Princeton University
COS 217: Introduction to Programming Systems
Spring 2009 Final Exam Preparation

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings.
This is a non-exhaustive list of topics that were covered. Topics that were covered after the midterm exam
are in boldface.

1. Number Systems

The binary, octal, and hexadecimal number systems
Finite representation of integers

Representation of negative integers

Binary arithmetic

Bitwise operators

2. C Programming

The program preparation process: preprocess, compile, assemble, link
Program structure: multi-file programs using header files

Process memory layout: text, stack, heap, rodata, data, bss sections
Data types

Variable declarations and definitions

Variable scope, linkage, and duration/extent

Constants: #define, constant variables, enumerations

Operators and statements

Function declarations and definitions

Pointers; call-by-reference

Arrays: arrays and pointers, arrays as parameters, strings
Command-line arguments

Input/output functions

Text files

Structures

Dynamic memory mgmt.: malloc(), calloc(), realloc(), free()
Dynamic memory mgmt. errors: dangling pointer, memory leak, double free
Abstract data types; opaque pointers

Void pointers

Function pointers and function callbacks

Parameterized macros and their dangers (see King Section 14.3)

3. Programming-in-the-Large

e Testing
o External testing taxonomy: boundary condition, statement, path, stress
o Internal testing techniques: testing invariants, verifying conservation properties,
checking function return values, changing code temporarily, leaving testing code intact
0 General testing strategies: testing incrementally, comparing implementations,
automation, bug-driven testing, fault injection
e Debugging heuristics

Page 1 of 4

0 Understand error messages, think before writing, look for familiar bugs, divide and
conquer, add more internal tests, display output, use a debugger, focus on recent changes
e Program and programming style
0 Top-down design
e Data structures and algorithms
0 Linked lists, hash tables, memory ownership
e Module gqualities:
0 Separates interface and implementation, encapsulates data, manages resources
consistently, is consistent, has a minimal interface, reports errors to clients, establishes
contracts, has strong cohesion, has weak coupling

e Generics
0 Generic data structures via void pointers, generic algorithms via function pointers,
wrappers
e Building

0 Automated builds, dependencies, partial builds
e Portable programming
0 General heuristics
0 Heuristics related to differences in hardware, operating systems, compilers,
libraries, and cultures
e Performance improvement techniques
0 Optimize only when and where necessary
0 Improve asymptotic behavior
= Use better data structures or algorithms
0 Improve execution time/space constants
= Coax the compiler to perform optimizations
= Exploit capabilities of the hardware
= Capitalize on knowledge of program execution

Under the Hood: Toward the Hardware

e Computer architectures and the 1A-32 computer architecture
0 The Von Neumann architecture
o Control unitvs. ALU
o0 Little-endian vs. big-endian byte order
0 Language levels: high-level vs. assembly vs. machine
o Assembly languages and the 1A-32 assembly language
o Directives (.section, .asciz, .long, etc.)
Mnemonics (movl, addl, call, etc.)
Jump instructions and condition codes
Instruction operands: immediate, register, memory
Memory addressing modes: direct, indirect, indexed, base pointer
The stack and local variables
0 The stack and function calls: the C function call convention
e Machine language
0 Opcodes
0 The ModR/M byte
0 The SIB byte
0 Immediate, register, memory, displacement operands
e Assemblers
0 The forward reference problem
0 Pass1: Create symbol table
o Pass 2: Use symbol table to generate data section, rodata section, bss section, text
section, relocation records
e Linkers
o0 Resolution: Fetch library code
0 Relocation: Use relocation records and symbol table to patch code

O0O0OO0Oo

Page 2 of 4

Under the Hood: Toward the Operating System

Virtual Memory
0 The memory hierarchy: registers vs. cache vs. memory vs. local secondary storage
vs. remote secondary storage
0 Locality of reference
0 Page faults
Dynamic memory management
0 Memory allocation strategies
0 Free block management
0 Optimizing malloc() and free()
Unix system calls
o For process control
= The process abstraction
= The process lifecycle
= Context switches
= The getpid(), execvp(), fork(), and wait() system calls
= The exit() and system() functions
o0 For interacting with the file system
= The stream abstraction
= The open(), creat(), close(), read(), write(), and Iseek() system calls
0 For inter-process communication
= The dup(), dup2(), and pipe() system calls
Unix signals
o Sending signals via keystrokes, the kill command, and the raise() and kill() functions
o Installing signal handler functions: the signal() function
o Ignoring signals
0 Race conditions
o0 Blocking signals: the sigaction() and sigprocmask() functions

o+ Unix-alarms-and-timers

o—The-alarm{-function
L) .

Applications

De-commenting

Lexical analysis via finite state automata
String manipulation

Symbol tables, linked lists, hash tables
Dynamically expanding arrays

Buffer overrun attacks

Unix shells

Page 30f 4

Readings

As specified by the course "Schedule” Web page. Readings that were assigned after the midterm exam are
in boldface.

Required:
e C Programming (King): 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22
e Computer Systems (Bryant & O'Hallaron): 1, 3 (OK to skip 3.14 and 3.15), 8, 10
e Communications of the ACM "'Detection and Prevention of Stack Buffer Overflow Attacks"
e The C Programming Language (Kernighan & Ritchie) 8.7
Recommended:
e Computer Systems (Bryant & O'Hallaron): 2, 5,7, 11
e The Practice of Programming (Kernighan & Pike): 1,2,4,5,6,7,8

e Programming with GNU Software (Loukides & Oram): 1,2, 3,4,6,7,8,9

Note: Do not print the 1A-32 manuals!!! You will not need them during the exam.

Copyright © 2009 by Robert M. Dondero, Jr.

Page 4 of 4

	Topics
	 Variable declarations and definitions

