Note on a Spectral Theorem by Forster

Let 2 = {x | x € X} < R¥ be a collection of unit vectors in R¥ indexed by a set X of cardinality at
least 2k. We assume that the vectors in & are in general position, that is, every k-subset of &' is
linearly independent. For A € R**¥, we define the following matrix

M(A) = ) e (Ax ® Ax),
xeX

where (Ax ® Ax) denotes the self-adjoint linear operator defined by (Ax ® Ax)(y) = (Ax,y)Ax.
We will show that there exits a matrix A € R¥*F such that

Amin (M(A) = &, )

where Anin(-) denotes the smallest eigenvalue of a symmetric matrix. Note that any matrix A
that satisfies (1) is necessarily invertible, for otherwise the matrix M(A) has smallest eigenvalue
0. Also note that the matrix M(A) has trace | X|, and hence the equation (1) implies that all
eigenvalues are equal to | X|/ k.

In the following claim, we gather a few facts about matrices of the form M(A).

Claim 1. Let A€ R¥*k. Then,
1. M(A) is symmetric and positive semidefinite,

2. Tr M(A) = | X]|,

@

Amin(M(A)) = Amax(M(A)) if and only if Amin(M(A)) = B (0or Amax(M(A)) = B,

N

. M(aA) = M(A) for any non-zero scalar a € R,

)]

. Ae GL(k) ifand only if M(A) € GL(k),

Proof. Ttems 1-4 can be verified easily. 5.) The range of M(A) is equal to the span of the set
{Ax | x € X}. By the general position assumption for &, the span of the set {Ax | x € X} is equal
to RKif A is non-singular. On the other hand, if A is singular, then {Ax | x € X} cannot span
RE. O

Lemma 2. For every non-singular matrix B € R**¥, there exists 5 > 0 such that

Amin (M(AB)) = min { 5L, Amin (M(B)) + 5},

where A= M(B)~Y/2,

Proof. For x€ X, letx' = me be the unit vector in direction Bx. Note that ("¢ x(x' ® x)) =

M(B) = A™2. We may assume Amin = Amin (X rex(®' ®x)) < [X|/k, for otherwise the lemma is
trivially true. Also note that Amin = 1/ Amax(A%) = 1/ Amax(A)2.



In order to prove the lemma, it remains to show that the matrix M (AB) — Anin I has only pos-
itive eigenvalues. Since A is symmetric, we have (Ax' ® Ax’) = A(x’ ® x') A and thus }_ ¢ x (Ax' ®
Ax) = A(X ,ex(x' ®x')) A= I. Hence,

M(A) = Aminl =} x T (AX' ® AX') = Amin]

= ex (m ~ Amin) (Ax' ® Ax) (using Y (Ax' ® Ax') =1)
=D rex @x(Ax' ® Ax)) (ax= ||Aylcf||2' — Amin)
=0 (using @y = 0, because | Ax|1* < Amax(A%) = Ay

Let Xy denote the set of indices x such that a, = 0. We claim that X, has cardinality at most k.
Assuming this claim, we can finish the proof of the lemma as follows. If | Xy| < k, then there are at
least | X|—k = kindices such that a, > 0. By the general position assumption, the corresponding
set of vectors {Ax' | x € X \ Xy} spans ®*. Hence for every unit vector y, there exists an index
x1 € X\ Xp such that (Ax},y) #0. Thus

(X ex ax(Ax' ® AX)) y, ) = (@, (Ax} ® AX))y, y)
= ay, (Ax}, y)* > 0.

It follows that the matrix

Dorex Wx(AX ®AX) = )\ o (AX' ® AX') = AminI = M(AB) = Amin[
has only positive eigenvalues, which proves the lemma.

It remains to prove the claim that | Xy| < k. For the sake of a contradiction, assume | Xy| = k.
Then there are k linearly independent vectors x’ such that || Ax'|| = Amax(A). Thus the eigenspace
of A corresponding to Amax (A) has dimension k. It follows that the eigenspace of A2 = ¥ . x (x'®
x') corresponding to A, = 1/ Amax(A)? has dimension k. Hence | X| = Tr (A™2) = kApin, which
contradicts our assumption Ay < | X|/k. a

Lemma3. Letsf = {A” | ¢ € N} < RF*K pe any sequence of non-singular matrices with || A | = 1.
Suppose o has a subsequence that converges to a singular matrix A. Then, for everye > 0, there
exists an ¢ € N such that

Amin (M(A))) <1+e.

Proof. Suppose that the kernel of A has dimension d > 0. Then there exist d ortho-normal
vectors ej,...,e; such that (Ax,e;) = 0 for every i € [d] and x € X. Let X, denote the set of
indices x such that Ax = 0. Since || A| = lim/_ ||A”|| = 1, the matrix A cannot be 0 and hence
d < k. Therefore, using the general positive assumption, X, has cardinality at most d. In the



following, we restrict «f to the subsequence that converges to A. Then,

limsup ) (M(A“)e;,e;)
{—oo0  jeld]

=limsup )_ ((erxm(qux@)A(i]x))ei,ei>
(—0o  ie[d)

=limsup ) )

{—oo je[d]xeX

=limsup ) ). <||A L= A%,e )2 (using lim£~oo<”A(})x” A<f)x,ei> =0 for x ¢ Xo)

l—oo xeXpi€ld]

1 G) A2
A0 (A%x,e;)

<limsup Z 1 (using ¥ ;c(q) (¥, €)% < 1 for any unit vector y)

{—o00 xeXy

<d.
It follows that for every € > 0, there exists i € [d] and ¢ € N such that
(M(A)e;,e;) <1+e,

which proves the lemma. O

Proof of the Theorem

We will need the following claim.

Claim 4. At every matrix Ay € GL(k), the following functions are continuous:
8(A) = Amin(M(A),  f(A) = Amin(M(M(A)"'2 4)).
Proof. Follows from the fact that the composition of continuos mappings is continuos. O

Theorem 5. There exists a matrix A* € R*** such that
Amln (M(A )) = %

Proof. We define a sequence of = {A” | ¢ e N} < Rkxk of non-singular matrices with || Al = 1 by
the following recurrence

(e+1) 1 (ON—1/2 50
A ||M(A 1/2A(2) I M(A ) A ’ (2)

where we choose A" to be the linear operator that maps the first k vectors in & to the canonical
(orthogonal) basis of R¥. Note that M(A¥) = M(M(A“"")"1/2A“-Y), Hence, by Lemma 2, the
sequence {1\, | £ € N} defined by

min

A(l) g(A(l)) — /1rnin (M(A([]))

min



is strictly increasing in £ until it possibly reaches | X |/ k. Furthermore, we have Aﬁiin > 1, because

MAM =Y TimAYze A% = Y i (A"xe A"y
xX€e{xt,..., xky
k
= (e;j®e;)) =1,
i=1

where x!,..., x* are the first k indices of X, and ey, ..., ey is the canonical basis of Rk 1t follows
that A2, >1+¢ for some e > 0.

Leto/' = {A“Y" | t € N} denote a converging subsequence of «f. Note that «f has a converging
subsequence, because it is contained in the bounded set {A € RE<E 1A < 11 By Lemma 3
and the observation Aifl)m > 1+¢ for ¢ > 1, the limit of &/’ is a non-singular matrix A*. By the
continuity of the function f at non-singular matrices,

f(A®) = tlim FAYD) (using continuity of f at A*)
—00
— thm Amjn(M(M(Aw(t)))_I/ZA([[”)))
—00
= tlim Amin (M(A“*)) (using M(M(A©)~12 Ay = M(A“*Y) for £ €N)

— i (0
= fm A

(using convergence of {1\, | £ e N})

min
— llm A(l(r))

i—oo Mmin

= lim g(A'

t—o0

Z(t)))
=g(A") (using continuity of g at A*)

By Lemma 2, the condition f(A*) = g(A*) implies that Ay (M(A*)) = %* which proves the

theorem. O



