
1

1

Simple C Programs

2

Goals for this Lecture

• Help you learn about:
• Simple C programs

• Program structure
• Defining symbolic constants
• Detecting and reporting failure

• Functionality of the gcc command
• Preprocessor, compiler, assembler, linker

• Memory layout of a Linux process
• Text section, rodata section, stack section

2

3

“Circle” Program
• File circle.c:

#include <stdio.h>

int main(void)

/* Read a circle's radius from stdin, and compute and write its
diameter and circumference to stdout. Return 0. */

{
int radius;
int diam;
double circum;
printf("Enter the circle's radius:\n");
scanf("%d", &radius);
diam = 2 * radius;
circum = 3.14159 * (double)diam;
printf("A circle with radius %d has diameter %d\n",

radius, diam);
printf("and circumference %f.\n", circum);
return 0;

}

4

Building and Running
• To build (preprocess, compile, assemble, and link):

• To run:

$ gcc217 circle.c –o circle

$ circle

Enter the circle's radius:

5

A circle with radius 5 has diameter 10

and circumference 31.415900.

Typed by
user

3

5

Steps in the Build Process
• To build one step at a time:

• Why build one step at a time?
• Helpful for learning how to interpret error messages
• Permits partial builds (described later in course)

$ gcc217 –E circle.c > circle.i

$ gcc217 –S circle.i

$ gcc217 –c circle.s

$ gcc217 circle.o –o circle

Preprocess:
circle.c → circle.i

Compile:
circle.i → circle.s

Assemble:
circle.s → circle.o

Link:
circle.o → circle

6

• File circle.c:

The Preprocessor’s View

#include <stdio.h>

int main(void)

/* Read a circle's radius from stdin, and compute and write its
diameter and circumference to stdout. Return 0. */

{
int radius;
int diam;
double circum;
printf("Enter the circle's radius:\n");
scanf("%d", &radius);
diam = 2 * radius;
circum = 3.14159 * (double)diam;
printf("A circle with radius %d has diameter %d\n",

radius, diam);
printf("and circumference %f.\n", circum);
return 0;

}

Comment
Preprocessor removes

Preprocessor directive
Preprocessor replaces with contents
of file /usr/include/stdio.h

4

7

• File circle.i:

Results of Preprocessing

int printf(char*, …);
int scanf(char*, …);
…

int main(void)
{

int radius;
int diam;
double circum;
printf("Enter the circle's radius:\n");
scanf("%d", &radius);
diam = 2 * radius;
circum = 3.14159 * (double)diam;
printf("A circle with radius %d has diameter %d\n",

radius, diam);
printf("and circumference %f.\n", circum);
return 0;

}

Declarations of printf(), scanf(),
and other functions; compiler will
have enough information to
check subsequent function calls

Note: Definitions of printf() and scanf()
are not present

8

• File circle.i:

The Compiler’s View

int printf(char*, …);
int scanf(char*, …);
…

int main(void)
{

int radius;
int diam;
double circum;
printf("Enter the circle's radius:\n");
scanf("%d", &radius);
diam = 2 * radius;
circum = 3.14159 * (double)diam;
printf("A circle with radius %d has diameter %d\n",

radius, diam);
printf("and circumference %f.\n", circum);
return 0;

}

Function
definition

Compound
statement
alias block

Function declarations
Compiler notes return types
and parameter types so it can
check your function calls

Return type of main()
should be int

5

9

• File circle.i:

The Compiler’s View (cont.)

int printf(char*, …);
int scanf(char*, …);
…

int main(void)
{

int radius;
int diam;
double circum;
printf("Enter the circle's radius:\n");
scanf("%d", &radius);
diam = 2 * radius;
circum = 3.14159 * (double)diam;
printf("A circle with radius %d has diameter %d\n",

radius, diam);
printf("and circumference %f.\n", circum);
return 0;

}

Declaration statements
Must appear before any other
kind of statement in block;
variables must be declared
before use

Function call
statements

String constants
& (“address of”) operator
Explained later in course,
with pointers

10

• File circle.i:

The Compiler’s View (cont.)

int printf(char*, …);
int scanf(char*, …);
…

int main(void)
{

int radius;
int diam;
double circum;
printf("Enter the circle's radius:\n");
scanf("%d", &radius);
diam = 2 * radius;
circum = 3.14159 * (double)diam;
printf("A circle with radius %d has diameter %d\n",

radius, diam);
printf("and circumference %f.\n", circum);
return 0;

}

Expression
statements

Cast operator
Unnecessary here, but
good style to avoid
mixed-type expressions

Constant of type double

Constant of type int

6

11

• File circle.i:

The Compiler’s View (cont.)

int printf(char*, …);
int scanf(char*, …);
…

int main(void)
{

int radius;
int diam;
double circum;
printf("Enter the circle's radius:\n");
scanf("%d", &radius);
diam = 2 * radius;
circum = 3.14159 * (double)diam;
printf("A circle with radius %d has diameter %d\n",

radius, diam);
printf("and circumference %f.\n", circum);
return 0;

}

Function call statements
printf() can be called with
1 or more actual parameters

Return statement
Convention: 0 returned from
main() means success; non-0
means failure

12

• File circle.s:

• Still missing definitions of printf() and scanf()

Results of Compiling

Assembly language

.section .rodata
.LC0:

.string "Enter the circle's radius:\n"
.LC1:

.string "%d"
…

.text

.globl main

.type main, @function
main:

pushl %ebp
movl %esp, %ebp
…
pushl $.LC0
call printf
addl $16, %esp
subl $8, %esp
leal -4(%ebp), %eax
pushl %eax
pushl $.LC1
call scanf

…

7

13

• File circle.s:

• Assembler translates assembly language into machine language
• Details provided in 2nd half of course

The Assembler’s View

.section .rodata
.LC0:

.string "Enter the circle's radius:\n"
.LC1:

.string "%d"
…

.text

.globl main

.type main, @function
main:

pushl %ebp
movl %esp, %ebp
…
pushl $.LC0
call printf
addl $16, %esp
subl $8, %esp
leal -4(%ebp), %eax
pushl %eax
pushl $.LC1
call scanf

…

Assembly language

14

• File circle.o:

• Object file

• Still missing definitions of printf() and scanf()

Results of Assembling

Machine language
Listing omitted

Not human-readable

8

15

• File circle.o:

• The linker:
• Observes that

• Code in circle.o calls printf() and scanf()
• Code in circle.o does not define printf() or scanf()

• Fetches machine language definitions of printf() and scanf() from
standard C library (/usr/lib/libc.a on hats)

• Merges those definitions with circle.o to create…

The Linker’s View

Machine language
Listing omitted

Not human-readable

16

• File circle:

• Complete executable binary file

Results of Linking

Listing omitted

Not human-readable
Machine language

9

17

Run-Time View
• At run-time, memory devoted to program is divided into

sections:

TEXT

RODATA

DATA

BSS
HEAP

STACK

• TEXT (read-only)
• Stores executable machine

language instructions
• RODATA (read-only)

• Stores read-only data,
esp. string constants

• STACK (read/write)
• Stores values of local variables

• Other sections described later in course

18

Run-Time View: Startup
• At program startup:

TEXT STACK RODATA

Enter the circle’s radius\n\0

%d\0

A circle with radius %d has diameter %d\n\0

and circumference %f.\n\0

RODATA contains
every string constant used
in program; each is an array
of characters, terminated with
the null character (‘\0’)

STACK is
empty

main

printf

scanf

TEXT contains
machine language
code defining main(),
printf(), scanf(), etc.

10

19

Run-Time View: Declarations

TEXT STACK RODATA

Enter the circle’s radius\n\0

%d\0

A circle with radius %d has diameter %d\n\0

and circumference %f.\n\0

int radius;
int diam;
double circum;

radius
diam

circum

Computer pushes memory
onto STACK for each local variable:
4 bytes for int, 8 bytes for double

main

printf

scanf

20

Run-Time View: Writing a String

TEXT STACK RODATA

Enter the circle’s radius\n\0

%d\0

A circle with radius %d has diameter %d\n\0

and circumference %f.\n\0

printf("Enter the circle's radius:\n");

radius
diam

circum

Computer passes address containing
‘E’ to printf(); printf() prints characters
until it encounters ‘\0’

main

printf

scanf

11

21

Run-Time View: Reading an int

TEXT STACK RODATA

Enter the circle’s radius\n\0

%d\0

A circle with radius %d has diameter %d\n\0

and circumference %f.\n\0

scanf("%d", &radius);

5radius
diam

circum

Computer passes address containing
‘%’ to scanf(); scanf() waits for user
input; user types 5; scanf() reads
character(s), converts to decimal (d)
constant, assigns to radius

main

printf

scanf

22

Run-Time View: Computing Results

TEXT STACK RODATA

Enter the circle’s radius\n\0

%d\0

A circle with radius %d has diameter %d\n\0

and circumference %f.\n\0

diam = 2 * radius;
circum = 3.14159 * (double)diam;

5

10

31.4159

radius
diam

circum

Computer uses radius
to compute diam and
circum

main

printf

scanf

12

23

Run-Time View: Writing an int

TEXT STACK RODATA

Enter the circle’s radius\n\0

%d\0

A circle with radius %d has diameter %d\n\0

and circumference %f.\n\0

printf("A circle with radius %d has diameter %d\n",
radius, diam);

5

10

31.4159

radius
diam

circum

Computer passes address of ‘A’, value
of radius, and value of diam to printf().
printf() prints until ‘\0’, replacing 1st %d
with character comprising 5, 2nd %d with
characters comprising 10

main

printf

scanf

24

Run-Time View: Writing a double

TEXT STACK RODATA

Enter the circle’s radius\n\0

%d\0

A circle with radius %d has diameter %d\n\0

and circumference %f.\n\0

printf("and circumference %f.\n", circum);

5

10

31.4159

radius
diam

circum

Computer passes address of ‘a’ and
value of circum to printf(). printf() prints
until ‘\0’, replacing %f with characters
comprising 31.415900

main

printf

scanf

13

25

Run-Time View: Exiting
return 0;

Computer reclaims memory used
by program; sections cease to exist

26

Toward Version 2

• Problem (stylistic flaw):
• 3.14159 is a “magic number”
• Should give it a symbolic name to

• Increase code clarity
• Thereby increase code maintainability

• Solution:
• (In Java: final fields, final variables)
• In C: three approaches…

14

27

Symbolic Constants: #define
• Approach 1: #define

void f(void) {
#define START_STATE 0
#define POSSIBLE_COMMENT_STATE 1
#define COMMENT_STATE 2
...
int state;
...
state = START_STATE;
...
state = COMMENT_STATE;
...

}

Preprocessor
replaces
with 0

Preprocessor
replaces
with 2

Preprocessor directive:
replace START_STATE with 0

28

Symbolic Constants: #define
• Approach 1 strengths

• Preprocessor does substitutions only for tokens

• Preprocessor does not do substitutions within string constants

• Simple textual replacement; works for any type of data

int mySTART_STATE; /* No replacement */

printf("What is the START_STATE?\n"); /* No replacement */

#define PI 3.14159

15

29

• Approach 1 weaknesses

Symbolic Constants: #define

void f(void) {
#define MAX 1000
…

}
void g(void) {
{

int MAX = 2000;
…

}

void f(void) {
#define MAX 1000
…
int MAX = 2000;

}

• Preprocessor does not
respect scope

• Preprocessor does not
respect context

Preprocessor
replaces
with 1000 !!!

• Conventions:
• Use all uppercase for constants -- and only for constants
• Place #defines at beginning of file, not within function definitions

30

Symbolic Constants: const
• Approach 2: “constant variables” (oxymoron!!!)

void f(void)
{

const int START_STATE = 0;
const int POSSIBLE_COMMENT_STATE = 1;
const int COMMENT_STATE = 2;
...
...
int state;
...
state = START_STATE;
...
state = COMMENT_STATE;
...

}

Compiler does not
allow value of
START_STATE
to change

16

31

Symbolic Constants: const
• Approach 2 strengths

• Works for any type of data

• Handled by compiler, not preprocessor; compiler respects context
and scope

• Approach 2 weaknesses
• Does not work for array lengths (unlike C++)

const double PI = 3.14159;

const int ARRAY_LENGTH = 10;
...
int a[ARRAY_LENGTH]; /* Compiletime error */

32

Symbolic Constants: enum
• Approach 3: Enumerations

void f(void)
{

enum State {START_STATE, POSSIBLE_COMMENT_STATE,
COMMENT_STATE, ...};

enum State state;
...
state = START_STATE;
...
state = COMMENT_STATE;
...

}

Defines a new
type named
“enum State”

The constants of type
“enum State” are
START_STATE, …

Defines a variable
named “state”
to be of type
“enum State”

17

33

Symbolic Constants: enum

• Approach 3 note
• Enumerated constants are interchangeable with ints

• START_STATE is the same as 0
• POSSIBLE_COMMENT_STATE is the same as 1
• Etc.

state = 0; /* Can assign int to enum. */
i = START_STATE; /* Can assign enum to int. */

34

Symbolic Constants: enum
• Approach 3 strengths

• Can explicitly specify values for names

• Can omit type name, thus effectively giving names to int literals

• Works when specifying array lengths

enum State {START_STATE = 5, POSSIBLE_COMMENT_STATE = 3,
COMMENT_STATE = 4, ...};

enum {MAX_VALUE = 9999};
...
int i = MAX_VALUE;

enum {ARRAY_LENGTH = 10};
...
int a[ARRAY_LENGTH];
...

18

35

Symbolic Constants: enum

• Approach 3 weakness
• Does not work for non-integral data types

enum {PI = 3.14159}; /* Compiletime error */

36

Symbolic Constant Style Rules

• In summary of symbolic constants…

• Style rules:

1. Use enumerations to give symbolic names
to integral constants

2. Use const variables to give symbolic names
to non-integral constants

3. Avoid #define altogether

19

37

• File circle.c (version 2):

“Circle” Program (Version 2)

#include <stdio.h>

int main(void)

/* Read a circle's radius from stdin, and compute and write its
diameter and circumference to stdout. Return 0. */

{
const double PI = 3.14159;
int radius;
int diam;
double circum;
printf("Enter the circle's radius:\n");
scanf("%d", &radius);
diam = 2 * radius;
circum = PI * (double)diam;
printf("A circle with radius %d has diameter %d\n",

radius, diam);
printf("and circumference %f.\n", circum);
return 0;

}

38

Toward Version 3

• Problem:
• Program does not handle bad user input

$ circle

Enter the circle's radius:

abc

User enters a non-number.
How can the program detect that?
What should the program do?

20

39

Detecting Bad User Input
• Solution Part 1: Detecting bad user input

• scanf() returns number of values successfully read
• Example:

• Or, more succinctly:

• Or, for more than one variable:

int returnValue;
…
returnValue = scanf("%d", &i);
if (returnValue != 1)

/* Error */

…
if (scanf("%d", &i) != 1)

/* Error */

…
if (scanf("%d%d", &i, &j) != 2)

/* Error */

40

Reporting Failure to User
• Solution Part 2: Reporting failure to the user

• To report failure to user, should write a message to stderr

“Abnormal” output

“Normal” output

“Normal” input

Purpose

fprintf(stderr, …);
Video
screen

stderr

printf(…);
fprintf(stdout, …);

Video
screen

stdout

scanf(…);
fscanf(stdin, …);

Keyboardstdin

C FunctionsDefault
Binding

Stream

21

41

Reporting Failure to OS
• Solution Part 3: Reporting failure to the operating system

• To generate status code x, program should:
• Execute return x statement to return from main() function, or
• Call exit(x) to abort program

• Shell can examine status code

• Note:
• In main() function, return statement and exit() function have same effect
• In other functions, they have different effects

EXIT_FAILURE (#defined in stdlib.h as ???)Unsuccessful

0
EXIT_SUCCESS (#defined in stdlib.h as 0)

Successful

Status Code that Program
Should Return to OS

Nature of Program
Completion

System-dependent;
on hats, 1

42

• File circle.c (version 3):

“Circle” Program (Version 3)

#include <stdio.h>
#include <stdlib.h>
int main(void)
/* Read a circle's radius from stdin, and compute and write its

diameter and circumference to stdout. Return 0 if successful. */
{

const double PI = 3.14159;
int radius;
int diam;
double circum;
printf("Enter the circle's radius:\n");
if (scanf("%d", &radius) != 1)
{

fprintf(stderr, "Error: Not a number\n");
exit(EXIT_FAILURE); /* or: return EXIT_FAILURE; */

}
diam = 2 * radius;
circum = PI * (double)diam;
printf("A circle with radius %d has diameter %d\n",

radius, diam);
printf("and circumference %f.\n", circum);
return 0;

}

22

43

Summary
• Simple C programs

• Program structure
• Defining symbolic constants

• #define, constant variables, enumerations
• Detecting and reporting failure

• The stderr stream
• The exit() function

• Functionality of the gcc command
• Preprocessor, compiler, assembler, linker

• Memory layout of a Linux process
• TEXT, RODATA, STACK sections
• (More sections – DATA, BSS, HEAP – later in the course)

