
   sum = 0.0;
   for (int j = 0; j < N; j++)
      sum += a[i][j]*x[j];
   b[i] = sum;
}

nested loops
N2 running time



1D array (standard) representation.

• Constant time access to elements.

• Space proportional to N.

Symbol table representation.

• key = index, value = entry

• Efficient iterator.

• Space proportional to number of nonzeros.
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Vector representations

 0 .36  0  0  0 .36  0  0  0  0  0  0  0  0 .18  0  0  0  0  0

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19

 1 .36  5 .36  14 .18

key value

st
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Sparse vector data type

public class SparseVector
{
   private HashST<Integer, Double> v;
   public SparseVector()
    {  v = new HashST<Integer, Double>();  }
   
   public void put(int i, double x)
    {  v.put(i, x);  }

   public double get(int i)
   {
      if (!v.contains(i)) return 0.0;
      else return v.get(i);
   }
   public Iterable<Integer> indices()
   {  return v.keys();  }

   public double dot(double[] that)
   {
       double sum = 0.0;
       for (int i : v.indices())
           sum += that[i]*this.get(i);
       return sum;
   }
}

empty ST represents all 0s vector

a[i] = value

return a[i]

dot product is constant
time for sparse vectors

HashST because order not important
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Matrix representations

2D array (standard) representation: Each row of matrix is an array.

• Constant time access to elements.

• Space proportional to N2.

Sparse representation:  Each row of matrix is a sparse vector.

• Efficient access to elements.

• Space proportional to number of nonzeros (plus N).

a

0

1

2

3

4

0     1     2     3     4  

0     1     2     3     4  

0     1     2     3     4  

0     1     2     3     4  

0     1     2     3     4  

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

a

0

1

2

3

4

0     1     2     3     4  

0     1     2     3     4  

0     1     2     3     4  

0     1     2     3     4  

0     1     2     3     4  

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations



Sparse matrix-vector multiplication
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  0 .90   0   0   0

  0   0 .36 .36 .18

  0   0   0 .90   0

.90   0   0   0   0

.47   0 .47   0   0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

 ..
 SparseVector[] a;
 a = new SparseVector[N];
 double[] x = new double[N];
 double[] b = new double[N];
 ...
 // Initialize a[] and x[].
 ...
 for (int i = 0; i < N; i++)
    b[i] = a[i].dot(x);

one loop
linear running time
for sparse matrix



Searching challenge 7

Problem.  Rank pages on the web.
Assumptions.  

• Matrix-vector multiply

• 10 billion+ rows

• sparse

Which “searching” method to use to
access array values?
1. Standard 2D array representation 
2. Symbol table
3. Doesn’t matter much.
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