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Detectors vs. Descriptors

Challenge: Computationally inefficient to 
characterize entire image

Detectors: Find key points of interest which most 
distinctly identify the target object

Descriptors: Characterize the image around each 
key point in an invariant fashion

Lowe’s techniques encompass both!



SIFT Features

•
 

Localize stable key points in scale space
•

 
Perform feature detection only relative to 
canonical scale and orientation

•
 

Emphasize local image gradient orientation, 
allow for small shift in position (like complex 
cells)



Scale-Space Theory

•
 

Multi-scale signal representation
•

 
Achieved via smoothing operation

•
 

Gaussian kernel is unique in that increasing the 
width monotonically blurs fine detail

Source: Lindenberg, 1994.



Keypoint Detection

•
 

Precompute pyramid of Gaussian filtered images 
at increasingly coarse scales

•
 

Downsample by 2 each octave before 
convolution



Locating Keypoints

•
 

Stability --> Must be reliably assigned
•

 
Difference of Gaussians to find edges



Difference of Gaussians



Scale-space Extrema

•
 

Find points which are extrema within 
surrounding 3x3 cube (26 neighbors)



Sampling Frequency

•
 

Extrema can be arbitrarily close together, but 
may be sensitive to small perturbations

•
 

Test keypoint reliability across rotation, scaling, 
stretch, brightness, contrast, and in the presence 
of additive noise



Scale Sampling

•
 

3 scales/octave empirically chosen



Spatial Sampling

•
 

σ
 

= 1.6 empirically chosen



Keypoint Localization
•

 
Fit 3D quadratic function to DoG space 
magnitudes to interpolate extrema locations



Low Contrast Rejection

•
 

Points with low contrast are sensitive to noise
•

 
Calculate DoG Value at extremum, disgard all 
below threshold as having low contrast



Edge Response Rejection
•

 
Locations along edges are poorly determined and very 
sensitive to noise

•
 

Use principal curvature: direction along edge large, 
orthogonal to edge weak



Orientation Assignment

•
 

Assign orientation to each keypoint based on 
local image properties

•
 

Construct weighted gradient orientation 
histograms about each keypoint at closest scale

•
 

Create keypoint with orientation at each major 
peak in histogram (> 80% of maximum)



Orientation Reliability

•
 

Orientation more reliable than location/scale
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Local Image Descriptor

•
 

Image Patch Technique –
 

store pixel intensities 
surrounding keypoints, use simple correlations 
for comparison
–

 
Sensitive to affine and 3d viewpoint changes

•
 

Local Gradient Technique –
 

record surrounding 
gradients, allow for some spatial translation
–

 
Based off complex neuron responses



Gradient Histograms
•

 
Sample gradient magnitude orientation (relative to 
keypoint orientation) in 16x16 window around key

•
 

Intelligently arrange into 4x4 histograms with 8 bins



Descriptor Size

•
 

R bins * N2

 
sample grid: R*N2

 
element vector

•
 

Used 4x4 grid, 8 orientation bins: 128 element 
vector

At 4x4:
8 best, 16 worst



Descriptor Subtleties

•
 

Gradients far from keypoint less reliable:
–

 
Use Gaussian kernel to weight magnitudes

•
 

Boundary effects at 4x4 grid division:
–

 
Use trilinear interpolation to distribute across 
bins/histograms

•
 

Contrast Changes: normalize to unit length
•

 
Illumination saturations: affect large gradient 
magnitudes but not orientations
–

 
Saturate large magnitudes, emphasize 
orientation



3D Viewpoint Angle 
Performance

•
 

50% Reliability out to 50 degree rotation in depth
•

 
Could simply store SIFT features for multiple 
model views independently



Object Recognition Overview

•
 

Store SIFT vectors for each keypoint for each 
model object in database

•
 

Generate keypoints in test image
•

 
Use nearest neighbor to find feature matches

•
 

Cluster features that agree on object pose
•

 
Affine projection estimate

•
 

Geometric verification



Keypoint Matching
•

 
Similarity metric is Euclidean distance

•
 

Global thresholds work poorly as discriminative ability 
of descriptors varies: use ratio of 1st

 

to 2nd

 

closest 
neighbors

•
 

Best-Bin-First: approximate NN search algorithm



Keypoint Clustering

•
 

Find groups of keypoint matches that agree on 
an object and its pose (location, orientation, 
scale)

•
 

Each match casts a 4-element vote, tally in 
histogram, select clusters

•
 

Accomplished with Hough transform and hash 
table

Reliable object detection with only 3 feature 
matches!



Hough Transform Example
•

 
Application: detecting lines in the 2d plane

•
 

Find point closest to origin (intersection by 
orthogonal), describe by radius and angle to point

Source: Wikipedia



Affine Transformation Estimate

•
 

Least-squares fit to affine projection from model 
to test image coordinates



Geometric Verification

•
 

Calculate residual error from least-squares fit, 
reject outliers above threshold

•
 

Repeat fit, add features that agree with new 
estimate

•
 

Recognition fails if less than 3 features remain
•

 
Final decision based on probabilistic learning 
model described in Lowe, 2001 (maximum-

 likelihood)



Recognition in Occlusion



Recognition in Occlusion (2)



Recognition in Complex Scenes



Large Database Performance

•
 

Nearest Neighbor matching with Euclidean 
distance

•
 

Performs well out to very large database sizes



Future Directions

•
 

Full 3D viewpoint representation (4D to 6D 
pose)

•
 

Better invariance to nonlinear illumination 
changes

•
 

Extension to 3 channel color
•

 
Inclusion of local texture measures

•
 

Class-specific features for categorization
•

 
Edge groupings at object boundaries



Binding and Attention

•
 

Humans:
–

 
Detect features in parallel

–
 

Serial attention required to bind features to 
object, determine pose, and segregate 
background

•
 

SIFT:
–

 
Detect keypoints and compute features in 
parallel

–
 

Hough transform binds features to object
–

 
Probabilistic EM framework optimizes 
decision



Conclusions

•
 

SIFT finds stable keypoints in scale-space at 
suitable difference of Gaussian extrema

•
 

Local descriptor invariant to: scale, invariance, 
affine transformations, brightness, contrast

•
 

Computationally efficient
•

 
Requires labeled, clutter-free model images



Bottom-Up Attention?
Is bottum-up attention useful for object recognition?
Ueli Rutishauser, Dirk Walther, Cristof Koch, and Pietro Perona.

 

IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition, 
2004.

•Attention: selection and gating of visual 
information

–
 

Top-down: prior knowledge about the scene
–

 
Bottom-up: saliency in image

•Idea: use bottom-up attention to highlight regions 
where objects are likely to be found



Saliency Model

•
 

Construct across-scale center-surround feature 
maps

•
 

Use RGBY color channels, local orientation, 
intensity

Center-surround
feature maps:

Sum across maps:

Conspicuity maps:

Saliency map: Winner Take All (WTA) 
Competition



Regions of Saliency
•

 
WTA chooses most salient point (xw

 

, yw

 

)
•

 
Use adaptive thresholding to grow region around 
point at feature map level (sparser representation)

•
 

“Remove”
 

influence within WTA competition 
multiple salient regions

Use salient regions to train SIFT: unlabeled model 
images!



Saliency Example



Inventory Learning Example



Landmark Learning
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