
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · January 30, 2009 11:29:33 AM

Symbol Tables

! API

! sequential search

! binary search

! BSTs

! ordered operations

! deletion in BSTs

2

Symbol tables

Key-value pair abstraction.

• Insert a value with specified key.

• Given a key, search for the corresponding value.

Ex. DNS lookup.

• Insert URL with specified IP address.

• Given URL, find corresponding IP address.

key

URL IP address

www.cs.princeton.edu 128.112.136.11

www.princeton.edu 128.112.128.15

www.yale.edu 130.132.143.21

www.harvard.edu 128.103.060.55

www.simpsons.com 209.052.165.60

value

3

Symbol table applications

application purpose of search key value

dictionary look up word word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name value and type

routing table route Internet packets destination best route

DNS find IP address given URL URL IP address

reverse DNS find URL given IP address IP address URL

genomics find markers DNA string known positions

file system find file on disk filename location on disk

4

Symbol table API

Associative array abstraction. Associate one value with each key.

a[key] = val;

a[key]

public class ST<Key, Value>

ST() create a symbol table

void put(Key key, Value val)
put key-value pair into the symbol table
(remove key from table if value is null)

Value get(Key key)
value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs in the table
Iterable<Key> keys() all the keys in the symbol table

API for a generic basic symbol table

5

Conventions

• Values are not null.

• Method get() returns null if key not present.

• Method put() overwrites old value with new value.

Intended consequences.

• Easy to implement contains().

• Can implement lazy version of delete().

 public boolean contains(Key key)

 { return get(key) != null; }

 public boolean delete(Key key)

 { put(key, null); }

6

Keys and values

Value type. Any generic type.

Key type: several natural assumptions.

• Assume keys are Comparable, use compareTo().

• Assume keys are any generic type, use equals() to test equality.

• Assume keys are any generic type, use equals() to test equality

and hashCode() to scramble key.

Best practices. Use immutable types for symbol table keys.

• Immutable in Java: String, Integer, BigInteger, …

• Mutable in Java: Date, GregorianCalendar, StringBuilder, ...

ST test client for traces

Build ST by associating value i with ith command-line argument.

7

public static void main(String[] args)

{

 ST<String, Integer> st = new ST<String, Integer>();

 for (int i = 0; i < args.length; i++)

 st.put(args[i], i);

 for (String s : st)

 StdOut.println(s + " " + st.get(s));

}

Keys, values, and output for test client

STunordered output
(one possibility)

ST output

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

A 8
C 4
E 12
H 5
L 9
M 11
P 10
R 3
S 0
X 7

Keys, values, and output for test client

STunordered output
(one possibility)

ST output

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

A 8
C 4
E 12
H 5
L 9
M 11
P 10
R 3
S 0
X 7

keys

values

output

ST test client for analysis

Frequency Counter.

Read a sequence of strings from standard input and print out the number of

times each string appears.

8

% more tiny.txt

it was the best of times

it was the worst of times

it was the age of wisdom

it was the age of foolishness

% java FrequencyCounter 0 < tiny.txt

2 age

1 best

1 foolishness

4 it

4 of

4 the

2 times

4 was

1 wisdom

1 worst

% more tale.txt

it was the best of times

it was the worst of times

it was the age of wisdom

it was the age of foolishness

it was the epoch of belief

it was the epoch of incredulity

it was the season of light

it was the season of darkness

...

% java FrequencyCounter 0 < tale.txt

2941 a

1 aback

1 abandon

10 abandoned

1 abandoning

1 abandonment

1 abashed

1 abate

1 abated

...

tiny example

24 words

10 distinct
real example

137177 words

9888 distinct

public class FrequencyCounter

{

 public static void main(String[] args)

 {

 int minlen = Integer.parseInt(args[0]);

 ST<String, Integer> st = new ST<String, Integer>();

 while (!StdIn.isEmpty())

 {

 String word = StdIn.readString();

 if (word.length() < minlen) continue;

 if (!st.contains(word)) st.put(word, 1);

 else st.put(word, st.get(word) + 1);

 }

 String max = "";

 for (String word : st.keys())

 if (st.get(word) > st.get(max))

 max = word;

 StdOut.println(max + " " + st.get(max));

 }

}

9

Frequency counter implementation

read string and

update frequency

print all strings

create ST

ignore short strings

10

! API
! sequential search
! binary search
! BSTs
! applications

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.

Insert. Scan through all keys until find a match; if no match add to front.

11

Sequential search in a linked list

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

12

Elementary ST implementations: summary

Challenge. Efficient implementations of both search and insert.

ST implementation
worst caseworst case average caseaverage case ordered operations

ST implementation
search insert search hit insert iteration? on keys

sequential search

(unordered list)
N N N / 2 N no equals()

Costs for java FrequencyCounter 8 < tale.txt using LinkedListST

5000

2246

0

13

! API
! sequential search
! binary search
! BSTs
! applications

14

Binary search

Data structure. Maintain an ordered array of key-value pairs.

Search. Binary search.

Insert. Binary search for key; if no match insert and shift larger keys.

loop exits with lo > hi: return 7

entries in black
are a[lo..hi]

entry in red is a[m]

successful search for P

loop exits with keys[m] = P: return 6

lo hi m

unsuccessful search for Q

lo hi m

 keys[]
 0 1 2 3 4 5 6 7 8 9

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
6 6 6 A C E H L M P R S X

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
7 6 6 A C E H L M P R S X

Trace of binary search for rank in an ordered array

15

Binary search: Java implementation

 public Value get(Key key)

 {

 int i = bsearch(key);

 if (i == -1) return null;

 return vals[i];

 }

 private int bsearch(Key key)

 {

 int lo = 0, hi = N-1;

 while (lo <= hi)

 {

 int m = lo + (hi - lo) / 2;

 int cmp = key.compareTo(keys[m]);

 if (cmp < 0) hi = m - 1;

 else if (cmp > 0) lo = m + 1;

 else if (cmp == 0) return m;

 }

 return -1;

 }

symbol table method

helper binary search method

not found

16

Binary search: mathematical analysis

Proposition. Binary search uses ~ lg N compares to search any array of size N.

Def. T(N) ! number of compares to binary search in a sorted array of size N.

 " T(N / 2) + 1

Binary search recurrence. T(N) ! T(N / 2) + 1 for N > 1, with T(1) = 1.

• Not quite right for odd N.

• Same recurrence holds for many algorithms.

Solution. T(N) ~ lg N.

• For simplicity, we'll prove when N is a power of 2.

• True for all N. [see COS 340]

left or right half

Binary search recurrence. T(N) ! T(N / 2) + 1 for N > 1, with T(1) = 1.

Proposition. If N is a power of 2, then T(N) ! lg N + 1.

Pf.

17

Binary search recurrence

 T(N) ! T(N / 2) + 1

 ! T(N / 4) + 1 + 1

 ! T(N / 8) + 1 + 1 + 1

 . . .

 ! T(N / N) + 1 + 1 + … + 1

 = lg N + 1

given

apply recurrence to first term

apply recurrence to first term

stop applying, T(1) = 1

Problem. To insert, need to shift all greater keys over.

18

Binary search: trace of standard indexing client

Trace of ordered-array ST implementation for standard indexing client

 keys[] vals[]
 0 1 2 3 4 5 6 7 8 9 N 0 1 2 3 4 5 6 7 8 9

 S 0 S 1 0
 E 1 E S 2 1 0
 A 2 A E S 3 2 1 0
 R 3 A E R S 4 2 1 3 0
 C 4 A C E R S 5 2 4 1 3 0
 H 5 A C E H R S 6 2 4 1 5 3 0
 E 6 A C E H R S 6 2 4 6 5 3 0
 X 7 A C E H R S X 7 2 4 6 5 3 0 7
 A 8 A C E H R S X 7 8 4 6 5 3 0 7
 M 9 A C E H M R S X 8 8 4 6 5 9 3 0 7
 P 10 A C E H M P R S X 9 8 4 6 5 9 10 3 0 7
 L 11 A C E H L M P R S X 10 8 4 6 5 11 9 10 3 0 7
 E 12 A C E H L M P R S X 10 8 4 12 5 11 9 10 3 0 7

 A C E H L M P R S X 8 4 12 5 11 9 10 3 0 7

entries in gray
did not move circled entries are

changed values

entries in black
moved to the rightentries in red

were inserted

key value

19

Elementary ST implementations: summary

Challenge. Efficient implementations of both search and insert.

ST implementation
worst caseworst case average caseaverage case ordered operations

ST implementation
search insert search hit insert iteration? on keys

sequential search

(unordered list)
N N N / 2 N no equals()

binary search

(ordered array)
 log N N log N N / 2 yes compareTo()

Costs for java FrequencyCounter 8 < tale.txt using OrderedArrayST

5000

484
0

20

! API
! sequential search
! binary search
! challenges

Searching challenge 1A

Problem. Maintain symbol table of song names for an iPod.

Assumption A. Hundreds of songs.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn’t matter much, all fast enough.

21

Searching challenge 1B

Problem. Maintain symbol table of song names for an iPod.

Assumption B. Thousands of songs.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn’t matter much, all fast enough.

22

Searching challenge 2A:

Problem. IP lookups in a web monitoring device.

Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn’t matter much, all fast enough.

23

Searching challenge 2B

Problem. IP lookups in a web monitoring device.

Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn’t matter much, all fast enough.

24

Searching challenge 3

Problem. Frequency counts in “Tale of Two Cities.”

Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn’t matter much, all fast enough.

25

Searching challenge 4

Problem. Spell checking for a book.

Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn’t matter much, all fast enough.

26

27

! API
! sequential search
! binary search
! challenges
! BSTs

Def. A BST is a binary tree in symmetric order.

A binary tree is either:

• Empty.

• Two disjoint binary trees (left and right).

Symmetric order.

Each node has a key, and every node’s key is:

• Larger than all keys in its left subtree.

• Smaller than all keys in its right subtree.

28

Binary search trees

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E

key

A
C

E

H
R

S
X

9

Anatomy of a binary search tree

A BST is a reference to a root node.

A Node is comprised of four fields:

• A Key and a Value.

• A reference to the left and right subtree.

29

BST representation in Java

smaller keys larger keys

private class Node

{

 private Key key;

 private Value val;

 private Node left, right;

 public Node(Key key, Value val)

 {

 this.key = key;

 this.val = val;

 }

}

Key and Value are generic types; Key is Comparable

Binary search tree

BST with smaller keys BST with larger keys

key

left right

val

BST

Node

public class BST<Key extends Comparable<Key>, Value>

{

 private Node root;

 private class Node

 { /* see previous slide */ }

 public void put(Key key, Value val)

 { /* see next slides */ }

 public Value get(Key key)

 { /* see next slides */ }

 public void delete(Key key)

 { /* see next slides */ }

 public Iterable<Key> iterator()

 { /* see next slides */ }

}

30

BST implementation (skeleton)

root of BST

Get. Return value corresponding to given key, or null if no such key.

31

BST search

R is less than S
so look to the left

black nodes could
match the search key

gray nodes cannot
match the search key

found R
(search hit)

so return value

R is greater than E
so look to the right

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

T is less than X
so look to the left

link is null
so T is not in tree

(search miss)

T is greater than S
so look to the right

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Successful (left) and unsuccessful (right) search in a BST

successful search for R unsuccessful search for T

Get. Return value corresponding to given key, or null if no such key.

Running time. Proportional to depth of node.

32

BST search: Java implementation

 public Value get(Key key)

 {

 Node x = root;

 while (x != null)

 {

 int cmp = key.compareTo(x.key);

 if (cmp < 0) x = x.left;

 else if (cmp > 0) x = x.right;

 else if (cmp == 0) return x.val;

 }

 return null;

 }

Put. Associate value with key.

Search for key, then two cases:

• key in tree: reset value

• key not in tree: add new node

33

BST insert

search for L ends
at this null link

reset links and
increment counts

on the way up

create new node
1

3

2

4

3

5

4

8

7

10

9

A
C

E

H
M

P

R

S
X

A
C

E

H

L

M
P

R

S
X

A
C

E

H

L
M

P

R

S
X

Insertion into a BST

inserting L Put. Associate value with key.

Running time. Proportional to depth of node.

34

BST insert: Java implementation

 public void put(Key key, Value val)

 { root = put(root, key, val); }

 private Node put(Node x, Key key, Value val)

 {

 if (x == null) return new Node(key, val);

 int cmp = key.compareTo(x.key);

 if (cmp < 0)

 x.left = put(x.left, key, val);

 else if (cmp > 0)

 x.right = put(x.right, key, val);

 else if (cmp == 0)

 x.val = val;

 return x;

 }

concise, but tricky,

recursive code;

read carefully!

search for L ends
at this null link

reset links and
increment counts

on the way up

create new node
1

3

2

4

3

5

4

8

7

10

9

A
C

E

H
M

P

R

S
X

A
C

E

H

L

M
P

R

S
X

A
C

E

H

L
M

P

R

S
X

Insertion into a BST

inserting L

35

BST trace: standard indexing client

S

A
C

E

H
R

S
X

A
C

E

H
R

S

A
C

E

H
R

S

A
C

E
R

S

A
E

R

A
E

S

S

E
S

S

6

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

red nodes
are new

black nodes
are accessed

in search

changed
value

changed
value

changed
value

gray nodes
are untouched

A
C

E

H
M

P

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
R

S
X

A
C

E

H

L
M

P

R

S
X

A
C

E

H

L
M

P

R

S
X12

8

A 8

M 9

P 10

L 11

E 12

BST trace for standard indexing client

key value key value

• Many BSTs correspond to same set of keys.

• Cost of search/insert is proportional to depth of node.

Remark. Tree shape depends on order of insertion.

36

Tree shape

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

Observation. If keys inserted in random order, tree stays relatively flat.

37

BST insertion: random order

Typical BST built from random keys (N = 256)

38

BST insertion: random order visualization

Ex. Insert keys in random order.

39

Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1-1 if no duplicate keys.

A

C

E

I

K

L

M

O

P

Q

R

S

T

U

UE

40

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of

compares for a search/insert is ~ 2 ln N.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order,

expected height of tree is ~ 4.311 ln N.

But… Worst-case for search/insert/height is N.

(exponentially small chance when keys are inserted in random order)

41

ST implementations: summary

Next challenge. Ordered symbol tables ops in BSTs.

implementation
guaranteeguarantee average caseaverage case ordered operations

implementation
search insert search hit insert ops? on keys

sequential search

(unordered list)
N N N/2 N no equals()

binary search

(ordered array)
lg N N lg N N/2 yes compareTo()

BST N N 1.39 lg N 1.39 lg N ? compareTo()

Costs for java FrequencyCounter 8 < tale.txt using BST

20

13

0

42

! basic implementations

! randomized BSTs

! ordered symbol table ops

Minimum. Smallest key in table.

Maximum. Largest key in table.

Floor. Largest key ! to a given key.

Ceiling. Smallest key " to a given key.

Rank. Number of keys < than given key.

Select. Key of given rank.

Size. Number of keys in a given range.

Iterator. All keys in order.

Ordered symbol table operations

43

09:00:00 Chicago
09:00:03 Phoenix
09:00:13 Houston
09:00:59 Chicago
09:01:10 Houston
09:03:13 Chicago
09:10:11 Seattle
09:10:25 Seattle
09:14:25 Phoenix
09:19:32 Chicago
09:19:46 Chicago
09:21:05 Chicago
09:22:43 Seattle
09:22:54 Seattle
09:25:52 Chicago
09:35:21 Chicago
09:36:14 Seattle
09:37:44 Phoenix

keys values

get(09:00:13)

ceiling(09:30:00)

keys(09:15:00, 09:25:00)

size(09:15:00, 09:25:00) is 5
rank(09:10:25) is 7

floor(09:05:00)

min()

select(7)

max()

Examples of ordered symbol-table operations

Minimum. Smallest key in table.

Maximum. Largest key in table.

Q. How to find the min / max.

A.

Minimum and maximum

44

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()

max

min

Floor. Largest key ! to a given key.

Ceiling. Smallest key " to a given key.

Q. How to find the floor /ceiling.

A.

Floor and ceiling

45

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()

floor(D)

ceiling(Q)

Computing the floor

46

floor(G)in left
subtree is null

result

!nding floor(G)

G is greater than E so
floor(G) could be

on the right

G is less than S so
floor(G) must be

on the left

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Computing the "oor function

public Key floor(Key key)

{

 Node x = floor(root, key);

 if (x == null) return null;

 return x.key;

}

private Node floor(Node x, Key key)

{

 if (x == null) return null;

 int cmp = key.compareTo(x.key);

 if (cmp == 0) return x;

 if (cmp < 0) return floor(x.left, key);

 Node t = floor(x.right, key);

 if (t != null) return t;

 else return x;

}

In each node, we store the number of nodes in the subtree rooted at that node.

To implement size(), return the count at the root.

Remark. This facilitates efficient implementation of rank() and select().

47

Subtree counts and size()

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

 public int size()

 { return size(root); }

 private int size(Node x)

 {

 if (x == null) return 0;

 return x.N;

 }

48

BST implementation: subtree counts and size()

private class Node

{

 private Key key;

 private Value val;

 private Node left;

 private Node right;

 private int N;

}

 private Node put(Node x, Key key, Value val)

 {

 if (x == null) return new Node(key, val);

 int cmp = key.compareTo(x.key);

 if (cmp < 0) x.left = put(x.left, key, val);

 else if (cmp > 0) x.right = put(x.right, key, val);

 else if (cmp == 0) x.val = val;

 x.N = 1 + size(x.left) + size(x.right);

 return x;

 }

nodes in subtree

49

Rank

How many keys < k ?

Easy recursive algorithm (4 cases!)

public int rank(Key key)

{ return rank(key, root); }

private int rank(Key key, Node x)

{

 if (x == null) return 0;

 int cmp = key.compareTo(x.key);

 if (cmp < 0) return rank(key, x.left);

 else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);

 else return size(x.left);

}

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

50

Range count

How many keys between lo and hi?

public int size(Key lo, Key hi)

{

 if (contains(hi)) return rank(hi) - rank(lo) - 1;

 else return rank(hi) - rank(lo);

}

number of keys < hi

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Property. Inorder traversal of a BST yields keys in ascending order.

key

key

val

BST with smaller keys

smaller keys, in order larger keys, in order

all keys, in order

BST with larger keys

left right

BST

Inorder traversal

51

public Iterable<Key> allKeys()

{

 Queue<Key> q = new Queue<Key>();

 inorder(root, queue);

 return q;

}

private void inorder(Node x, Queue<Key> q)

{

 if (x == null) return;

 inorder(x.left, q);

 q.enqueue(x.key);

 inorder(x.right, q);

}

• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Inorder traversal

52

function call stack

visit(S)

 visit(E)

 visit(A)

 enqueue A

 visit(C)

 enqueue C

 enqueue E

 visit(R)

 visit(H)

 enqueue H

 visit(M)

 enqueue M

 print R

 enqueue S

 visit(X)

 enqueue X

 A

 C

 E

 H

 M

 R

 S

 X

S

S E

S E A

S E A C

S E R

S E R H

S E R H M

S X

queuerecursive calls

A

A C E H M R S X

C

E

H
M

R

S
X

53

ST implementations: summary

Next.

• Deletion in BSTs

• Can we guarantee logarithmic performance?

implementation

guaranteeguarantee average caseaverage caseaverage case
ordered operations

implementation

search insert delete
search

hit
insert delete

iteration? on keys

sequential search

(linked list)
N N N N/2 N N/2 no equals()

binary search

(ordered array)
lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

Problem. Frequency counts in “Tale of Two Cities”

Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn’t matter much, all fast enough.

5) BSTs.

Searching challenge 3 (revisited):

54

insertion cost < 10000 * 1.38 * lg 10000 < .2 million
lookup cost < 135000 * 1.38 * lg 10000 < 2.5 million

!

55

! basic implementations

! randomized BSTs

! deletion in BSTs

56

BST deletion: lazy approach

To remove a node with a given key:

• Set its value to null.

• Leave key in tree to guide searches (but don't consider it equal to search key).

Cost. O(log N') per insert, search, and delete (if keys in random order),

where N' is the number of elements ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.

delete I

S

E

C

A

N

RH

I

S

E

C

A

N

RH

! tombstone

To delete the minimum key:

• Go left until finding a node with a null left link.

• Replace that node by its right link.

• Update subtree counts.

57

Deleting the minimum

 public void deleteMin()

 { root = deleteMin(root); }

 private Node deleteMin(Node x)

 {

 if (x.left == null) return x.right;

 x.left = deleteMin(x.left);

 x.N = 1 + size(x.left) + size(x.right);

 return x;

 }

go left until
reaching null

left link

return that
node’s right link

available for
garbage collection

5

7

update links and counts
after recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

C
E

H
M

R

S
X

Deleting the minimum in a BST

node to delete

replace with
null link

available for
garbage

collection

update counts after
recursive calls

5

1

7

A
C

E

H
M

C

R

S
X

A
E

H
M

R

S
X

A
E

H
M

R

S
X

deleting C

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

58

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

59

Hibbard deletion

node to delete
replace with

child link available for
garbage

collection

A
C C C

E

H
M

R

R

S
X

A
E

H
M

S
X

A
E

H
M

S
X

deleting R
update counts after

recursive calls

5

7

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

• Find successor x of t.

• Delete the minimum in t's right subtree.

• Put x in t's spot.

60

Hibbard deletion

x has no left child

but don't garbage collect x

still a BST

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
 min(t.right)

t.left

x

update links and
node counts after

recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

H

A
C

H

M
R

M
R

S
X

E
S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
 min(t.right)

t.left

x

update links and
node counts after

recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

H

A
C

H

M
R

M
R

S
X

E
S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

61

Hibbard deletion: Java implementation

 public void delete(Key key)

 { root = delete(root, key); }

 private Node delete(Node x, Key key) {

 if (x == null) return null;

 int cmp = key.compareTo(x.key);

 if (cmp < 0) x.left = delete(x.left, key);

 else if (cmp > 0) x.right = delete(x.right, key);

 else {

 if (x.right == null) return x.left;

 Node t = x;

 x = min(t.right);

 x.right = deleteMin(t.right);

 x.left = t.left;

 }

 x.N = size(x.left) + size(x.right) + 1;

 return x;

 }

no right child

replace with

successor

search for key

update subtree

counts

62

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) # sqrt(N) per op.

Longstanding open problem. Simple and efficient delete for BSTs.

63

ST implementations: summary

Next lecture. Guarantee logarithmic performance for all operations.

implementation

guaranteeguarantee average caseaverage caseaverage case
ordered operations

implementation

search insert delete
search

hit
insert delete

iteration? on keys

sequential search

(linked list)
N N N N/2 N N/2 no equals()

binary search

(ordered array)
lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N !N yes compareTo()

other operations also become #N

if deletions allowed

