
1

1

Assembly Language:
IA-32 Instructions

Professor Jennifer Rexford

http://www.cs.princeton.edu/~jrex

2

Goals of Today’s Lecture
• Help you learn…
o To manipulate data of various sizes
o To leverage more sophisticated addressing modes
o To use condition codes and jumps to change control flow

• Focusing on the assembly-language code
o Rather than the layout of memory for storing data

• Why?
o Know the features of the IA-32 architecture
o Write more efficient assembly-language programs
o Understand the relationship to data types and common

programming constructs in higher-level languages

2

3

Variable Sizes in High-Level Language

• C data types vary in size
o Character: 1 byte
o Short, int, and long: varies, depending on the computer
o Float and double: varies, depending on the computer
o Pointers: typically 4 bytes

• Programmer-created types
o Struct: arbitrary size, depending on the fields

• Arrays
o Multiple consecutive elements of some fixed size
o Where each element could be a struct

4

Supporting Different Sizes in IA-32
• Three main data sizes
o Byte (b): 1 byte
o Word (w): 2 bytes
o Long (l): 4 bytes

• Separate assembly-language instructions
o E.g., addb, addw, and addl

• Separate ways to access (parts of) a register
o E.g., %ah or %al, %ax, and %eax

• Larger sizes (e.g., struct)
o Manipulated in smaller byte, word, or long units

3

5

Byte Order in Multi-Byte Entities
• Intel is a little endian architecture
o Least significant byte of multi-byte entity

is stored at lowest memory address
o “Little end goes first”

• Some other systems use big endian
o Most significant byte of multi-byte entity

is stored at lowest memory address
o “Big end goes first”

00000101
00000000
00000000
00000000

1000
1001
1002
1003

The int 5 at address 1000:

00000000
00000000
00000000
00000101

1000
1001
1002
1003

The int 5 at address 1000:

6

Little Endian Example

Byte 0: ff
Byte 1: 77
Byte 2: 33
Byte 3: 0

int main(void) {

int i=0x003377ff, j;

unsigned char *p = (unsigned char *) &i;

for (j=0; j<4; j++)

printf("Byte %d: %x\n", j, p[j]);

}

Output on a
little-endian

machine

4

7

IA-32 General Purpose Registers

General-purpose registers

EAX
EBX
ECX
EDX
ESI
EDI

31 0
AX
BX
CX
DX

16-bit 32-bit

DI
SI

ALAH
BL
CL
DL

BH
CH
DH

8 715

8

cmpb $5, %al

jle else

incb %al

jmp endif

else:

decb %al

endif:

C Example: One-Byte Data

char i;
…
if (i > 5) {

i++;
else
i--;

}

Global char variable i is in %al,
the lower byte of the “A” register.

5

9

cmpl $5, %eax

jle else

incl %eax

jmp endif

else:

decl %eax

endif:

C Example: Four-Byte Data

int i;
…
if (i > 5) {

i++;
else
i--;

}

Global int variable i is in %eax,
the full 32 bits of the “A” register.

10

Loading and Storing Data
• Processors have many ways to access data
o Known as “addressing modes”
o Two simple ways seen in previous examples

• Immediate addressing
o Example: movl $0, %ecx
o Data (e.g., number “0”) embedded in the instruction
o Initialize register ECX with zero

• Register addressing
o Example: movl %edx, %ecx
o Choice of register(s) embedded in the instruction
o Copy value in register EDX into register ECX

6

11

Accessing Memory
• Variables are stored in memory
o Global and static local variables in Data or BSS section
o Dynamically allocated variables in the heap
o Function parameters and local variables on the stack

• Need to be able to load from and store to memory
o To manipulate the data directly in memory
o Or copy the data between main memory and registers

• IA-32 has many different addressing modes
o Corresponding to common programming constructs
o E.g., accessing a global variable, dereferencing a

pointer, accessing a field in a struct, or indexing an array

12

Direct Addressing
• Load or store from a particular memory location
o Memory address is embedded in the instruction
o Instruction reads from or writes to that address

• IA-32 example: movl 2000, %ecx
o Four-byte variable located at address 2000
o Read four bytes starting at address 2000
o Load the value into the ECX register

• Useful when the address is known in advance
o Global variables in the Data or BSS sections

• Can use a label for (human) readability
o E.g., “i” to allow “movl i, %eax”

7

13

Indirect Addressing
• Load or store from a previously-computed address
o Register with the address is embedded in the instruction
o Instruction reads from or writes to that address

• IA-32 example: movl (%eax), %ecx
o EAX register stores a 32-bit address (e.g., 2000)
o Read long-word variable stored at that address
o Load the value into the ECX register

• Useful when address is not known in advance
o Dynamically allocated data referenced by a pointer
o The “(%eax)” essentially dereferences a pointer

14

Base Pointer Addressing
• Load or store with an offset from a base address
o Register storing the base address
o Fixed offset also embedded in the instruction
o Instruction computes the address and does access

• IA-32 example: movl 8(%eax), %ecx
o EAX register stores a 32-bit base address (e.g., 2000)
o Offset of 8 is added to compute address (e.g., 2008)
o Read long-word variable stored at that address
o Load the value into the ECX register

• Useful when accessing part of a larger variable
o Specific field within a “struct”
o E.g., if “age” starts at the 8th byte of “student” record

8

15

Indexed Addressing
• Load or store with an offset and multiplier
o Fixed based address embedded in the instruction
o Offset computed by multiplying register with constant
o Instruction computes the address and does access

• IA-32 example: movl 2000(,%eax,4), %ecx
o Index register EAX (say, with value of 10)
o Multiplied by a multiplier of 1, 2, 4, or 8 (say, 4)
o Added to a fixed base of 2000 (say, to get 2040)

• Useful to iterate through an array (e.g., a[i])
o Base is the start of the array (i.e., “a”)
o Register is the index (i.e., “i”)
o Multiplier is the size of the element (e.g., 4 for “int”)

16

Indexed Addressing Example

movl $0, %eax

movl $0, %ebx

sumloop:

movl a(,%eax,4), %ecx

addl %ecx, %ebx

incl %eax

cmpl $19, %eax

jle sumloop

int a[20];
…
int i, sum=0;
for (i=0; i<20; i++)

sum += a[i];

EAX: i
EBX: sum
ECX: temporary

global variable

9

17

Effective Address: More Generally

• Displacement movl foo, %ebx

• Base movl (%eax), %ebx

• Base + displacement movl foo(%eax), %ebx
movl 1(%eax), %ebx

• (Index * scale) + displacement movl (,%eax,4), %ebx

• Base + (index * scale) + displacement movl foo(%edx,%eax,4),%ebx

eax
ebx
ecx
edx
esp
ebp
esi
edi

eax
ebx
ecx
edx
esp
ebp
esi
edi

+

1
2
4
8

* +

None

8-bit

16-bit

32-bit

Offset =

Base Index scale displacement

18

Data Access Methods: Summary
• Immediate addressing: data stored in the instruction itself

o movl $10, %ecx

• Register addressing: data stored in a register
o movl %eax, %ecx

• Direct addressing: address stored in instruction
o movl foo, %ecx

• Indirect addressing: address stored in a register
o movl (%eax), %ecx

• Base pointer addressing: includes an offset as well
o movl 4(%eax), %ecx

• Indexed addressing: instruction contains base address, and
specifies an index register and a multiplier (1, 2, 4, or 8)
o movl 2000(,%eax,1), %ecx

10

19

Control Flow
• Common case
o Execute code sequentially
o One instruction after another

• Sometimes need to change control flow
o If-then-else
o Loops
o Switch

• Two key ingredients
o Testing a condition
o Selecting what to run

next based on result

cmpl $5, %eax

jle else

incl %eax

jmp endif

else:

decl %eax

endif:

20

Condition Codes
• 1-bit registers set by arithmetic & logic instructions
o ZF: Zero Flag
o SF: Sign Flag
o CF: Carry Flag
o OF: Overflow Flag

• Example: “addl Src, Dest” (“t = a + b”)
o ZF: set if t == 0
o SF: set if t < 0
o CF: set if carry out from most significant bit

– Unsigned overflow
o OF: set if two’s complement overflow

– (a>0 && b>0 && t<0)
|| (a<0 && b<0 && t>=0)

11

21

Condition Codes (continued)
• Example: “cmpl Src2,Src1” (compare b,a)
o Like computing a-b without setting destination
o ZF: set if a == b
o SF: set if (a-b) < 0
o CF: set if carry out from most significant bit

– Used for unsigned comparisons
o OF: set if two’s complement overflow

– (a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

• Flags are not set by lea, inc, or dec instructions
o Hint: this is useful for the extra-credit part of the

assembly-language programming assignment! ☺

22

Example Five-Bit Comparisons
• Comparison: cmp $6, $12

o Not zero: ZF=0 (diff is not 00000)
o Positive: SF=0 (first bit is 0)
o No carry: CF=0 (unsigned diff is correct)
o No overflow: OF=0 (signed diff is correct)

• Comparison: cmp $12, $6
o Not zero: ZF=0 (diff is not 00000)
o Negative: SF=1 (first bit is 1)
o Carry: CF=1 (unsigned diff is wrong)
o No overflow: OF=0 (signed diff is correct)

• Comparison: cmp $-6, $-12
o Not zero: ZF=0 (diff is not 00000)
o Negative: SF=1 (first bit is 1)
o Carry: CF=1 (unsigned diff of 20 and 28 is wrong)
o No overflow: OF=0 (signed diff is correct)

00110
- 01100

??

01100
- 00110

??

01100
+11010
00110

00110
+10100
11010

10100
- 11010

??

10100
+00110
11010

12

23

Jumps after Comparison (cmpl)
• Equality
o Equal: je (ZF)
o Not equal: jne (~ZF)

• Below/above (e.g., unsigned arithmetic)
o Below: jb (CF)
o Above or equal: jae (~CF)
o Below or equal: jbe (CF | ZF)
o Above: ja (~(CF | ZF))

• Less/greater (e.g., signed arithmetic)
o Less: jl (SF ^ OF)
o Greater or equal: jge (~(SF ^ OF))
o Less or equal: jle ((SF ^ OF) | ZF)
o Greater: jg (!((SF ^ OF) | ZF))

24

Branch Instructions
• Conditional jump

o j{l,g,e,ne,...} target if (condition) {eip = target}

• Unconditional jump
o jmp target
o jmp *register

nc
c

be
b

ae
a

ne
e

Unsigned

nono ovf/carry
ooverflow/carry

“...-or-equal”le≤
“less,below”l<
“...-or-equal”ge≥

“greater,above”g>
“not equal”ne≠

“equal”e=
SignedComparison

13

25

Jumping
• Simple model of a “goto” statement
o Go to a particular place in the code
o Based on whether a condition is true or false
o Can represent if-the-else, switch, loops, etc.

• Pseudocode example: If-Then-Else

if (Test) {
then-body;

} else {
else-body;

if (!Test) jump to Else;
then-body;
jump to Done;

Else:
else-body;

Done:

26

Jumping (continued)
• Pseudocode example: Do-While loop

• Pseudocode example: While loop

do {
Body;

} while (Test);

loop:
Body;
if (Test) then jump to loop;

while (Test)
Body;

jump to middle;
loop:

Body;
middle:

if (Test) then jump to loop;

14

27

Jumping (continued)
• Pseudocode example: For loop

for (Init; Test; Update)

Body

Init;
if (!Test) jump to done;

loop:
Body;
Update;
if (Test) jump to loop;

done:

28

Arithmetic Instructions
• Simple instructions

o add{b,w,l} source, dest dest = source + dest
o sub{b,w,l} source, dest dest = dest – source
o Inc{b,w,l} dest dest = dest + 1
o dec{b,w,l} dest dest = dest – 1
o neg{b,w,l} dest dest = ~dest + 1
o cmp{b,w,l} source1, source2 source2 – source1

• Multiply
o mul (unsigned) or imul (signed)
mull %ebx # edx, eax = eax * ebx

• Divide
o div (unsigned) or idiv (signed)
idiv %ebx # edx = edx,eax / ebx

• Many more in Intel manual (volume 2)
o adc, sbb, decimal arithmetic instructions

15

29

Bitwise Logic Instructions
• Simple instructions

and{b,w,l} source, dest dest = source & dest
or{b,w,l} source, dest dest = source | dest
xor{b,w,l} source, dest dest = source ^ dest
not{b,w,l} dest dest = ~dest
sal{b,w,l} source, dest (arithmetic) dest = dest << source
sar{b,w,l} source, dest (arithmetic) dest = dest >> source

• Many more in Intel Manual (volume 2)
o Logic shift
o Rotation shift
o Bit scan
o Bit test
o Byte set on conditions

30

Data Transfer Instructions
•mov{b,w,l} source, dest

o General move instruction

•push{w,l} source
pushl %ebx # equivalent instructions

subl $4, %esp
movl %ebx, (%esp)

•pop{w,l} dest
popl %ebx # equivalent instructions

movl (%esp), %ebx
addl $4, %esp

• Many more in Intel manual (volume 2)
o Type conversion, conditional move, exchange, compare and

exchange, I/O port, string move, etc.

esp
esp

esp
esp

16

31

Conclusions
• Accessing data
o Byte, word, and long-word data types
o Wide variety of addressing modes

• Control flow
o Common C control-flow constructs
o Condition codes and jump instructions

• Manipulating data
o Arithmetic and logic operations

• Next time
o Calling functions, using the stack

