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Shortest Paths

References:
    Algorithms in Java, Chapter 21
  http://www.cs.princeton.edu/algs4/54sp

! Dijkstra's algorithm

! implementation

! negative weights

Google maps
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Given a weighted digraph G, find the shortest directed path from s to t.
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Shortest paths in a weighted digraph

shortest path:  s!6!3!5!t

cost:  14 + 18 + 2 + 16 = 50
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Shortest path versions

Which vertices?

• From one vertex to another.

• From one vertex to every other.

• Between all pairs of vertices.

Edge weights.

• Nonnegative weights.

• Arbitrary weights.

• Euclidean weights.
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Early history of shortest paths algorithms

Shimbel (1955).  Information networks.

Ford (1956).  RAND, economics of transportation.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957).

Combat Development Dept. of the Army Electronic Proving Ground.

Dantzig (1958).  Simplex method for linear programming.

Bellman (1958).  Dynamic programming.

Moore (1959).    Routing long-distance telephone calls for Bell Labs.  

Dijkstra (1959).  Simpler and faster version of Ford's algorithm.

• Maps.

• Robot navigation. 

• Texture mapping.

• Typesetting in TeX.

• Urban traffic planning.

• Optimal pipelining of VLSI chip.

• Telemarketer operator scheduling.

• Subroutine in advanced algorithms.

• Routing of telecommunications messages.

• Approximating piecewise linear functions.

• Network routing protocols (OSPF, BGP, RIP).

• Exploiting arbitrage opportunities in currency exchange.

• Optimal truck routing through given traffic congestion pattern.
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Reference:  Network Flows:  Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path applications
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! Dijkstra's algorithm

! implementation

! negative weights

8

Edsger W. Dijkstra:  select quote

Edger Dijkstra

Turing award 1972

“ The question of whether computers can think is like the question
   of whether submarines can swim. ”

“ Do only what only you can do. ”

“ In their capacity as a tool, computers will be but a ripple on the
   surface of our culture.  In their capacity as intellectual challenge,
   they are without precedent in the cultural history of mankind. ”

“ The use of COBOL cripples the mind; its teaching should,
   therefore, be regarded as a criminal offence. ”

“ APL is a mistake, carried through to perfection. It is the
   language of the future for the programming techniques
   of the past:  it creates a new generation of coding bums. ”
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Single-source shortest-paths

Given. Weighted digraph G, source vertex s.

Goal.  Find shortest path from s to every other vertex.

Observation.  Use parent-link representation to store shortest path tree.
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 Edge relaxation

Relaxation along edge e from v to w.

• dist[v] is length of some path from s to v.

• dist[w] is length of some path from s to w.

• If v!w gives a shorter path to w through v, update dist[w] and pred[w].

dist[w] = 47

dist[v] = 11

dist[s] = 0

int v = e.from(), w = e.to();

if (dist[w] > dist[v] + e.weight())

{   

    dist[w] = dist[v] + e.weight());

    pred[w] = e;

}

w

v

33
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s

• Initialize S to s, dist[s] to 0, dist[v] to ! for all other v.

• Repeat until S contains all vertices connected to s:

- find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

- relax along edge e

- add w to S
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Dijkstra's algorithm

s

w

v

dist[v]

S

e

• Initialize S to s, dist[s] to 0, dist[v] to ! for all other v.

• Repeat until S contains all vertices connected to s:

- find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

- relax along edge e

- add w to S
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Dijkstra's algorithm

s
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dist[w] = dist[v] + e.weight();
pred[w] = e;



13

Dijkstra’s algorithm example
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edge in shortest path tree
Invariant.  For v in S, dist[v] is the length of the shortest path from s to v.

Pf.  (by induction on |S|)

• Let w be next vertex added to S.

• Let P* be the s ! w path through v.

• Consider any other s ! w path P, and let x be first node on path outside S.

• P is already longer than P* as soon as it reaches x by greedy choice.

• Thus,  dist[w] is the length of the shortest path from s to w.
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Dijkstra's algorithm:  correctness proof

P

v

s

x

w

S P*

Remark.  Dijkstra examines vertices in increasing distance from source.
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Shortest path trees

50%

75% 100%
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! Dijkstra's algorithm

! implementation

! negative weights
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Weighted directed graph API

public class DirectedEdge implements Comparable<Edge>public class DirectedEdge implements Comparable<Edge>

DirectedEdge(int v, int w, double weight) create a weighted edge v!w

int from() vertex v

int to() vertex w

double weight() the weight

String toString() string representation

public class WeightedDigraphpublic class WeightedDigraph weighted digraph data type

WeightedDigraph(int V) create an empty digraph with V vertices

WeightedDigraph(In in) create a digraph from input stream

void insert(DirectedEdge e) add an edge from v to w

Iterable<DirectedEdge> adj(int v) return an iterator over edges leaving v

int V() return number of vertices

String toString() return a string representation

18

public class WeightedDigraph

{

   private final int V; 

   private final SET<Edge>[] adj;

   public WeightedDigraph(int V)

   {

      this.V = V;

      adj = (SET<DirectedEdge>[]) new SET[V];

      for (int v = 0; v < V; v++)

         adj[v] = new SET<DirectedEdge>();

   }

   public void addEdge(DirectedEdge e)

   {

      int v = e.from();

      adj[v].add(e);

   }

   public Iterable<DirectedEdge> adj(int v)

   {  return adj[v];  }

}

Weighted digraph:  adjacency-set implementation in Java

same as weighted undirected 

graph, but only add edge to 

v's adjacency set
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public class DirectedEdge implements Comparable<DirectedEdge>

{

   private final int v, w;

   private final double weight;

   public DirectedEdge(int v, int w, double weight)

   {

      this.v = v;

      this.w = w;

      this.weight = weight;

   }

   public int from()   {  return v;       }

   public int to()     {  return w;       }

   public int weight() {  return weight;  }

   public int compareTo(Edge that)

   {

      if (this.v < that.v) return -1;

      if (this.v > that.v) return +1;

      if (this.w < that.w) return -1;

      if (this.w > that.w) return +1;

      return 0;

    }

}

Weighted directed edge:  implementation in Java

same as Edge, except

from() and to() replace

either() and other()

for use in a symbol table
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Shortest path data type

Design pattern.

• Dijkstra class is a WeightedDigraph client.

• Client query methods return distance and path iterator.

  public class Dijkstra

     Dijkstra(WeightedDigraph G, int s) shortest path from s in graph G

                 double distance(int v) length of shortest path from s to v

Iterable <DirectedEdge> path(int v) shortest path from s to v

In = new In("network.txt");

WeightedDigraph G = new WeightedDigraph(in);

int s = 0, t = G.V() - 1;

Dijktra dijkstra = new Dijkstra(G, s);

StdOut.println("distance = " + dijkstra.distance(t));

for (int v : dijkstra.path(t))

    StdOut.println(v);
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Find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

How difficult?

• Intractable.

• O(E) time.

• O(V) time.

• O(log V) time.

• O(log* V) time.

• Constant time.

Dijkstra implementation challenge

try all edges

Dijkstra with a binary heap

s

w

v

dist[v]

S

e

Dijkstra with an array priority queue

Q.  What goes onto the priority queue?

A.  Fringe vertices connected by a single edge to a vertex in S

      (priority = shortest path to last vertex in S + weight of single edge)

Starting to look familiar?

Dijkstra's algorithm implementation
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S

Maintain these invariants.

• For v in S, dist[v] is the length of the shortest path from s to v.

• For w not in S, dist[w] minimizes dist[v] + e.weight() among all edges e 

with v in S.

• PQ contains vertices w not in S, with dist[w] as priority.

Implications.

• To find next vertex w to add to S, delmin from PQ.

• To maintain invariants, update dist[] by relaxing all edges leaving w

(and update PQ if vertex not in S gets closer to a vertex in S)

Total running time.  Depends on PQ implementation.

• Exactly V delMin() operations.

• Exactly E edge relaxations.

• At most insert() operations.
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Dijkstra's algorithm:  PQ implementation approach
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Lazy Dijkstra’s algorithm example
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Initialize  dist[v] = " and marked[v] = false for all vertices v.

Remark.  Same as  LazyPrim except dist[v] is distance from s to v.
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Lazy implementation of Dijkstra's SPT algorithm

 MinPQplus<Double, Integer> pq = new MinPQplus<Double, Integer>();

 dist[s] = 0.0;

 pq.put(dist[s], s);

 while (!pq.isEmpty())

 {

    int v = pq.delMin();

    if (marked[v]) continue;

    marked(v) = true;

    for (Edge e : G.adj(v))

    {

       int w = e.to();

       if (dist[w] > dist[v] + e.weight())

       {

          dist[w] = dist[v] + e.weight();

          pred[w] = e;

          pq.insert(dist[w], w);

       }

    }

 }

relax edge e
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Dijkstra's algorithm:  which priority queue?

Running time of Dijkstra depends on PQ implementation.

Bottom line.

• Array implementation optimal for dense graphs.

• Binary heap far better for sparse graphs.

• d-way heap worth the trouble in performance-critical situations.

• Fibonacci heap best in theory, but not worth implementing.

PQ implementation insert delmin total

array 1 V V2

binary heap log V log V E log V

d-way heap (Johnson) logd V logd V E logd V

Fibonacci heap (Sleator-Tarjan) 1 log V E + V log V
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Priority-first search

Insight.  All of our graph-search methods are the same algorithm!

• Maintain a set of explored vertices S.

• Grow S by exploring edges with exactly one endpoint leaving S.

DFS.        Take edge from vertex which was discovered most recently.

BFS.        Take from vertex which was discovered least recently.

Prim.        Take edge of minimum weight.

Dijkstra.  Take edge to vertex that is closest to s.

Challenge.  Express this insight in reusable Java code.

s
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dist[v]
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e
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! Dijkstra's algorithm

! implementation

! negative weights



Problem.  Given currencies and exchange rates, what is best way to convert

one ounce of gold to US dollars?

• 1 oz. gold  #  $327.25.

• 1 oz. gold  #  £208.10  #  $327.00.

• 1 oz. gold  #  455.2 Francs  # 304.39 Euros  #  $327.28.
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Currency conversion

[ 208.10 $ 1.5714 ]

[ 455.2 $ .6677 $ 1.0752 ]

currency £ Euro ¥ Franc $ Gold

UK pound 1.0000 0.6853 0.005290 0.4569 0.6368 208.100

Euro 1.45999 1.0000 0.007721 0.6677 0.9303 304.028

Japanese Yen 189.50 129.520 1.0000 85.4694 120.400 39346.7

Swiss Franc 2.1904 1.4978 0.01574 1.0000 1.3941 455.200

US dollar 1.5714 1.0752 0.008309 0.7182 1.0000 327.250

Gold (oz.) 0.004816 0.003295 0.0000255 0.002201 0.003065 1.0000

Graph formulation.

• Vertex = currency.

• Edge = transaction, with weight equal to exchange rate.

• Find path that maximizes product of weights.

Challenge.  Express as a shortest path problem.
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Currency conversion

$G

£ EF

0.003065

1.3941
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

Reduce to shortest path problem by taking logs.

• Let weight of edge v!w be - lg (exchange rate from currency v to w).

• Multiplication turns to addition.

• Shortest path with given weights corresponds to best exchange sequence.

Challenge.  Solve shortest path problem with negative weights. 
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Currency conversion

-lg(455.2) = -8.8304

0.5827

-0.1046

¥

$G

£ EF

0.003065

1.3941
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

Dijkstra.  Doesn’t work with negative edge weights.

Re-weighting.  Add a constant to every edge weight also doesn’t work.

Bad news.  Need a different algorithm.
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Shortest paths with negative weights:  failed attempts
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Dijkstra selects vertex 3 immediately after 0.

But shortest path from 0 to 3 is 0!1!2!3.

Adding 9 to each edge changes the shortest path

because it adds 9 to each edge;

wrong thing to do for paths with many edges.
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Negative cycles

Def.  A negative cycle is a directed cycle whose sum of edge weights is negative.

Observations.  If negative cycle C is on a path from s to t, then shortest path

can be made arbitrarily negative by spinning around cycle.

Worse news.  Need a different problem.

s t

C
cost(C) < 0

-6

7

 -4
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Shortest paths with negative weights

Problem 1.  Does a given digraph contain a negative cycle?

Problem 2. Find the shortest simple path from s to t. 

Bad news.  Problem 2 is intractable.

Good news.  Can solve problem 1 in O(VE) steps;

if no negative cycles, can solve problem 2 with same algorithm!

s t

C
cost(C) < 0
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 Edge relaxation

Relaxation along edge e from v to w.

• dist[v] is length of some path from s to v.

• dist[w] is length of some path from s to w.

• If v!w gives a shorter path to w through v, update dist[w] and pred[w].

dist[w] = 47

dist[v] = 11

dist[s] = 0

int v = e.from(), w = e.to();

if (dist[w] > dist[v] + e.weight())

{   

    dist[w] = dist[v] + e.weight());

    pred[w] = e;

}

s
w

v

33

44
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Shortest paths with negative weights:  dynamic programming algorithm

A simple solution that works!

• Initialize dist[v] = ",  dist[s]= 0.

• Repeat V times:  relax each edge e.

for (int i = 1; i <= G.V(); i++)

   for (int v = 0; v < G.V(); v++)

      for (Edge e : G.adj(v))

      {

         int w = e.to();

         if (dist[w] > dist[v] + e.weight())

         {

             dist[w] = dist[v] + e.weight())

             pred[w] = e;

         }

      }

relax edge v-w

phase i
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Dynamic programming algorithm trace
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Dynamic programming algorithm

Running time.  Proportional to E V.

Invariant.  At end of phase i, dist[v] % length of any path from s to v

using at most i edges. 

Proposition.  If there are no negative cycles, upon termination dist[v] is the 

length of the shortest path from from s to v.

and pred[] gives the shortest paths
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Observation.  If dist[v] doesn't change during phase i,

no need to relax any edge leaving v in phase i+1.

FIFO implementation. Maintain queue of vertices whose distance changed.

Running time.  

• Proportional to EV in worst case.

• Much faster than that in practice.

Bellman-Ford-Moore algorithm

be careful to keep at most one copy of each vertex on queue
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Single source shortest paths implementation:  cost summary

Remark 1.  Negative weights makes the problem harder.

Remark 2.  Negative cycles makes the problem intractable.

algorithm worst case typical case

nonnegative
Dijkstra (array heap) V 2 V 2

costs
Dijkstra (binary heap) E lg V E

no negative
dynamic programming E V E V

cycles
Bellman-Ford E V E
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Shortest paths application:  arbitrage

Is there an arbitrage opportunity in currency graph?

• Ex:  $1  #  1.3941 Francs #  0.9308 Euros  #  $1.00084.

• Is there a negative cost cycle?

Remark.  Fastest algorithm is valuable!

0.5827

-0.1046

¥

$G

£ EF

0.003065

1.3941
208.100

 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

-0.4793

0.5827 - 0.1046 - 0.4793 < 0
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Negative cycle detection

If there is a negative cycle reachable from s.

Bellman-Ford-Moore gets stuck in loop, updating vertices in cycle.

Finding a negative cycle.  If any vertex v is updated in phase V,

there exists a negative cycle, and we can trace back pred[v] to find it.

pred[v]

s 3

v

2 6

1

4

5

Goal.  Identify a negative cycle (reachable from any vertex).

Solution.  Initialize Bellman-Ford by setting dist[v] = 0 for all vertices v.
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Negative cycle detection

¥

$G

£ EF

8.3499

-0.4793
-7.7011

-8.8303

-1.1311 0.5827

-0.1046
7.6979

-8.3542

¥

-7.0170

6.91111

Shortest paths summary

Dijkstra’s algorithm.

• Easy and optimal for dense digraphs.

• PQ yields near optimal for sparse graphs.

Priority-first search.

• Generalization of Dijkstra’s algorithm.

• Encompasses DFS, BFS, and Prim.

• Enables easy solution to many graph-processing problems.

Negative weights.

• Arise in applications.

• If negative cycles, problem is intractable (!)

• If no negative cycles, solvable via classic algorithms.

Shortest-paths is a broadly useful problem-solving model.
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