Symbol tables

Key-value pair abstraction.
* Insert a value with specified key.

Sym bol Tables + Given a key, search for the corresponding value.

Ex. DNS lookup.
 Insert URL with specified IP address.

put = ke S + Given URL, find corresponding IP address.
- secn
get right _Section
nodetgble » API
v ethod & » sequential search URL IP address
time Exercise = K
imple?ﬁ:éﬁtations » bina ry search www.cs.princeton.edu 128.112.136.11
val:ssg.given » BSTS www.princeton.edu 128.112.128.15
"“"'e'"e':u‘:’?" » ordered operations www.yale.edu 130.132.143.21
using ggé . .
da(';iig:\vtﬁ'%in » deletion in BSTs www.harvard.edu 128.103.060.55
wmireeuse

soger

BSTsearch www . simpsons . com 209.052.165.60

I I

key value

Algorithms in Java, 4" Edition . Robert Sedgewick and Kevin Wayne . Copyright ©2008 - January 30, 2009 11:29:33 AM

Symbol table applications Symbol table APT

Associative array abstraction. Associate one value with each key.

dictionary look up word word definition public class ST<Key, Value>
book index find relevant pages term list of page numbers STO create a symbol table
. . . put key-value pair into the symbol table
file share find song to download name of song computer ID void put(Key key, Value val) (remove key from table if value is null) <— alkeyl = val;
financial account process transactions account number transaction details value get(Key key) value paired with key «— alkey]
(nu11 if key is absent)
web search find relevant web pages keyword list of page names void delete(Key key) remove key (and its value) from table
compiler find properties of variables variable name value and type boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?
routing table route Internet packets destination best route int sizeQ number of key-value pairs in the table
DNS find IP address given URL URL IP address Iterable<Key> keys() all the keys in the symbol table
reverse DNS find URL given IP address IP address URL APIfor a generic basic symbol table
genomics find markers DNA string known positions
file system find file on disk filename location on disk

Conventions

* Values are not nuli.
* Method get () returns nui1 if key not present.
¢ Method put () overwrites old value with new value.

Intended consequences.

* Easy to implement contains ().

public boolean contains (Key key)
{ return get(key) '= null; }

* Can implement lazy version of delete().

public boolean delete (Key key)
{ put(key, null); }

ST test client for traces
Build ST by associating value i with ith command-line argument.

public static void main(String[] args)
{
ST<String, Integer> st = new ST<String, Integer>();
for (int i = 0; i < args.length; i++)
st.put(args[i], i);
for (String s : st)
StdOut.println(s + " " + st.get(s)); output

kys S E AR CHENXAMPLE

values 0 1 2 3 4 5 6 7 8 91011 12
11

10

X W»nW X TWE2r-rTmMmMN >

Keys and values

Value type. Any generic type.

Key type: several natural assumptions.

¢ Assume keys are Comparable, US€ compareTo ().

* Assume keys are any generic type, use equals() to test equality.

* Assume keys are any generic type, use equals() to test equality
and hashcode () to scramble key.

Best practices. Use immutable types for symbol table keys.
¢ Immutable in Java: string, Integer, BigInteger, ...

¢ Mutable in Java: Date, GregorianCalendar, StringBuilder, ...

ST test client for analysis

Frequency Counter.
Read a sequence of strings from standard input and print out the number of
times each string appears.

% more tiny.txt % more tale.txt
it was the best of times it was the best of times
it was the worst of times it was the worst of times
it was the age of wisdom it was the age of wisdom
it was the age of foolishness it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
% java FrequencyCounter 0 < tiny.txt it was the season of light
2 age it was the season of darkness
1 best
1 foolishness
4 it % java FrequencyCounter 0 < tale.txt
4 of <“— tiny example 2941 a
4 the 24 words 1 aback
2 s 10 distinct 1 it
4 was 10 abandoned <«— real example
1 wisdom 1 abandoning 137177 words
1 worst 1 abandonment 9888 distinct
1 abashed
1 abate
1 abated

Frequency counter implementation

public class FrequencyCounter
{
public static void main(String[] args)
{
int minlen = Integer.parselnt(args[0]);
ST<String, Integer> st = new ST<String, Integer>(); «——f— create ST
while (!StdIn.isEmpty())
{
String word = StdIn.readString(); __— 9'°° short strings
if (word.length() < minlen) continue; <«——F— read string and
if (!st.contains(word)) st.put(word, 1); update frequency

else st.put(word, st.get(word) + 1); > sequ ial search
}

String max = "";
for (String word : st.keys()) —
if (st.get(word) > st.get(max))
max = word;
StdOut.println(max + " " + st.get(max));

—— print all strings

Sequential search in a linked list Elementary ST implementations: summary

ST implementation iteration? K

sequential search N N N/?2 N

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.

ol 428 2 . equals ()

Insert. Scan through all keys until find a match; if no match add to front. (unordered list) ne

keyvalue first red nodes

s 0 / are new

E 1 e —5000

A 2 /m:uum

R 3

¢ }‘- circled entries are

s --(7,m,gm vales 2246

£ 6 [[s-{c[e]~[R3I~[al2]~

x 7 }»} ;

A8 -- —

Moo ‘ —0

" 10 [0 5] X [7| R Ts] el D] {aT] {Tel Costsfor .

java FrequencyCounter 8 < tale.txt using LinkedListST
t 1 [Luf—~{P[ao~{u]o] @
£ 12
Trace of linked-list ST implementation for standard indexing client Challenge EfflClen‘i’ implemen‘i’aﬁons Of bo*h Seal"ch ﬂnd inSer‘f

Binary search: Java implementation

public Value get(Key key)
{

int i = bsearch (key) ;

if (i == -1) return null;
return vals[i];
}
private int bsearch (Key key)
{
int lo = 0, hi = N-1;
while (lo <= hi)
{
intm=1lo + (hi - lo) / 2;
int cmp = key.compareTo (keys[m]) ;
if (cmp < 0) hi =m - 1;
else if (cmp > 0) lo=m + 1;
else return m;
}
return -1; —

symbol table method

—— helper binary search method

not found

Binary search
Data structure. Maintain an ordered array of key-value pairs.

Search. Binary search.
Insert. Binary search for key: if no match insert and shift larger keys.

keys[]

successfulsearchforP 0 1 2 3 4 5 6 7 8 9

To him

0 9 4 A CEHTLMTPT RS X entries in black

5 9 7 M PR S X/arfaﬂo..hi]

Z g Z . E \fmryin red is a[m]
unsuccessful search for Q ™~ loop exits with keys[m] = P: return6

To him

0 9 4 A CEHLMPRSX

5 9 7 M P R S X

56 5 M P

7.6 6 P

\hmp exitswith1o > hi: return 7

Trace of binary search for rank in an ordered array

Binary search: mathematical analysis
Proposition. Binary search uses ~1g N compares to search any array of size N.

Def. T(N) = number of compares to binary search in a sorted array of size N.
< TW/2) + 1

left or right half

Binary search recurrence. T(N) < T(N/2) + 1 for N> 1, with T(1)=1.
* Not quite right for odd N.
* Same recurrence holds for many algorithms.

Solution. T(N) ~ IgN.
* For simplicity, we'll prove when N is a power of 2.
e True for all N. [see COS 340]

Binary search recurrence
Binary search recurrence. TW)<T(N/2)+1 for N > 1, with T(1)=1.

Proposition. If Nis a power of 2, then TW) < IgN + 1.

Pf.
TN) <T(N/2) + 1 given
<T(N/4) +1+1 apply recurrence to first term
STIN/8) +1+1+1 apply recurrence to first term
<STWN/N) + 1+ 1+ ... +1 stop applying, T(1) = 1
=1IgN + 1

Elementary ST implementations: summary

ot imolementat —
implementation) .
sequential search N N N/2 N
: no equals ()
(unordered list) /
binary search log N N log N N/2 yes compareTo ()

(ordered array)

—5000

—484
—0

Costs for java FrequencyCounter 8 < tale.txt using OrderedArrayST

Challenge. Efficient implementations of both search and insert.

Binary search: frace of standard indexing client

Problem. To insert, need to shift all greater keys over.

key value

S

MmMME 9 =ET>XMmMIMN=I>m

0

© ® N VA WN R

B
N = O

vals[]

keys[]
01 2 3 456 7 89
S
E S entries in red
A E S — were inserted
R S
CERS entries in gray
H R S/didnmmave
X
M R S X
P R S X
L M P RS X

A CEHLMPRSX

© NNV A WN R Z

B o
o o

12 3 45 6 7 89

0 entries in black

moved to the right
1o ¢

N H O O

ES
oW
v w o

0
3 circled entries are

@ ———— changed values

8 412 511 910 3 0 7

» challenges

20

Searching challenge 1A

Problem. Maintain symbol table of song names for an iPod.
Assumption A. Hundreds of songs.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.

Searching challenge 2A:

Problem. IP lookups in a web monitoring device.
Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.

23

Searching challenge 1B

Problem. Maintain symbol table of song names for an iPod.
Assumption B. Thousands of songs.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.

Searching challenge 2B

Problem. IP lookups in a web monitoring device.
Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.

Searching challenge 3

Problem. Frequency counts in “Tale of Two Cities."
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.

25

27

Searching challenge 4

Problem. Spell checking for a book.
Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.

Binary search trees

Def. A BST is a binary tree in symmetric order.

root

a left link
N\

a subtree

A binary tree is either:
* Empty. QQ

* Two disjoint binary trees (left and right).

right child
of root

null links

Anatomy of a binary tree

parent of A and R iy
left link
Symmetric order. ofE

9 N vulye
e QY (B e
* Larger than all keys in its left subtree.

/ \
» Smaller than all keys in its right subtree. bl SmeE (g lnge dim

Anatomy of a binary search tree

Each node has a key, and every node's key is:

BST representation in Java
A BST is a reference to a root node.

A Node is comprised of four fields:

A Key and a value.
* A reference to the left and right subtree.

A\

smaller keys larger keys

private Key key; BST
private Value val;
private Node left, right; Node

L [~_]

\

Jeft right

BST with smaller keys BST with larger keys

Binary search tree

Key and Value are generic types; Key is Comparable
29

BST search

Get. Return value corresponding to given key, or null if ho such key.

successful search for R unsuccessful search for T

R is less than S
50 look to the left T is greater than S

black nodes could (M) so look to the right

match the search key

gray nodes cannot

m match the search key T is less than X

R is greater than E
o s0 look to the left

so look to the right

link is null
0 so T is not in tree

(search miss)
® — found R
(search hit)
so return value

31

BST implementation (skeleton)

private Node root;

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

Running time. Proportional to depth of node.

root of BST

30

32

BST insert BST insert: Java implementation

Put. Associate value with key. Put. Associate value with key.

inserting L 9
concise, but tricky,
de;
public void put(Key key, Value val) :ii‘;ri:i:z”j
Search for key, then two cases: { root = put(root, key, val); } ~—
* key in free: reset value inserting L
X search for L ends — private Node put(Node x, Key key, Value val) °
* key not in tree: add new node at this null link {
if (x == null) return new Node (key, val);
int cmp = key.compareTo (x.key) ;
if (cmp < 0) search for L ends "
x.left = put(x.left, key, val); at this null link
create new YlOdL’ —»1 else 1_f (c‘np > 0) .
x.right = put(x.right, key, val);
10 else if (cmp == 0)
8 x.val = val; create new node AIQ
> return x; 0
4o — } o
N~ 3 -
reset links and 7 ’ /z
iVl(VCIIlCVlICOMVlIS \
on the way up N . incvemontcounts (Y
Running time. Proportional to depth of node. o the way s
33
BST trace: standard indexing client Tree shape
key value key value
s R A s © S * Many BSTs correspond fo same set of keys.
@ * Cost of search/insert is proportional to depth of node.
_— g{g !
9 M9
A2 lack nodes
(& i earch
/
®
R 3 (€Y red nodes
best case typical case worst case
O) P 10 m
c 4 (&
B g < 9
© are untouched Q G @ @
H 5
00 L 11
changed
value N\ ®/©
6
E 6
changed
vale N ®/®
12 . .
% E 12 Remark. Tree shape depends on order of insertion.
X 7
35

BST insertion: random order

Observation. If keys inserted in random order, tree stays relatively flat.

Correspondence between BSTs and quicksort partitioning

QUICKSORTEXAMPLE

ERATESLPUIMQCZXOK
ECA/I E®LPUTMQRXOS

Ac@®IE
2©
®
EQD
LPORMQEXUT
L POMQR
LMo P
©
®
©
®
@u/x
®
©

ACEEIKLMOPQRSTUX

Remark. Correspondence is 1-1 if no duplicate keys.

37

39

BST insertion: random order visualization

Ex. Insert keys in random order.

N = 255

(] &

, S

' ".s‘,nl as iy
] I\

I

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of

compares for a search/insert is ~ 2 In N.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order,
expected height of treeis ~ 4.311 In N.

But.. Worst-case for search/insert/height is N.
(exponentially small chance when keys are inserted in random order)

ST implementations: summary

lenent T -
implementation N
N N no

sequential search
(unordered list) N be

on keys

equals ()

binary search

(ordered array) b N lgN N/2 yes compareTo ()

BST N N 1.391g N 1.391g N ? compareTo ()

@ » ordered symbol table ops

Costs for java FrequencyCounter 8 < tale.txt using BST

Next challenge. Ordered symbol tables ops in BSTs.

41 42
Ordered symbol table operations Minimum and maximum
Minimum. Smallest key in table. Minimum. Smallest key in table.
Maximum. Largest key in table. Maximum. Largest key in table.

Floor. Largest key < to a given key.
Ceiling. Smallest key > to a given key.
Rank. Number of keys < than given key.

keys values

minO—=09:00:00 Chicago

Select. Key of given rank. 09:00:03 Phoenix
) . . “487744,13».Houst0n
Size. Number of keys in a given range. 9et(09:00:13) Chicago
09:01: Houston

Tterator. All keys in order. F100r(09:05:00)—~09:03:13 Chicago

09:10:11 Seattle
select(7)—>-09:10:25 Seattle
09:14:25 Phoenix

09:19:32 Chicago

09:19:46 Chicago

keys(09:15:00, 09:25:00)—=|09:21:05 Chicago
09:22:43 Seattle

09:22:54 Seattle

09:25:52 Chicago
ceiling(09:30:00)—09:35:21 Chicago
09:36:14 Seattle

max()—>09:37:44 Phoenix

$ize(09:15:00, 09:25:00) is § Q. How to find the min / max.
rank(09:10:25) is 7 A

43 44

Floor and ceiling

Floor. Largest key < to a given key.
Ceiling. Smallest key > to a given key.

floor(D)

Q. How to find the floor /ceiling.
A.

Subtree counts and size ()

In each node, we store the number of nodes in the subtree rooted at that node.
To implement size(), return the count at the root.

node count N

Remark. This facilitates efficient implementation of rank () and select().

Computing the floor

finding f1oor (G)
public Key floor (Key key)
{
Node x = floor (root, key);
if (x == null) return null; .
return x.key; G is
}
private Node floor (Node x, Key key)
{
if (x == null) return null;
int cmp = key.compareTo (x.key) ;

if (emp == 0) return x; G is greater than E so

floor(G) could be
on the right

less than S so

M) Floor(G) must be

on the left

if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key):
if (t '= null) return t;
else return x; /
floor(G)in left
} subtree isnul1
1‘L’$111/
5
BST implementation: subtree counts and size ()
private class Node public int size()
{ { return size(root); }
private Key key;
private Value val; private int size(Node x)
private Node left; {
private Node right; if (x == null) return O;
private int N; return x.N;

} \ }

A
nodes in subtree

private Node put(Node x, Key key, Value val)
{

if (x == null) return new Node (key, val);
int cmp = key.compareTo (x.key) ;

if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else if (cop == 0) x.val = val;

x.N = 1 + size(x.left) + size(x.right);

return x;

47

46

48

Rank Range count

node count N

6
:

How many keys < k ? How many keys between 10 and hi?

node count N

'E

Easy recursive algorithm (4 cases!)

if (x null) return 0

if (contains(hi)) return rank(hi) - rank(lo) - 1;

if (cmp < 0) return rank(key, x.left);

else return rank(hi) - rank(lo);

else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);

number of keys < hi

49

Inorder traversal Inorder traversal

* Traverse left subtree. * Traverse left subtree.
* Enqueue key. * Enqueue key.

* Traverse right subtree. * Traverse right subtree.

BST

left right

if (x == null) return;
inorder (x.left, q);
q.enqueue (x.key) ;

BST with smaller keys BST with larger keys

| smaller keys, inorder | key | larger keys, in order ||

inorder (x.right, q);

all keys, in order

Property. Inorder traversal of a BST yields keys in ascending order. recursive calls queue function call stack

51

ST implementations: summary

guarantee average case

implementation

sequential search

N N N/2 N
(linked list) /
binary search
IgN N N IgN N/2
(ordered array)
BST N N N 1.39I1gN 1.39IgN

?

ordered
iteration?

no

yes

yes

operations
on keys

equals ()

compareTo ()

compareTo ()

Next.
 Deletion in BSTs
* Can we guarantee logarithmic performance?

» deletion in BSTs

53

55

Searching challenge 3 (revisited):

Problem. Frequency counts in “Tale of Two Cities"
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?

1) Sequential search in a linked list.

2) Binary search in an ordered array.

3) Need better method, all too slow.

4) Doesn't matter much, all fast enough.

v/ 5) BSTs.
insertion cost < 10000 * 1.38 * Ig 10000 < .2 million
lookup cost < 135000 * 1.38 * Ig 10000 < 2.5 million

54

BST deletion: lazy approach
To remove a node with a given key:

e Set its value to nui1.
* Leave key in free to guide searches (but don't consider it equal to search key).

delete T

Cost. O(log N') per insert, search, and delete (if keys in random order),
where N' is the number of elements ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.

56

Deleting the minimum

To delete the minimum key:

* Go left until finding a node with a null left link. go left until

* Replace that node by its right link.
* Update subtree counts.

public void deleteMin ()
{ root = deleteMin(root); }

private Node deleteMin (Node x)
{

if (x.left == null) return x.right;

x.left = deleteMin (x.left);

x.N =1 + size(x.left) + size(x.right);

return x;

reaching null
left link

\

return that
node’s right link

available for
garbage collection

update links and counts

after recursive calls ,

P

57
Hibbard deletion
To delete a node with key k: search for node t containing key k.
Case 1. [1child] Delete t by replacing parent link.
deletingR
update counts after
recursiv%'alls/—v 7
® (SD/O
node to delete
e with
YELI;IIS(C; lmzkt available for
garbage
/wllec/ion
59

Hibbard deletion
To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

deleting C update counts after
recursive calls

L _®
® 0

replace _With
node to delete null link
available for
garbage
collection

58

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

* Find successor x of t. <«—— xhasnoleft child
* Delete the minimum in t's right subtree. <«—— but don't garbage collect x
e Put x in t's spot. «—— stillaBsT
deleting E
node to delete
x
taefe X deleteMin(t. right)
N ¥
search for key E
t 7

successor
min(t.right)

update links and
g0 r;ggr, r];e[u / node counts after
g0 left unti v
reaching null recursive calls
left link

60

Hibbard deletion: Java implementation

public void delete (Key key)
{ root = delete(root, key); }

private Node delete(Node x, Key key) {

if (x == null) return null;
int cmp = key.compareTo (x.key) ;
if . (cmp < 0) x.l?ft = delete(x.lt-eft, key) ; P scanchiforikey
else if (cmp > 0) x.right = delete(x.right, key):;
else {
if (x.right == null) return x.left; <«————+F—— noright child
Node t = x;
x = min(t.right); replace with
x.right = deleteMin(t.right); T successor

x.left = t.left;
}

x.N = size(x.left) + size(x.right) + 1; « I updafesubtree

counts
return x;

61

ST implementations: summary

guarantee average case
. . ordered operations
implementation . .
o iteration? on keys
sea insert | delete insert elete
N N N N/2 N N/2

sequential search

al;
(linked list) no equals ()
binary search Ig N N N Ig N N/2 N/2 yes compareTo ()
(ordered array)
BST N N N 1.391gN 1.391IgN VN yes compareTo ()
. SO ¥

N

other operations also become VN
if deletions allowed

Next lecture. Guarantee logarithmic performance for all operations.

63

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

N =255

Surprising consequence. Trees nhot random (!) = sqrt(N) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

62

