
COS 598D - Lattices

scribe: Srdjan Krstic

Introduction

In the first part we will give a brief introduction to lattices and their relevance in some topics in
computer science. Then we show some specific problems and results, namely the LLL algorithm
and a construction of a collision-resistant hash function from lattices, in particular from worst-case
hardness of the SIVP problem.

The first two sections are largely based on the first two lectures by Oded Regev, course ”Lattices in
Computer Science, Fall 2004. The third part is somewhat based on the paper by Oded Regev and
Daniele Micciancio - Worst-case to Average-case Reductions based on Gaussian Measures, SIAM
Journal on Computing 37(1) pp. 267-302, 2007. and to a larger extent on the paper by O. Goldreich,
S. Goldwasser, and S. Halevi - Collision-Free Hashing from Lattice Problems, ECCC, TR96-042,
1996.

1 Basic properties of lattices

1.1 Definitions

Definition 1. For a given set of n linearly independent vectors b1, b2, . . . , bn ∈ R
m, we define a

lattice L(b1, . . . , bn) as a set of vectors

{
∑

aibi|ai ∈ Z}.

The vectors b1, . . . , bn represent the basis of the lattice. Equivalently we can represent the basis
as a matrix B whose columns are the basis vectors. We will mostly be interested in those lattices
where n = m, i.e. full-rank lattices.
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In the example above, the two red vectors span the lattice containing all integer points in Z
2, and

so do the blue vectors. The two green vectors, however, don’t span the same lattice. In the case
such as the one above with red and blue vectors, we say that two bases are equivalent if they span
the same lattice. Two bases are equivalent if and only if we can obtain one from the other using
only the three types of operations on its vectors:

1. bi → −bi

2. bi → bi + kbj , k ∈ Z

3. bi ↔ bj

Equivalently, if we represent the basis as a matrix B, to bases B and B′ are equivalent if and only
if there exists a matrix U ∈ Z

n×n, such that det(U) = ±1 and B′ = UB. Hence it follows that if
two bases B and B′ are equivalent we have |det(B)| = |det(B′)|, and we define that to be det(L),
the determinant of the lattice spanned by B or B′.

Definition 2. Given a lattice basis B, we define the fundamental parallelepiped P(B) as

P(B) = {
∑

aibi|ai ∈ R, ai ∈ [0, 1)}.

Notice that the whole lattice can be ”tiled” with copies of the fundamental parallelepiped. Also,
the fundamental parallelepiped doesn’t contain any lattice points, except its origin. The volume of
P(B) is equal to |det(B)|, and hence by definition equal to det(L).

One of the properties of a lattice of particular interest is the length of the shortest nonzero vector
in the lattice. Thus we define it as

λ1 = min
v∈L\{0n}

||v||,

where by the length || · || of a vector we will assume Euclidean l2 norm. We can also define λi for
i > 1 as follows:

λi(L) = min
v1...vi∈L,

lin. ind.

max
1≤j≤i

||vj ||.

Equivalently we can define the ith successive minimum as

λi(L) = inf{r|dim(span(L ∩B(0, r))) ≥ i},

where B(0, r) represents a closed ball centered at 0 of radius r.

The notion of the successive minima in lattices gives rise to several interesting problems, such as:

SVP: Shortest vector problem - compute λ1

CVP: Closest vector problem - given y /∈ L, find v ∈ L that minimizes ||v − y||

Finding solutions to these problems is hard, but we can achieve meaningful bounds.
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1.2 Some properties

Theorem 1 (Blichfield). Given a measurable set S ⊆ R
n and a full-rank lattice L, such that

vol(S) > det(L), there exist x, y ∈ S, x 6= y, such that x− y ∈ L.

Proof: Recall that the fundamental parallelepiped can be used to ”tile” the lattice. Formalizing
this argument, let the basis of L be B. For x ∈ L, let Px(B) = {x + y|y ∈ P(B)}. Then
Px(B) ∩Pz(B) = ∅ for x, z ∈ L, x 6= z, and

⋃

x∈LPx(B) = R
n. Now define Sx = S ∩Px(B). Then

S =
⋃

x∈L Sx, so vol(S) =
∑

x∈L vol(Sx). Now define Sx = {y − x|y ∈ Sx}. Then Sx ⊆ Px(B) and
vol(Sx) = vol(Sx), and hence

∑

x∈L

vol(Sx) =
∑

x∈L

vol(Sx) = vol(S) > det L = vol(P(B)).

Thus, there exist some x, y ∈ L, x 6= y, such that Sx∩Sy 6= ∅. So, ∃x, y, z ∈ L such that Sx∩Sy ∋ z.
Then, z + x and z + y are two points in S, and (z + x)− (z + y) = x− y ∈ L. ♠

Theorem 2 (Minkowski). Let S be a centrally symetric convex set with vol(S) > 2n det(L). Then

there exists x ∈ S ∩ (L \ {0n}).

Proof: Let S
2 = {x|2x ∈ S}. Then we have vol(S

2 ) = vol(S)
2n , so vol(S

2 ) > det(L). By Blich-

field’s theorem then ∃x, y ∈ S
2 , x 6= y, such that x − y ∈ L. Notice x − y = 2x+(−2y)

2 . We know

2x, 2y ∈ S, and by central symmetry of S, −2y ∈ S, so 2x+(−2y)
2 ∈ S, by convexity of S, and so

x− y ∈ S ∩ (L \ {0n}). ♠

Corollary: λ1 ≤
√

n(det(L))1/n.

Proof: Look at the cube C = [− det(L)1/n,det(L)1/n]n. By Minkowski’s theorem, there is a point
x ∈ L \ {0n} that is inside the cube, and so is ||x|| ≤ √n det(L)1/n.

Minkowski’s theorem thus gives us an approximation for the SVP problem. But this bound is not
very tight; However, there is a surprising result by Lenstra and Schnorr from 1990, that using only
the result of Minkowski’s theorem finds an n-approximation for the SVP problem. The theorem
follows:

Theorem 3 (Lenstra-Schnorr). If we have an algorithm that finds a vector v ∈ L \ {0n}, such that

||v|| ≤ f(n)(det(L))1/n, for some non-decreasing function f(n), then we have a f(n)2 approximation

for the SVP problem.

Proof: For a more detailed proof refer to Oded Regev’s lecture notes
(http://www.cs.tau.ac.il/~odedr/goto.php?name=ln_dual&link=teaching/lattices_fall_2004/ln/DualLattice.pdf)

We will assume familiarity with dual lattices. See next lecture for reference on dual lattices. We
apply the algorithm to L(B) and the dual lattice L(B)∗, to obtain vectors u and v, respectively.
We know that ||u|| ≤ f(n)(det(L(B)))1/n and ||u|| ≤ f(n)(det(L(B))∗)1/n = f(n)(det(L(B)))−1/n,
so ||u||||v|| ≤ f(n)2 = g(n). Thus we constructed an algorithm that given a basis B, outputs
two vectors u ∈ L(B) and v ∈ L(B)∗, such that ||u||||v|| ≤ g(n) for some non-decreasing function
g(n). We show that this algorithm gives us a g(n) approximation for SVP. Given a lattice, use
the algorithm to obtain a pair of vectors u1, v1. We assume, wlog, that v1 is primitive as we can
easily force it to be. Then, let L′ be the projection of L∗ on the subspace of span(L∗) orthogonal
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to v1. Then we recursively apply the above process for L′, and back from recursion we get vectors
u2, . . . un, v′2, . . . v

′
n. Then we define vi’s as vi = v′i + αivi for the unique αi ∈ (−1

2 , 1
2 ] for which

vi ∈ L∗. It can be shown that the set of vectors v1, . . . vn is a basis of L∗. For all i, ||ui||||ṽi|| ≤
g(n − i + 1) ≤ g(n). Then let b′1, . . . b

′
n be a dual basis of v1, . . . vn, which is thus a basis of L, and

let bi = b′n−i+1 so that we have

min ||b̃i|| = min
1

||ṽi||
≥ 1

g(n)
min ||ui||.

Then,
min ||ui|| ≤ g(n)min ||b̃i|| ≤ g(n)λ1(L).

Therefore, outputting the shortest ui guarantees us a g(n) approximation for SVP.

2 LLL (Lenstra, Lenstra, Lovasz)

2.1 Gram-Schmidt orthogonalization

The Gram-Schmidt procedure takes a set of n linearly independent vectors and produces another
set of n linearly independent vectors which span the same subspace and are orthogonal to each
other. For vectors b1, . . . bn their Gram-Schmidt orthogonalization are vectors b̃1, . . . , b̃n, where

b̃1 = b1

b̃2 = b2 − α2,1b̃1
...
b̃i = bi −

∑

j<i
αi,j b̃j ,

where αi,j =
〈bi,b̃j〉
〈b̃j ,b̃j〉

This way we have a set of n linearly independent vectors where 〈b̃i, b̃j〉 = 0 for i 6= j, i.e. all vectors
are orthogonal to each other, and for any i, 1 ≤ i ≤ n, span(b1, . . . , bi) = span(b̃1 . . . , b̃i).

Expressed in the normalized Grahm-Schmidt basis, the matrix whose columns are b1 . . . bn will be:

b1 b2 · · · b4











||b̃1|| α2,1||b̃1|| · · · αn,1||b̃1||
0 ||b̃2|| · · · αn,2||b̃2||
...

...
. . .

...

0 0 · · · ||b̃n||











From this representation we can immediately calculate the determinant of the lattice as

det(L) =
n

∏

i=1

||b̃i||
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Another property that follows is
λi ≥ min

j
||b̃j ||

We sketch the proof of this property. Notice it suffices to show that λ1 ≥ min
j
||b̃j ||. Let x be an

arbitrary nonzero integer vector, x ∈ Z
n, and we show that ||Bx|| ≥ min

j
||b̃j ||. Let i be the largest

index for which xi 6= 0. Then

|〈Bx, b̃i〉| = |〈
i

∑

j=1

xjbj , b̃i〉| = |xi|〈b̃i, b̃i〉 = |xi|||b̃i||2

The first equality holds because looking at the above representation of B we see that for j < i,
〈bj , b̃i〉 = 0, and the second equality is due to the fact that 〈bi, b̃i〉 = 〈b̃i, b̃i. On the other side we
can bound |〈Bx, b̃i〉| by |〈Bx, b̃i〉| ≤ ||Bx||||b̃i||, and combining these two inequalities we get

||Bx|| ≥ |xi|||b̃i|| ≥ ||b̃i|| ≥ min
j

b̃j.

Due to this fact and the definition of λ’s, we can also observe that

max
i
||bi|| ≥ λn ≥ ||b̃n||

2.2 LLL-reduced bases

Definition 3. We call a basis B = b1, . . . , bn LLL-reduced if it satisfies the two following constraints:

1. ∀i, ||b̃i|| ≤ 4||b̃i+1||

2. ∀j < i, |αi,j| ≤ 1
2

Remark: This is a special case of an LLL-reduced basis. In general, we could define a δ-LLL-reduced
basis by changing property 1 to ∀i, δ||b̃i||2 ≤ ||αi+1, ib̃i + b̃i+1||2, where 1

4 < δ < 1. Our definition
is a special case for δ = 5

16 .

Corollary 1: If b1, . . . , bn is LLL-reduced, then

||b1|| ≥ λ1 ≥ 4−(n−1)||b1||,

where the first inequality represents the simple fact that b1 is a vector in the lattice and hence has
to be ≥ λ1, and the second one follows directly from property 1.

Corollary 2:

max
i
||bi|| ≥ λn ≥

1

n4n
max

i
||bi||

By Corollary 1, if we could transform an arbitrary basis into an LLL-reduced one, we would obtain
a 4−n approximation for the SVP problem by simply returning b1.
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2.3 Algorithm

Step 1 (ensuring property 2): Given a basis B = b1 . . . bn, perform Gram-Schmidt orthogonaliza-
tion. For each bi, we know bi = b̃i+

∑

j<i
αi,j b̃j . Then let ai,j = n+βi,j, where n ∈ Z and −1

2 < bj ≤ 1
2 .

Now we change bi by bi − nbj . Here is the pseudocode:

for i = 2 to n

for j = i - 1 downto 1

bi ← bi - nbj

The crucial part for ensuring correctnes here is the reverse order of the inner loop. Consider the
orthonormal basis we get after normalizing Gram-Schmidt vectors, and look at B expressed in that
basis:













||b̃1|| ∗ · · · ∗
0 ||b̃2|| · · ·

...
...

...
. . . ∗

0 0 · · · ||b̃n||













The matrix is upper-right triangular, and thus by doing the inner loop in the reverse order we will
not affect the coefficients to the right of the current column, so after finishing all the ∗ elements,
which are of type αi,j||b̃j || will become ≤ 1

2 ||b̃j ||.

Step 2 (ensuring property 1): If there exists i such that ||b̃i|| > 4||b̃i+1||, swap bi with bi+1, recom-
pute Gram-Schmidt basis, repeat step 1 and step 2. If this sequence ever terminates, we will indeed
have an LLL-reduced basis.

Algorithm Analysis: Define a potential function

Φ =
n

∏

i=1

det(b1 . . . bi) =
n

∏

i=1

i
∏

j=1

||b̃i||.

In step 1 of the algorithm, the Gram-Schmidt basis doesn’t change since we only do operations of
type bi ← bi+kbj . It only changes in step 2, where two consecutive columns are swapped. But then
if we swapped columns i and i + 1, notice that for no other j 6= i, det(b1 . . . , bj) changed. Thus the
only difference is in det(b1, . . . , bi) term. Denote the initial potential with Φ, the new potential with

Φ′, initial ith Gram-Schmidt vector with b̃i, and the new one with b̃′i. Then, Φ/Φ′ = ||b̃i||/||b̃′i||.
We have

||b̃′i|| = ||αi+1,ib̃i + b̃i+1|| ≤
1

2
||b̃i||+ ||b̃i+1|| ≤

1

2
||b̃i||+

1

4
||b̃i|| =

3

4
||b̃i||.

Thus, Φ/Φ′ ≥ 4/3, and the algorithm finishes in polynomial time.

3 SIVPα - short independent vectors problem

Input: basis B
Output: v1, . . . vn ∈ L - linerly independent vectors such that ||vi|| ≤ αλn.
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This gives us a bound on both λn and λ1. It also implies existance of some cryptographic primitives,
according to the two following theorems which we state without proof:

Theorem 4 (Ajtai ’96). There exists c such that if solving SIVPnc is hard, then there exists a

one-way function.

Proof: See M. Ajtai - Generating hard instances of lattice problems (STOC ’96). The proof is a
reduction to modular subset-sum problem.

Following Ajtai’s ideas, Goldreich, Goldwasser and Halevi showed that essentially the same con-
struction gives us a collision-resistant hash function.

Theorem 5 (Goldreich, Goldwasser, Halevi ’96). There exists c such that if solving SIVPnc is

hard, then there exists collision-resistant hash function.

For the algorithm we are about to present, we assume access to a ”Collision-Finder” oracle. Given
m vectors of length n, (a1, . . . am), and a number q ∈ Z, the oracle returns an m-length vector b
such that

∑

biai = 0n (mod q). Now we can present idea behind the algorithm:

Input:

• LLL-reduced basis B

• Collision-Finder oracle, which succeeds with probability n−c

• parameter ŝ, 2s(L) < ŝ < 4s(L) (where s(L) is the smoothing parameter of the lattice, defined
below)

Output:

• vector v or ”fail”

We will need to prove the three following properties of this algorithm:

1. Conditioned on not ”fail”:

(a) v ∈ L

(b) with probability 1− negl(n), ||v|| ≤ O(n3λn)

2. not ”fail” happens with probability n−c

2

3. for all fixed hyperplanes H of dimension dim ≤ n− 1, Pr[v /∈ H] ≥ n−d, for some constant d

We can deal with the probabilities by repeating the process nc+d+2 times which would give us
enough results for v. We now present an implementation of this idea and prove that it follows the
three required propreties above. First we need another definition:
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Definition 4. A smoothing parameter s(B) of a lattice basis B is the smallest s such that

|Gn
s mod P(B)− UP(B)| ≤ n− log(n),

where Gn
s is an n-dimensional Gaussian with mean 0 and standard deviation s.

And we use its following two properties:

Theorem 6 (Ajtai).
λn

100
≤ s(B) ≤ nλn

The proof of this theorem will be covered in next week’s class.

Fact:

Pr
x←Gn

s

[

||x|| > 2s
]

≤ 2−Ω(n)

Now we can formulate the actual algorithm:

for i = 1 to m

xi ← Gn
ŝ

yi ← xi mod P(B)
ai ← ⌊qB−1yi⌋
zi ← Bai/q

~b ← ColFind(~a)
if ~b is bad

output "fail"

else

output v:
∑

bi(xi - yi + zi)

In other words, we split the fundamental parallelepiped into q × q cells. Then for any given xi, we
take yi to be xi modulo the fundamental parallelepiped, ai to be the cell in which yi falls, and zi

to be the corner of that cell.
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And it remains to prove the three claims from above. In order to do that, we announce our choice
of m = 8n2 and q = 24n:

1. (a)

v =
∑

bi(xi − yi + zi) =
∑

bi(xi − yi) +
∑

bizi

The
∑

bi(xi − yi) falls in L, so we need only consider
∑

bizi:

∑

bizi =
∑

bi
Bai

q
=

B

q

∑

biai.

But
∑

biai = 0n (mod q), so
∑

biai = qu, for some integer vector u. Thus,

∑

bizi =
B

q
qu = Bu ∈ L

(b)

||v|| = ||
∑

bi(xi − yi + zi)||

By triangle inequality,

||v|| ≤
∑

||bi||||xi − yi + zi||

bi’s are bounded by 1, so with probability 1− negl(n),

||v|| ≤
∑

||xi||+
∑

|| − yi + zi||

Because of theorem 6 and the Gaussian distribution,
∑ ||xi|| ≤ m · s = O(n3λn). The

other term,
∑ ||−yi+zi|| by the definition of y’s and z’s, we can bound by m·diam(P(B))

q =

negl(n), so ||v|| is bounded by O(n3λn)

2. It suffices to show that ∆(a, â) < negl(n), where ∆(·, ·) represents the statistical distnace
between the two distributions and â = {â1, . . . , âm} uniform over Z

n
q . Let

f : P(B)→ Z
n
q

f(x) = ⌊qB−1x⌋
â = (f(Gn

ŝ mod P(B)), . . . f(Gn
ŝ mod P(B)))

a = (f(UP(B)), . . . , f(UP(B)))

The statistical distance between a and â is m times the distance between each corresponding
entries, since they are independent of each other, and that is m · negl(n) = negl(n).

3. For any fixed hyperplane H of dimension ≤ n− 1, we want to bound Pr[v /∈ H]. That is,

Pr
xi

[

∑

bi(xi − yi + zi) /∈ H
]

Denote −yi + zi by f(xi). By averaging argument, there exists some i for which bi 6= 0 with
probability at least 1/m. Without loss of generality, assume this index is i = 1 and the
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corresponding coordinate b1 = 1. Then we can fix x2, . . . , xm such that Pr[b1 = 1] > 1
m3 .

Then we can look only at
Pr
x

[

x− f(x mod P(B)) /∈ H
]

We define the following three sets:

Good = {x|x− f(x mod P(B)) /∈ H ∧ bi = 1}

Bad = {x|x− f(x mod P(B)) ∈ H ∧ bi = 1}

Bad’ = {x|x ∈ Bad ∧ ||x||
s
≤ 10 log(m)}

We want to show that Good has enough probability of happenning, i.e. Pr[Good] ≥ n−d. By
definitions we see that

Pr
[

Bad \ Bad’
]

≤ negl

Hence, if Pr[Bad’] is also negligible, that would immediately imply that Good is noticable.
Otherwise, we claim that Pr[Good] ≥ Pr[Bad]/nd, which would finish the proof. Consider a
mapping defined in the following way: let u ∈ L be the shortest point not in H. By definition,
||u|| ≤ λn. Then the mapping sends x→ u + x. If x ∈ Bad, then (u + x) ∈ Good. Otherwise,
x− f(x mod P(B)) ∈ H, and x + u− f((x + u) mod P(B)) ∈ H, so u ∈ H, which cannot be.
And now look at the distributions of x and u + x:

A : Gn
ŝ (x) = α(ŝ) · e−( ||x||

ŝ
)2

B : Gn
ŝ (x + u) = α(ŝ) · e−( ||x||

2

ŝ2
+ 2||x||||u||

ŝ2
+ ||u||2

ŝ2
)

and we can bound ||u||ŝ terms by O(1), so A
B < 1

nd , for some constant d.
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