SIFT and Object Recognition Dan O'Shea Prof. Fei Fei Li, COS 598B

Distinctive image features from scale-invariant keypoints

David Lowe. International Journal of Computer Vision, 2004.

Towards a Computational Model for Object Recognition in IT Cortex

David Lowe. Proceedings of the First IEEE international Workshop on Biologically Motivated Computer Vision, 2000.

Detectors vs. Descriptors

Challenge: Computationally inefficient to characterize entire image

- Detectors: Find key points of interest which most distinctly identify the target object
- Descriptors: Characterize the image around each key point in an invariant fashion

Lowe's techniques encompass both!

SIFT Features

- Localize stable key points in scale space
- Perform feature detection only relative to canonical scale and orientation
- Emphasize local image gradient orientation, allow for small shift in position (like complex cells)

Scale-Space Theory

- Multi-scale signal representation
- Achieved via smoothing operation
- Gaussian kernel is unique in that increasing the width monotonically blurs fine detail

Keypoint Detection

- Precompute pyramid of Gaussian filtered images at increasingly coarse scales
- Downsample by 2 each octave before convolution

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y),$$
$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2 + y^2)/2\sigma^2}$$

Locating Keypoints

- Stability --> Must be reliably assigned
- Difference of Gaussians to find edges

Difference of Gaussians

Scale-space Extrema

• Find points which are extrema within surrounding 3x3 cube (26 neighbors)

Sampling Frequency

- Extrema can be arbitrarily close together, but may be sensitive to small perturbations
- Test keypoint reliability across rotation, scaling, stretch, brightness, contrast, and in the presence of additive noise

Scale Sampling

• 3 scales/octave empirically chosen

Spatial Sampling

• $\sigma = 1.6$ empirically chosen

Keypoint Localization

• Fit 3D quadratic function to DoG space magnitudes to interpolate extrema locations

$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$
$$\hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$$

Low Contrast Rejection

- Points with low contrast are sensitive to noise
- Calculate DoG Value at extremum, disgard all below threshold as having low contrast

$$D(\mathbf{\hat{x}}) = D + \frac{1}{2} \frac{\partial D^{T}}{\partial \mathbf{x}}^{T} \mathbf{\hat{x}}$$

Edge Response Rejection

- Locations along edges are poorly determined and very sensitive to noise
- Use principal curvature: direction along edge large, orthogonal to edge weak

$$\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \quad \operatorname{Tr}(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta, \\ \operatorname{Det}(\mathbf{H}) = D_{xx} D_{yy} - (D_{xy})^2 = \alpha\beta \\ \frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r} \\ \frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} < \frac{(r+1)^2}{r} \\ \end{bmatrix}$$

Orientation Assignment

- Assign orientation to each keypoint based on local image properties
- Construct weighted gradient orientation histograms about each keypoint at closest scale
- Create keypoint with orientation at each major peak in histogram (> 80% of maximum)

Orientation Reliability

• Orientation more reliable than location/scale

Keypoint Example

Local Image Descriptor

 Image Patch Technique – store pixel intensities surrounding keypoints, use simple correlations for comparison

– Sensitive to affine and 3d viewpoint changes

 Local Gradient Technique – record surrounding gradients, allow for some spatial translation

– Based off complex neuron responses

Gradient Histograms

- Sample gradient magnitude orientation (relative to keypoint orientation) in 16x16 window around key
- Intelligently arrange into 4x4 histograms with 8 bins

Descriptor Size

- R bins * N² sample grid: R*N² element vector
- Used 4x4 grid, 8 orientation bins: 128 element vector

Descriptor Subtleties

- Gradients far from keypoint less reliable:
 - Use Gaussian kernel to weight magnitudes
- Boundary effects at 4x4 grid division:
 - Use trilinear interpolation to distribute across bins/histograms
- Contrast Changes: normalize to unit length
- Illumination saturations: affect large gradient magnitudes but not orientations
 - Saturate large magnitudes, emphasize orientation

3D Viewpoint Angle Performance

- 50% Reliability out to 50 degree rotation in depth
- Could simply store SIFT features for multiple model views independently

Object Recognition Overview

- Store SIFT vectors for each keypoint for each model object in database
- Generate keypoints in test image
- Use nearest neighbor to find feature matches
- Cluster features that agree on object pose
- Affine projection estimate
- Geometric verification

Keypoint Matching

- Similarity metric is Euclidean distance
- Global thresholds work poorly as discriminative ability of descriptors varies: use ratio of 1st to 2nd closest neighbors

Keypoint Clustering

- Find groups of keypoint matches that agree on an object and its pose (location, orientation, scale)
- Each match casts a 4-element vote, tally in histogram, select clusters
- Accomplished with Hough transform and hash table

Reliable object detection with only 3 feature matches!

Hough Transform Example

- Application: detecting lines in the 2d plane
- Find point closest to origin (intersection by orthogonal), describe by radius and $a_y = \left(-\frac{\cos\theta}{\sin\theta}\right)x + \left(\frac{r}{\sin\theta}\right)$

Source: Wikipedia

Affine Transformation Estimate

 Least-squares fit to affine projection from model to test image coordinates

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$
$$\begin{bmatrix} x & y & 0 & 0 & 1 & 0 \\ 0 & 0 & x & y & 0 & 1 \\ & \dots & & & \\ & \dots & & & \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_x \\ t_y \end{bmatrix} = \begin{bmatrix} u \\ v \\ \vdots \end{bmatrix}$$
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

 $\mathbf{x} = [\mathbf{A}^T \mathbf{A}]^{-1} \mathbf{A}^T \mathbf{b}$

Geometric Verification

- Calculate residual error from least-squares fit, reject outliers above threshold
- Repeat fit, add features that agree with new estimate
- Recognition fails if less than 3 features remain
- Final decision based on probabilistic learning model described in Lowe, 2001 (maximumlikelihood)

Recognition in Occlusion

Recognition in Occlusion (2)

Recognition in Complex Scenes

Large Database Performance

 Nearest Neighbor matching with Euclidean distance

Future Directions

- Full 3D viewpoint representation (4D to 6D pose)
- Better invariance to nonlinear illumination changes
- Extension to 3 channel color
- Inclusion of local texture measures
- Class-specific features for categorization
- Edge groupings at object boundaries

Binding and Attention

• Humans:

- Detect features in parallel
- Serial attention required to bind features to object, determine pose, and segregate background
- SIFT:
 - Detect keypoints and compute features in parallel
 - Hough transform binds features to object
 - Probabilistic EM framework optimizes decision

Conclusions

- SIFT finds stable keypoints in scale-space at suitable difference of Gaussian extrema
- Local descriptor invariant to: scale, invariance, affine transformations, brightness, contrast
- Computationally efficient
- Requires labeled, clutter-free model images

Bottom-Up Attention?

Is bottum-up attention useful for object recognition?

Ueli Rutishauser, Dirk Walther, Cristof Koch, and Pietro Perona. *IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 2004.

•Attention: selection and gating of visual information

- Top-down: prior knowledge about the scene
- Bottom-up: saliency in image

 Idea: use bottom-up attention to highlight regions where objects are likely to be found

Saliency Model

 Construct across-scale center-surround feature maps

• Use RGB
Center-surround
FI,c,s =
$$\mathcal{N}(|I(c) \ominus I(s)|)$$
 Ition,
 $\mathcal{F}_{RG,c,s} = \mathcal{N}(|R(c) - G(c)) \ominus (R(s) - G(s))|)$
 $\mathcal{F}_{BY,c,s} = \mathcal{N}(|R(c) - Y(c)) \ominus (R(s) - Y(s))|)$
 $\mathcal{F}_{\theta,c,s} = \mathcal{N}(|B(c) - Y(c)) \ominus (B(s) - Y(s))|)$
Sum across maps: $\bar{\mathcal{F}}_{l} = \mathcal{N}\left(\bigoplus_{c=2}^{4} \bigoplus_{s=c+3}^{c+4} \mathcal{F}_{l,c,s}\right)$ with $l \in L_{I} \cup L_{C} \cup L_{O}$
 $L_{I} = \{I\}, L_{C} = \{RG, BY\},$
 $L_{O} = \{0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}\}$
Conspicuity maps: $C_{I} = \bar{\mathcal{F}}_{I}, C_{C} = \mathcal{N}\left(\sum_{l \in L_{C}} \bar{\mathcal{F}}_{l}\right), C_{O} = \mathcal{N}\left(\sum_{l \in L_{O}} \bar{\mathcal{F}}_{l}\right)$

Regions of Saliency

- WTA chooses most salient point (x_w, y_w)
- Use adaptive thresholding to grow region around point at feature map level (sparser representation)
- "Remove" influence within WTA competition → multiple salient regions

Use salient regions to train SIFT: unlabeled model images!

Saliency Example

Inventory Learning Example

Landmark Learning

