
1

1

Performance Improvement

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 7

2

Goals of this Lecture
• Help you learn about:

• Techniques for improving program performance: how to
make your programs run faster and/or use less memory

• The GPROF execution profiler

• Why?
• In a large program, typically a small fragment of the code

consumes most of the CPU time and/or memory
• A power programmer knows how to identify such code

fragments
• A power programmer knows techniques for improving

the performance of such code fragments

2

3

Performance Improvement Pros

• Techniques described in this lecture can yield
answers to questions such as:
• How slow is my program?
• Where is my program slow?
• Why is my program slow?
• How can I make my program run faster?
• How can I make my program use less memory?

4

Performance Improvement Cons

• Techniques described in this lecture can yield
code that:
• Is less clear/maintainable
• Might confuse debuggers
• Might contain bugs

• Requires regression testing

• So…

3

5

When to Improve Performance

“The first principle of optimization is

don’t.
Is the program good enough already? Knowing how a

program will be used and the environment it runs in, is there
any benefit to making it faster?”

-- Kernighan & Pike

6

Improving Execution Efficiency

• Steps to improve execution (time) efficiency:
(1) Do timing studies
(2) Identify hot spots
(3) Use a better algorithm or data structure
(4) Enable compiler speed optimization
(5) Tune the code

• Let’s consider one at a time…

4

7

Timing Studies
(1) Do timing studies
• To time a program… Run a tool to time program execution

• E.g., UNIX time command

• Output:
• Real: Wall-clock time between program invocation and termination
• User: CPU time spent executing the program
• System: CPU time spent within the OS on the program’s behalf

• But, which parts of the code are the most time consuming?

$ time sort < bigfile.txt > output.txt
real 0m12.977s
user 0m12.860s
sys 0m0.010s

8

Timing Studies (cont.)
• To time parts of a program... Call a function to compute

wall-clock time consumed
• E.g., Unix gettimeofday() function (time since Jan 1, 1970)

• Not defined by C90 standard

#include <sys/time.h>

struct timeval startTime;
struct timeval endTime;
double wallClockSecondsConsumed;

gettimeofday(&startTime, NULL);
<execute some code here>
gettimeofday(&endTime, NULL);
wallClockSecondsConsumed =

endTime.tv_sec - startTime.tv_sec +
1.0E-6 * (endTime.tv_usec - startTime.tv_usec);

5

9

Timing Studies (cont.)
• To time parts of a program... Call a function to compute

CPU time consumed
• E.g. clock() function

• Defined by C90 standard

#include <time.h>

clock_t startClock;
clock_t endClock;
double cpuSecondsConsumed;

startClock = clock();
<execute some code here>
endClock = clock();
cpuSecondsConsumed =

((double)(endClock - startClock)) / CLOCKS_PER_SEC;

10

Identify Hot Spots
(2) Identify hot spots
• Gather statistics about your program’s execution

• How much time did execution of a function take?
• How many times was a particular function called?
• How many times was a particular line of code executed?
• Which lines of code used the most time?
• Etc.

• How? Use an execution profiler
• Example: gprof (GNU Performance Profiler)

6

11

GPROF Example Program
• Example program for GPROF analysis

• Sort an array of 10 million random integers
• Artificial: consumes much CPU time, generates no output

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

enum {MAX_SIZE = 10000000};
int a[MAX_SIZE]; /* Too big to fit in stack! */

void fillArray(int a[], int size) {
int i;
for (i = 0; i < size; i++)

a[i] = rand();
}

void swap(int a[], int i, int j) {
int temp = a[i];
a[i] = a[j];
a[j] = temp;

}
…

12

GPROF Example Program (cont.)
• Example program for GPROF analysis (cont.)

…
int partition(int a[], int left, int right) {

int first = left-1;
int last = right;
for (;;) {

while (a[++first] < a[right])
;

while (a[right] < a[--last])
if (last == left)

break;
if (first >= last)

break;
swap(a, first, last);

}
swap(a, first, right);
return first;

}
…

7

13

GPROF Example Program (cont.)
• Example program for GPROF analysis (cont.)

…
void quicksort(int a[], int left, int right) {

if (right > left)
{

int mid = partition(a, left, right);
quicksort(a, left, mid - 1);
quicksort(a, mid + 1, right);

}
}

int main(void) {
fillArray(a, MAX_SIZE);
quicksort(a, 0, MAX_SIZE - 1);
return 0;

}

14

Using GPROF
• Step 1: Instrument the program

gcc217 –pg mysort.c –o mysort
• Adds profiling code to mysort, that is…
• “Instruments” mysort

• Step 2: Run the program
mysort
• Creates file gmon.out containing statistics

• Step 3: Create a report

gprof mysort > myreport
• Uses mysort and gmon.out to create textual report

• Step 4: Examine the report
cat myreport

8

15

The GPROF Report
• Flat profile

• Each line describes one function
• name: name of the function
• %time: percentage of time spent executing this function
• cumulative seconds: [skipping, as this isn’t all that useful]
• self seconds: time spent executing this function
• calls: number of times function was called (excluding recursive)
• self s/call: average time per execution (excluding descendents)
• total s/call: average time per execution (including descendents)

% cumulative self self total
time seconds seconds calls s/call s/call name
84.54 2.27 2.27 6665307 0.00 0.00 partition
9.33 2.53 0.25 54328749 0.00 0.00 swap
2.99 2.61 0.08 1 0.08 2.61 quicksort
2.61 2.68 0.07 1 0.07 0.07 fillArray

16

The GPROF Report (cont.)
• Call graph profile

index % time self children called name
<spontaneous>

[1] 100.0 0.00 2.68 main [1]
0.08 2.53 1/1 quicksort [2]
0.07 0.00 1/1 fillArray [5]

13330614 quicksort [2]

0.08 2.53 1/1 main [1]
[2] 97.4 0.08 2.53 1+13330614 quicksort [2]

2.27 0.25 6665307/6665307 partition [3]
13330614 quicksort [2]

2.27 0.25 6665307/6665307 quicksort [2]

[3] 94.4 2.27 0.25 6665307 partition [3]
0.25 0.00 54328749/54328749 swap [4]

0.25 0.00 54328749/54328749 partition [3]

[4] 9.4 0.25 0.00 54328749 swap [4]

0.07 0.00 1/1 main [1]
[5] 2.6 0.07 0.00 1 fillArray [5]

9

17

The GPROF Report (cont.)

• Call graph profile (cont.)
• Each section describes one function

• Which functions called it, and how much time was consumed?
• Which functions it calls, how many times, and for how long?

• Usually overkill; we won’t look at this output in any detail

18

GPROF Report Analysis

• Observations
• swap() is called very many times; each call consumes little time;

swap() consumes only 9% of the time overall
• partition() is called many times; each call consumes little time; but

partition() consumes 85% of the time overall

• Conclusions
• To improve performance, try to make partition() faster
• Don’t even think about trying to make fillArray() or quicksort() faster

10

19

GPROF Design
• Incidentally…

• How does GPROF work?
• Good question!
• Essentially, by randomly sampling the code as it runs
• … and seeing what line is running, & what function it’s in

20

Algorithms and Data Structures
(3) Use a better algorithm or data structure
• Example:

• For mysort, would mergesort work better than quicksort?

• Depends upon:
• Data
• Hardware
• Operating system
• …

11

21

Compiler Speed Optimization
(4) Enable compiler speed optimization
gcc217 –Ox mysort.c –o mysort

• Compiler spends more time compiling your code so…
• Your code spends less time executing
• x can be:

• 1: optimize
• 2: optimize more
• 3: optimize yet more

• See “man gcc” for details

• Beware: Speed optimization can affect debugging
• E.g. Optimization eliminates variable => GDB cannot print value of

variable

22

Tune the Code
(5) Tune the code
• Some common techniques

• Factor computation out of loops

• Example:

• Faster:

for (i = 0; i < strlen(s); i++) {
/* Do something with s[i] */

}

length = strlen(s);
for (i = 0; i < length; i++) {

/* Do something with s[i] */
}

12

23

Tune the Code (cont.)
• Some common techniques (cont.)

• Inline function calls

• Example:

• Maybe faster:

• Beware: Can introduce redundant/cloned code
• Some compilers support “inline” keyword directive

void g(void) {
/* Some code */

}
void f(void) {

…
g();
…

}

void f(void) {
…
/* Some code */
…

}

24

Tune the Code (cont.)
• Some common techniques (cont.)

• Unroll loops – some compilers have flags for it, like –funroll-loops

• Example:

• Maybe faster:

• Maybe even
faster:

for (i = 0; i < 6; i++)
a[i] = b[i] + c[i];

for (i = 0; i < 6; i += 2) {
a[i+0] = b[i+0] + c[i+0];
a[i+1] = b[i+1] + c[i+1];

}

a[i+0] = b[i+0] + c[i+0];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];
a[i+4] = b[i+4] + c[i+4];
a[i+5] = b[i+5] + c[i+5];

13

25

Tune the Code (cont.)

• Some common techniques (cont.):

• Rewrite in a lower-level language

• Write key functions in assembly language instead of C
• Use registers instead of memory
• Use instructions (e.g. adc) that compiler doesn’t know

• Beware: Modern optimizing compilers generate fast code
• Hand-written assembly language code could be slower than

compiler-generated code, especially when compiled with
speed optimization

26

Improving Memory Efficiency

• These days, memory is cheap, so…

• Memory (space) efficiency typically is less important than
execution (time) efficiency

• Techniques to improve memory (space) efficiency…

14

27

Improving Memory Efficiency

(1) Use a smaller data type
• E.g. short instead of int

(2) Compute instead of storing
• E.g. To determine linked list length, traverse nodes instead of

storing node count

(3) Enable compiler size optimization
gcc217 -Os mysort.c –o mysort

28

Summary
• Steps to improve execution (time) efficiency:

(1) Do timing studies
(2) Identify hot spots *
(3) Use a better algorithm or data structure
(4) Enable compiler speed optimization
(5) Tune the code

* Use GPROF

• Techniques to improve memory (space) efficiency:
(1) Use a smaller data type
(2) Compute instead of storing
(3) Enable compiler size optimization

• And, most importantly…

15

29

Summary (cont.)

Clarity supersedes performance

Don’t improve
performance unless

you must!!!

