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In this lecture we prove the existence of pseudorandom-generators assuming that one-
way functions exist (Hastad, Impagliazzo, Levin and Luby ’99). Our proof is with respect
to non-uniform security. We also sketch the uniform case which requires a uniform version
of Impagliazzo’s hardcore set lemma that uses ideas from learning theory.

1 Basic Concepts

We briefly recall some standard notions from cryptography. For details the reader is
referred to one of the many textbooks on this topic.

1.1 Pseudorandom generators

In order to define pseudorandom generators, we need the notion of computational indis-
tinguishability.

Definition 1 We say two families of distributions {Xn} and {Yn} are computationaly
indistinguishable and write {Xn} ≈ {Yn} if for every family of polynomially sized circuits
{Cn}, there exists a negligible function ε : N→ [0, 1], i.e., ε = n−ω(1), such that

|Pr[Cn(Xn) = 1]− Pr[Cn(Yn) = 1]| < ε(n).

Definition 2 We say that a family {Xn} is pseudorandom if it is computationally indis-
tinguishable from the uniform distribution, i.e., {Xn} ≈ {Un}.

A function G : {0, 1}n → {0, 1}l(n) is called a pseudorandom generator (PRG) if G is
computable in polynomial time and G(Un) is pseudorandom.

We are only interested in PRGs where l(n) > n. As soon as this is the case, we can get
pseudorandom generators of arbitrary stretch l′(n) > l(n). Hence, it suffices to construct
PRGs that map n bits to n+ 1 bits.
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1.2 One-way functions and permutations

Definition 3 We say that a function f : {0, 1}∗ → {0, 1}∗ is a one-way function (OWF)
if f is computable in polynomial time and for every family of polynomial sized circuits
{Cn}, there exists a negligible function ε such that

Px∼Un [f(Cn(f(x))) = f(x)] < ε.

In case f is one-to-one, we will call f a one-way permutation.

For convenience and without loss of generality, we will assume that |f(x)| = |x|.

1.3 Goldreich-Levin theorem, informally

Suppose we have a one-way permutation f and consider the function G(x, r) = f(x)r(x�
r), where x � r the inner product

∑
i xiri mod 2. What Goldreich and Levin ’89 show

is that no efficient algorithm can “predict” the bit x � r given r and f(x) with more
than negligible success probability for random x and r. This kind of unpredictability was
known to imply pseudorandomness (Blum-Micali, Yao ’82). Therefore, G(x, r) is in fact
a pseudorandom generator mapping strings of length 2n into strings of length 2n + 1.
In other words, the existence of pseudorandom generators is implied by the existence of
one-way permutation.

Unfortunately, G need not be secure when f is not a permutation. A one-way function
could, for instance, always map into strings ending with a zero. As we will see next, the
case of one-way functions requires significantly more work.

2 Main theorem and proof outline

Around 1989, Impagliazzo and Luby [IL89] showed that the existence of various crypto-
graphic primitives, such as encryption schemes, message authentication codes, signature
schemes follows from the existence of one-way functions. A major challenge was to obtain
pseudorandom generators from the same assumption. This result was first achieved by
Impagliazzo, Luby and Levin [ILL89] with respect to nonuniform security. Later, Hastad
extended the result to the uniform case. A joint journal version appeared in ’99 [HILL99].

Theorem 1 ([HILL99]) Assuming the existence of a one-way function, there exists a
pseudorandom generator.

The original construction was highly impractical. An n-bit one-way function (think
of n > 100) would only give a pseudorandom generator of seed length n32. Recently,
Holenstein [Hol06] improved (giving n8) and simplified the construction. The best known
seed length based on general one-way functions is n7 due to Haitner et al. ’06. Our proof
is similar to that of Holenstein, although we only sketch the uniform case. The proof
strategy can be summarized as follows.

1. We define a notion of pseudo-entropy in analogy with the notion of pseudorandom-
ness.
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2. We show that it is not dificult to generate pseudorandomness once we can generate
sufficient amount of pseudo-entropy. The crucial tool in this step are extractors.
Hence, our task of proving the existence of a pseudorandom generator reduces to
that of giving a pseudo-entropy generator.

3. We construct a pseudo-entropy generator from scratch with very weak parameters.
This step relies on the Goldreich-Levin lemma and pairwise independent hash func-
tions.

4. We prove that these weak guarantees are sufficient to obtain a full pseudo-entropy
generator. This part is fairly simple with respect to a non-uniform notion of security.
The uniform proof is discussed separately.

3 Proof

We say a distribution X has pseudo-entropy at least k, written H̃∞(X) ≥ k, if there exists
a distribution Y with min-entropy H∞(Y ) ≥ k such that X ≈ Y .

A function F : {0, 1}m → {0, 1}n is called a pseudo-entropy generator (PEG), if there
exists a k such that

1. H̃∞(F (Um)) ≥ k + nε,

2. H∞(F (Um)) ≤ k with probability 1 − ε for negligible ε. More precisely, there is a
Y ⊆ F (Um) with H∞(Y ) ≤ k such that Px(F (x) ∈ Y ) ≥ 1− ε.

3.1 From Pseudo-entropy to Pseudorandomness

We will show how to construct a pseudorandom generator from a pseudo-entropy gen-
erator. The crucial tool are extractors. For details on extractors the reader is re-
ferred to the material from the previous lecture. We quickly recall that a function
EXT : {0, 1}n × {0, 1}d → {0, 1}l is a strong (k, ε)-extractor, if for all distributions X
with min-entropy H∞(X) ≥ k, we have

|Ud,EXT(X,Ud)− Ud, Ul| ≤ ε.

A construction based on the Left-Over-Hashing Lemma achieves l ≥ k−k0.01 with d = 2n
and ε exponentially small in k.

Construction Now, assume that we have a pseudo-entropy generator F : {0, 1}m →
{0, 1}n for some k < m ≤ n. Also assume we have two extractors EXT1 : {0, 1}m ×
{0, 1}2m → {0, 1}l1 and EXT2 : {0, 1}n × {0, 1}2m → {0, 1}l2 .

Claim 1. The function G : {0, 1}m+2m+2m → {0, 1}4m+l1+l2 , defined as

G(x, s1, s2) = EXT1(x, s1) ‖ s1 ‖ EXT2(F (x), s2) ‖ s2

is a pseudorandom generator.
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Proof. Obtain the distribution D′ from D = G(Um, U2m, U
′
2m) by replacing the output

segment EXT1(Um, U2m)U2m with the uniform distribution. Our claim is proven, if we
can argue that D ≈ D′ and D′ ≈ Ul where l = 4m+ l1 + l2.

To see the first part, suppose we sample x in the following way. Conditioned on
y ∼ F (Um), we draw x uniformly at random from the set F−1(y). Notice, by the second
condition of a pseudo-entropy generator, for all but a negligible fraction of the y’s, we have
that |F−1(y)| ≥ 2m−k. In other words, in this case EXT1 will be given a sample from a
distribution that is uniform on at least m− k bits. Hence, the first extractor provides us
with

l1 ≥ m− k − (m− k)0.01 ≥ m− k − nε/100

bits that are statistically close to uniform.
For the second part, we use the first condition of a pseudo-entropy generator. Namely,

F (Um) is computationally indistinguishable from a distribution of min-entropy k + nε.
Hence, the second extractor gives us

l2 ≥ k + nε − (k + nε)0.01 ≥ k + nε/2

bits that are computationally indistinguishable from uniform random bits. �

To complete this section it remains to observe that l1 + l2 > m. That is, we have
constructed pseudorandom generator of nontrivial stretch.

3.2 The Existence of a Weak PEG

We will now relax the requirements of a pseudo-entropy generator and see how to construct
such an object. We say F : {0, 1}m → {0, 1}m is a weak pseudo-entropy generator if there
exists a k such that

1. H̃(F (Um)) ≥ k + 1
100m , and,

2. H(F (Um)) ≤ k.

Here, H denotes the Shannon entropy, and H̃ is the “pseudo Shannon entropy” that
we define in the same way we defined pseudo-entropy for min entropy.

Now, suppose f : {0, 1}n → {0, 1}n is a one-way function and define the function

F (x, i, h, r) = f(x) ‖ i ‖ h ‖ h(x) ‖ r ‖ x� r.

Consider the output distribution of F for random x, r ∈ {0, 1}n, i ∈ {1, . . . , n + 10} and
a pairwise independent hash function h : {0, 1}n → {0, 1}i. Technically speaking, F will
be given the seed for such a family of hash functions. The seed can have the same length
regardless of i. Let Y denote the entire output except for the last bit which we denote by
Z. Suppose we modify the distribution Z as follows.

Z ′ =

{
random bit if i = i∗

x� r otherwise

where i∗ = dlog(|f−1(w)|)e + 1. We will use the distribution Y Z ′ to argue that F is in
fact a weak pseudo-entropy generator.
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Claim 2.

H(Y Z ′) ≥ H(Y Z) +
1

2m

Proof. We have H(Y Z ′) = H(Y )+H(Z|Y ) and H(Y Z) = H(Y )+H(Z|Y ). So, it suffices
to prove H(Z ′|Y ) ≥ H(Z|Y ) + 1

2m . Clearly, whenever i 6= i∗, we have Z = Z ′. However,
the case i = i∗ occurs with probability 1

m and here we will show that Z has conditional
entropy zero with probability 1/2. Condition on w ∼ f(Un) and let x ∈ S = f−1(w). We
claim with probability 1/2 over random h, h(x) determines x. Indeed, since |S| ≤ 2i

∗−1,
we can bound the collision probability of h as

P (∃x′ ∈ S\{x} : h(x) = h(x′)) ≤ 2i
∗−1

2i∗
≤ 1

2
. �

Claim 3.

Y Z ≈ Y Z ′

Proof. Suppose otherwise. Then, we have a distinguishing algorithm A such that

A(f(x), i∗, h, h(x), r) = x� r

with probability 1
2 +ε. We want to use this algorithm to invert f using the Goldreich-Levin

algorithm. The string i∗ we can guess correctly with probability 1/n. The same is not
immediately clear for h(x). However, since h is collision resistant, we can argue that the
first log(|f−1(w)|)− log(1/ε) bits of h(x) are close to uniform. The remaining bits can be
brute-forced efficiently. �

3.3 PEGs from weak PEGs

It remains to show how to construct a pseudo-entropy generator from a weak one. In
this step we will rely on our non-uniform notion of security. The uniform case is treated
separately in the following section.

Let F : {0, 1}m → {0, 1}n denote a weak pseudo-entropy generator and consider the
function

F ′(x1 . . . xl) = F (x1) ‖ F (x2) ‖ · · · ‖ F (xl)

where l is of order, say, n10. In order to show that F ′ is a (strong) pseudo-entropy
generator, we prove the following two claims.

Claim 4. For all except a negligible fraction of the strings ȳ in the image of F ′, we have

2−kl(1+ε) ≤ P (F ′(x1, . . . , xl) = ȳ) ≤ 2−kl(1−ε)

where each xi is drawn uniformly and independently at random.
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Proof. Notice, by assumption,

H(F (Um)) = Ey∼µ(log(1/µ(y))) = k.

where µ = F (Um). Hence,

Pȳ=y1,...,yl

(
2−kl(1+ε) ≤

l∏
i=1

µ(yi) ≤ 2−kl(1−ε)
)

= 1− P

(∣∣∣∣∣
l∑

i=1

log(1/µ(yi))− kl

∣∣∣∣∣ > εkl

)
≥ 1− 2−Ω(ε2kl/n).

Here, we used that log(1/µ(yi)) ≤ n, since yi ∈ F (Um). �

Claim 5. If two distributions X,Y satisfy X ≈ Y , then X1 ‖ · · · ‖ Xl ≈ Y1 ‖ · · · ‖ Yl where
Xi and Yi denote independent copies of X and Y , respectively.

Proof. Consider the following sequences.

X1‖X2‖X3‖· · · ‖Xl

Y1 ‖X2‖X3‖· · · ‖Xl

Y1 ‖ Y2 ‖X3‖· · · ‖Xl
...

Y1 ‖ Y2 ‖ Y3 ‖ . . . ‖ Yl

Suppose a circuit can distinguish two subsequent distributions, say the i-th and (i+1)-th.
Then, by an averaging argument, we can fix the values for Y1, . . . , Yi−1 and Xi+1, . . . , Xl

such that the circuit actually distinguishes between Xi and Yi. In fact, we can hardwire
these values into the circuit so as to obtain a new circuit that distinguishes between X
and Y . �

Given these two claims, the proof is easily completed. By assumption there is a
distribution Y ≈ F (Un) with H(Y ) ≥ k + 1

100m . Hence, by Claim 5, F ′(Ulm) is in-
distinguishable from a distribution with Shannon entropy kl + l

100m . Still, we need a
bound on the pseudo min-entropy of F ′. But, by Claim 4, we have for most ȳ that
P (F ′ = ȳ) ≤ 2−(k+1/100m)l(1−l0.1). We simple remove every element ȳ for which this is not
true from the support of F ′. For large enough l this will give us the required entropy.

The second requirement of a pseudo-entropy generator follows directly from Claim 4.

Remark 1 In the proof of Claim 5, we used the fact that we defined security with respect
to non-uniform circuits. The claim is actually false in general when it comes to uniform
security. However, Holenstein [Hol06] showed how one can prove the security of our
construction using what is known as a uniform hardcore lemma. This lemma will be
stated and proven next.
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4 Uniform Hardcore Lemma

In this section, we sketch the proof of a uniform hard-core lemma. Our presentation is
based on a recent approach due to Kale [Kal07].

To state the theorem, we say a distribution p over a set S ⊆ {0, 1}n is ε-smooth if for
every x ∈ S, we have p(x) ≤ 1

ε|S| . For instance, a distribution uniform over a subset of S
of size ε|S| is is ε-smooth with respect to this definition. Also, notice the set of ε-smooth
distributions is convex.

Theorem 2 Let {fn}n∈N denote a family of boolean function and let ε, γ : N → (0, 1).
Suppose, there exists an algorithm A which given oracle access to any ε-smooth distri-
bution p over {0, 1}n returns a circuit C of size at most s(n) such that Prx∼p[C(x) =
fn(x)] ≥ 1

2 + γ(n).
Then there is an algorithm B which for every n and oracle access to fn returns a

circuit C ′ such that C ′ computes fn correctly on at least a 1− ε(n) fraction of all inputs.
Furthermore, the algorithm B makes O( ln(1/ε)

γ2 ) calls to A and its runtime is polynomial in
the number of calls to A and the cost of simulating A. Also, the circuit C ′ is the majority
circuit of the circuits returned by A.

For details on how to apply such a theorem in the above context, we refer the reader to
the paper of Holenstein [Hol06].

Before we can prove this theorem, we will need some prelimanaries. Specifically, we will
be interested in Bregman projections. These are projections of probability distributions
onto convex sets with respect to the relative entropy as distance function. We shall think
of discrete distributions over a finite set X of cardinality N as real-valued vectors p,q
indexed by the set X. For two distributions p,q, define the relative entropy as

D(p ||q) =
∑
x∈X

px log
px
qx
.

Further, let Γ ⊆ RN be a closed convex set. The Bregman projection of q onto the set Γ
is defined as

projΓ q = arg min
p∈Γ

D(p ||q).

Bregman showed that the projection associated with any divergence satisfies a gen-
eralized Pythagorean Theorem. We will only need this theorem in the case of relative
entropy.

Theorem 3 (Bregman) Let p,q be two distributions and let Γ ⊆ RN be a closed convex
set. Then,

D(p ||projΓ q) ≤ D(p ||q). (1)

Notice, the Bregman projection is defined by a convex program and hence it can be
computed (or approximated) efficiently when given some suitable representation of theset
Γ (see [Kal07] for further references).
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Figure 1: Uniform Smooth Boosting

Input: Oracle access to a boolean function f : {0, 1}n → {0, 1}; parameters
ε, γ > 0 and T ∈ N; an algorithm A which, when given oracle access to a smooth
distribution p over {0, 1}n, returns a circuit C such that Prx∼p[C(x) = fn(x)] ≥
1
2 + γ.
For t = 1, 2, . . . , T :

1. Run algorithm A on input of p(t) so as to obtain a circuit C(t) where p(1)

denotes the uniform distribution over {0, 1}n. When algorithm A asks a
query x, compute and return p(t)(x).

2. Define m(t) by putting m(t)
x = 1 if C(t)(x) = f(x) and 0 otherwise.

3. Define q(t+1) coordinate-wise using the following update rule q(t+1)
x =

(1−γ)m
(t)
x

Z(t) p(t)
x where Z(t) =

∑
x p

(t)
x (1− γ)m

(t)
x is the normalization factor.

4. Define p(t+1) = projΓ q(t+1) where Γ denotes the set of ε-smooth distribu-
tions.

Output: The circuit C ′ = MAJORITY(C(1), C(2), . . . , C(T )).

Proof. To prove the theorem, we will run the algorithm depicted in Figure 1 for T =
2
γ2 ln(1/ε) + 1 rounds. The runtime requirement follows from the observation that Step 1
in the t-th round can be implemented efficiently using O(t) applications of the update rule
described in Step 2–4. The projection in (4) cannot be computed exactly efficiently, but it
is possible to approximate the projection accurately enough. We omit the details of this
step.

Next, we claim that the circuit C ′ computes fn correctly on a 1 − ε fraction of the
inputs. To argue this point we will appeal to the following lemma of Kale [Kal07]. The
proof uses standard techniques from learning theory combined with Bregman’s theorem.
We omit it from these scribe notes.

Lemma 6 Our algorithm achieves the following bound for every fixed distribution p,

T∑
t=1

〈m(t),p(t)〉 ≤ (1 + δ)
T∑
t=1

〈m(t),p〉+
1
δ

D(p ||p(1)). (2)

We will apply the lemma as follows.
First notice, it follows from our assumption that

T∑
t=1

〈m(t),p(t)〉 =
T∑
t=1

Pr
x∼p(t)

[C(t)(x) = f(x)] ≥
(1

2
+ γ
)
T. (3)
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Now let us consider the set E = {x ∈ {0, 1}n | C(x) 6= f(x)}, i.e., those points
on which the majority circuit C ′ errs. Notice that

∑T
t=1m

(t)
x is equal to the number of

circuits C(t) which correctly compute fn on input x. Since C ′ is a majority circuit, we
have

∑T
t=1m

(t)
x ≤ 1

2T whenever x ∈ E. In particular, this is true in expectation taken
over uniform x ∈ E. Hence, if we let uE denote the uniform distribution over the set E,
then we must have,

T∑
t=1

〈m(t),uE〉 = E
x∼uE

[
T∑
t=1

m(t)
x

]
≤ 1

2
T (4)

Now, suppose |E| > ε2n. This implies that uE is an ε-smooth distribution. Moreover,
D(uE ||p(1)) ≤ ln(1/ε). Thus, we can apply Lemma 6 to (3) and (4) with δ = γ and
p = uE to conclude (1

2
+ γ
)
T ≤

(1
2

+
γ

2

)
T +

1
γ

ln(1/ε). (5)

In particular,

T ≤ 2
γ2

ln(1/ε).

So, if we run our algorithm for T ≥ 2
γ2 ln(1/ε) + 1 rounds, then we can be sure that

|E|/2n < ε. �
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