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A Bidding Model of Perfect
Competition

ROBERT WILSON
Stanford University

I demonstrate in this paper that price formation via the procedure of competitive bidding
satisfies a version of the law of large numbers, in both the probabilistic sense and the
economic sense. That is, if in a sealed-tender auction a seller offers to sell at the highest
bid an item having a definite but unknown monetary value, and each of many bidders
submits a bid based only on his private sample information about the value, where the
bidders’ samples are independent and identically distributed conditional on the value,
then the maximum bid is almost surely equal to the true value. Thus, no bidder knows the
true value of the item, yet it is essentially certain that the seller will receive that value as the
sale price. Certain regularity assumptions are needed to prove this proposition. I present
three examples, two for which the result is valid and another for which it is not.

1. THE FINITE CASE

Suppose first that the number n of bidders is finite and » = 2. Allowing some extra
generality, I assume that the payoff to a bidder i is zero if he loses and it is u(s;, v)—b; if
he observes the ““ sample > s;, obtains the item with a winning bid of b;, and subsequently
the * value ” v is revealed. Although the function u may reflect aversion to risk about the
value, the linearity of the payoff in the bid price excludes aversion to risk about winning or
losing the auction. We shall see that the latter is of no consequence when there are many
bidders.

A key feature is that the value v is not observed by any bidder and the sample s; is
observed only by bidder i. Consequently, the bid b; of bidder i depends only on his sample
observation s; and on the number » of bidders, say b; = p,(s;). Thus a strategy is a function
D, which specifies for a bidder i that his bid is p,(s;) if he observes the sample s; and he is
one among x bidders.

I assume throughout that the bidders are symmetric, so that each one uses the same
strategy. In particular, the sample s; observed by bidder i is taken to be the realization of a
real-valued random variable S;, and I assume that conditional on the value v the random
variables {S; | i = 1, 2, ...} are mutually independent and identically distributed, each with
the distribution function F(-|v) where F(s | v) = prob {S; < s|v}. Moreover, since no
bidder observes the value v, I assume that each one construes v to be the realization of a real-
valued random variable ¥ to which each assigns the same a-priori distribution function G.

The above construction defines a non-cooperative game with incomplete information.
Because the game is symmetric, an equilibrium strategy in this game is one that is optimal
for each bidder if each other bidder uses it. The results to be demonstrated in Section 2 are
based upon the following characterization.

Theorem 1. If an equilibrium strategy p, is differentiable and strictly increasing (p,>0)
on an interval [s', "), and each F(-| v) has a density there, then

Puls) = J i, (DdH(t | )"+ pu(sVH,(s" | 8)"71 -(L.1)

s
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for s' £ s £ 5", where u, and H, are defined below and have the interpretations that i,
specifies a natural upper bound on the bid and H,(+| s) is a distribution function on the interval
(— o0, 5]

Proof. Let TV be the support of G and for each v € XV let ZS(v) be the support of
F(-|v). Also define TV(s) = ZS7(s) = {veZV|seZS(@®)}. Then == () ZS() is
the domain of p,. To alleviate notational complexities I will construct the p;(e)g‘;‘ only for
the case in which [s’, s”] = Z. The hypothesis then states that the equilibrium strategy has
p,>0 on X and, for each v € XV, F(| v) has a density f(-| v) on ZS(v). Note that p, has
an inverse function ¢, with ¢/,>0. Hence, if a bidder uses any strategy p* while each other

bidder uses p, then his conditional probability given ¥ = v of submitting the highest bid
when he observes s is Q,(a,(p*(s))| v), where we define

Q,(s|v)=F(s|v)y"" .. (12)
His expected payoff is therefore

f J [u(s, ©)— p*()]2u(0,(p*(5)) | V)AF (s | v)AG(v). -(1.3)
=V JI5()

Reversing the order of integration in this formula and then, for each s € X, differentiating
with respect to p* = p*(s) yields the necessary condition for an optimum that

0= j {[u(s, »—p*10:(0(p*) | ©)f (s | V)0, (p*) — Q(0n(p™) | ) f (s | )}dG(v) ...(1.4)
IV (s)

for each se Z. Now, if p, is to be an equilibrium strategy then it is necessary that p* = p,

satisfies (1.4). Using the relations o,(p,(s)) = s and o)(p,(s)) = 1/p;(s), this yields the
following linear differential equation for p, as a necessary condition:

0= J {[u(s, 0) = p()]Qu(s | )/ (s | ©)— Pu()Qu(s | 0)f (s | V)}dG(). -(1.5)
IV (s)
An alternative form of this differential equation is
0 = [1,(s) — p()]du(s) — Pi(8)/(n — 1), (1.6
where, if the conditional distribution of ¥ given max S; = s is
isn

j T s I WG | wdGw)
inf TV (s)

G,(v|s)= , (LT
[ Qu(s | w)f (s | w)dG(w)
JEV(s)
and it is G, if Q;, replaces Q, in (1.7), then
i,(s) = J‘ u(s, V)dG,(v | s) ...(1.8)
ZV(s)
and
$n(s) = J #(s | v)dG,(v | ), ...(1.9
IV (s)

where ¢(s | v) = f(s | v)/F(s|v). Thus #,(s) is the conditional expectation of the gross
payoff u(s, v) given that (1) the bidder’s sample is s, and (2) the maximum among his
competitors’ samples is s. (The nature of this upper bound on the bid will be developed in
greater detail as we proceed; however, observe here that #, reflects the fact that winning
the auction is itself an informative event, namely, it reveals that the other bidders observed
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less favourable samples.) It is straightforward to verify that the family of solutions of (1.6)
has the required form (1.1). In particular,

H,(t|s)=exp {— fs (5,,(’[)611:}, s <t<s<s. ...{(1.10)

The interpretation of the distribution function H,(-|s) is admittedly opaque, although if
F(+| v) is independent of v then H,(t | s) = F(t)/F(s) and therefore H,(t | s)"~! = Q,(1)/ Qu(s)
is the conditional distribution of the second-highest sample given that s is maximal. More
revealing perhaps is the asymptotic form of H, which I derive in Section 2; c.f. (2.5).

In view of Theorem 1 it is useful to identify sufficient conditions for the formula (1.1)
to be valid. T assert the following.

Theorem 2. Sufficient conditions for the validity of the formula (1.1) are that
(a) #, is continuous and strictly increasing on [s', s"], and
(b) H,(-|*) is differentiable and strictly increasing in t for t < se[s’, s"].

In turn, the following assumptions are sufficient for (a) and (b) to hold on all of X.
Assumption 1. TV is compact and convex.

Assumption 2. XS: LV-X is a continuous, compact-valued, and convex-value
correspondence.

Assumption 3. F(-| v) is stochastically strictly ordered by v on XV and it has a density
Jf(+| v) which is strictly positive on ZS(v). ‘

Assumption 4. u: TxIV-R is continuous and weakly increasing [(s’, v")>(s, v)
implies u(s’, v")>u(s, v)].

This result is not needed directly for the topics in Section 2 and therefore I will not
undertake its lengthy proof here. I will, however, assume hereafter that (a), (b) and
Assumptions 1-4 are satisfied.

The final result which is needed is a characterization of the “ initial condition ” for the
differential equation (1.6).

Theorem 3. If the seller sets a reservation price p?, then there exists an interval
[e, en] =X such that

() p)<py if s<c,
(i) p(s)=p3 if c;<s=cp -.(1.11)

(iii) pn(s) = f a(OdH,(t | )"~ +piH(cy | )71 if e s

Cn
= 0
Moreover, i,(c,) = p;.

Proof. The argument is a repetition of the proof of Theorem 1 except that if a bidder
is to have any chance of winning he must bid at least p. Hence the bid p* must be opti-
mized subject to the constraint that p* > p?. This leaves unchanged the necessary con-
dition (1.4) for any interval [s’, s”] in which p*> p?, and otherwise (1.4) is replaced by an
inequality. The previous monotonicity assumptions assure, therefore, that the equilibrium
strategy has the form (1.11). Note that the conditional probability of winning is again
0.(s | v) if s>¢,, but it is zero if s<c], and it is

YEzo! k%_l (n:) F(cy | o)™ " F(c, | v)—F(e; | ) -(1.12)
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if ¢,<s=c, Lastly, it must be that #(c,) = p% since otherwise p,(c,) = p?>ii,(c,),
whereas 1 claim that p,(s) < #,(s) is necessary whenever p? < p,(s). This is because the
formula, e.g. (1.3), for a bidder’s expected payoff shows that his expected payoff conditional
on any s is non-negative if and only if p,(s) < f,(s), where

f,(s) = j u(s, v)dG,(v | s) ...(1.13)
IV (s)

is the expected valuation of the item conditional on winning. The monotonicity assump-
tions assure that 4,(s) < i,(s). If his conditional expected payoff were negative he would
prefer to submit a bid p*(s) < p% having no chance to win.

In various examples one finds that c, is determined via the condition that ,(c.) = p?.
Unfortunately I have not found any simple method to determine ¢, in the general case. If
py = inf {u(s, v)} then clearly it is required that ¢ = ¢, = inf X.

The following three examples illustrate Theorem 1 and they will be used again later
to illustrate the results of Section 2. Several other examples are given in R. Wilson [2].

Example 1. Suppose that u(s, v) = 5, G(v) = vforve IV = [0, 1], and F(s | v) = 5/2v
for seZS() = [0, 2v]. Then #,(s) =i, (s) = s and H,(t|s)=t/s for 0 <t < s < 2.
Assume that p? = 0 so that ¢, = 0. Then p,(s) = [(n—1)/n)],(s).

Example 2. Suppose that u(s, v) =v, G(v) = 1+v for veZV =[-1,0], and
F(s|v) = —svforse ZS(v) = [0, —1/v]. (Negative values have the interpretation that the
“seller ” is purchasing an item from the * lowest-cost” bidder.) One finds that
f,(s) = u,(s) = —[(n+1)/(n+2)].Min (1, 1/s) and H(t|s) =t/sfor0 <t <s If p® = —1
then ¢, = 0 and therefore (1.1) or (1.11) yields

i(s) = £.(5) n—1—min (1, (1/s))"~2
T n—2

.(1.14)

if n>2.

Example 3. Suppose that u(s, v) = v, G(v) = 1—e™* for veZV = [0, w0), and
F(s|v) =e” for seX = (—00,0]. Then a,s)=2/(A—ns), #i,(s)= 3/(A—ns), and
Hyt|s) = [A—nt)"?"])/[(A—ns)"*"] for t < s £ 0. Also, if p° = 0 then ¢, = — oo, and
therefore (1.11) yields

1

No one of these examples entirely satisfies Assumptions 1-3. For example, F(-| 0) is
not well-defined in each case. Their equilibrium strategies are, however, quite regular;
in particular, in each example [p,—,]—>0 as n—oo, indicating that a bidder’s expected
payoff declines to zero as the number of other bidders increases. One can verify in Examples
2 and 3, moreover, that the expectation of the maximum bid converges to the expectation
of V as n increases. Nevertheless, Examples 1 and 2 differ fundamentally from Example 3
in the following respect. In Example 1 the maximum bid converges almost surely, conditional
on ¥ = v, to 2v, and in Example 2 to v, but in Example 3 the maximum bid converges to a
random variable. The latter can be seen from the fact that in Example 3 the random
variables

max #,(S;) and max ,(S;)

i<n i<n
have distributions which are independent of n. Thus, in Example 3 the sale price converges
to a non-degenerate random variable as the number of bidders increases. Another way to
see this is to observe that the bidders’ maximum sample converges almost surely to the



WILSON COMPETITIVE BIDDING 515

upper bound of zero, but since this is equally true for every possible value, there is no way
that the inferential process yielding 4, and #, can distinguish the true realization of V.

In the next section I examine this problem in greater detail. Among the several
possible approaches to assure that the sale price converges, I adopt as a sufficient condition
the assumption that the upper bound of the samples is in a one-to-one correspondence with
the value, as in Examples 1 and 2.

2. THE ASYMPTOTIC CASE

I now address the main topic of this paper, which is the determination of the sale price
when there are many bidders. I will assume throughout that the equilibrium strategy has
the form (1.11) derived in Theorem 3. The principal additional assumption that will be
used to exclude the phenomenon in Example 3 is the following. Let b(v) = sup ZS(v) for
each ve XV. That is, b(v) is the maximum possible sample if ¥V = v, and according to
Assumption 1 and Assumption 2, b is a continuous function on the compact interval V.

Assumption 5. b: TV-ZX is a strictly increasing function.

I remark that the assumption included in Assumption 3 that f(b(v)| v) >0 will play a
central role in the following development, although presumably a more elaborate argument
could eliminate it.

Theorem 4. For each value v € XV, if as n— oo the seller’s reservation price allows higher
bids [i.e. ¢, is bounded strictly below b(v)], then the maximum bid converges almost surely to

u(b(v), v).

Proof. 1 will assume that u is everywhere positive: this loses no generality since
Y x XV is compact and any increasing affine transformation of u transforms 4,, #,, and p,
similarly. Define the random variables

M, =max S; and P, = max p,(S;)

is=n isn
for each n. Since p, is strictly increasing, P, = p,(M,). Conditional on V = v, M,—b(v)
almost surely as n—oo. Consequently, the proposition to be proved is that if {m,} is a
non-decreasing sequence converging to b(v) then p,(m,) converges to u(b(v), v). Notation is
simplified by letting f(v) = u(b(v), v) and by defining a(s) = u(s, a(s)) where a(s) = inf ZV(s)
for each s € X. Note that a: XV is continuous and non-decreasing, and strictly increas-
ing on the range of b, where it is the inverse of b by Assumption 5. The first step is to
establish the following

Lemma A. (2) f,(s)—>a(s); B,(s)—>(s); $u(s)—>¢(s | als);
(6) 2,(m,)—=P(); Tty —P(v); Gulimy)— $BW)] v).

The various parts of this proposition have similar proofs. I will demonstrate mainly that
$,(m,)— ¢(b(v)| v) since the parts involving u are simplified by the fact that u is monotone
increasing whereas ¢ need not be. Now if a(s)<z<w = sup X¥V(s) then the stochastic
ordering assumed in Assumption 3 assures that F(s | w)<F(s | z) <F(s | a(s)) = 1. Hence,
if y = [a(s)+z]/2 then

f " g5 WdG,wls)  F(s| 2yt j " 6(s | wf(s | WAG(w)
z < Z =58"—1, ...(2.1)

oI WdG,w1s)  Fs 1y~ | (s | w)f(s | wdGow)

a(s) a(s)



516 REVIEW OF ECONOMIC STUDIES
where ¢ = F(s | z)/F(s | y)<1 and 6>0. Therefore,

S | o1 wdGw | )+6 1 | ¢(s | w)dG,(w | )
a(s) a(s)

A+8 ) | p(s [ WG, ow | 5)

a(s)

< 6GT9 . ...(2.2)

Similarly, an alternative to (1.9) is

1 1 _
~ = dG, , ...(2.3
&(5) J;IV(S) l:¢(s | W)] bw]s) @3
and therefore
1 v [* 1 |dG,w]s)

—— < (1482 [ :l — . .24
3 =) a6 1w Gz 19 @9

These inequalities are valid for z arbitrarily close to a(s), so $.()— (s | als)) as n—>oo, for
each fixed se X. Similarly, ¢,(m,)— ¢(b(v)| v) since a(m,) < v and a(m,)—a(b(v)) = v, so
the above inequalities hold for each z>v. The proofs for 4, and i, are entirely similar
except that instead of (2.3) and (2.4) one uses the monotonicity of u to establish that
f1,(5) = o(s) and #,(s) = «(s), and of course a(m,) < p(v) and a(m,)—p(v). This completes
the proof of the lemma. An immediate corollary which we shall use is that

H,(t|s)»H(t|s) =exp {— r o(t | a(‘c))df}, and H,(t|m)—H(|b®) ..(Q2.5)

Note in particular that H(:| s) is strictly increasing since ¢(s | a(s)) is assumed to be strictly
positive for each s e Z.
The second step in the proof is to establish the convergence of the equilibrium strategy.

Lemma B. p,(s)—o(s) for each s>sup {c,} in Z.
The proof derives from the equality
s _ -1 ¥
) J‘ [pn(t)_un(t)]dHn(t I S) = n—_2 l:pn(s)_' -[ un(t)dHn(t l S)—‘pn(C)Hn(C I s):l (2'6)

for each interval [c, s] with ¢>c,, n>2. Using (1.1) and the fact that

dH,(t | t)-H,(t | s) = dH,(z | 5),
one has

f " pODdHt | 5) = f { f B @dH,( | 0"+ pOH,(c | t)“} dH,(t | 5)

— o : dH,,(tlS) n—1 n—1 : dHn(tlS)
- f ""(T)L (| syt 1T RO j Hyt | sy~
_ 1 {

T n-2

= =L+ il f BOAH(T | )+ —— pOHc]),  2T)
n—2 n—2J, n—2

f s T (D[H,(t| )~ "D —1]dH,(x | sy

c

+puOH (e | )" [Hc | S)_‘"_z’—l]}
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which is precisely (2.6). Observe that the right side of (2.6) converges to zero. On the left,
dH,(t|5) = H,(t| s),()dt and H,(t|s)—~H(, 5)>0 and @, (£)—d(t | a())>0.

Consequently, [ p,(f) —#,(¢)] -0 for almost every ¢ in each such interval [¢, s], and therefore
pu(s)—lim #,(s) = a(s) for almost every s>sup {c,}. Lastly, the qualifier “ almost every

can be excluded since each strategy p, is differentiable and strictly increasing, and i, and «
are continuous and non-decreasing.

The remainder of the proof of Theorem 4 consists of showing that p,(m,)—p(v).
Integrating (1.11) (iii) by parts,

pn(mn) = ﬁn(mn)— [ﬁn(cn)—pr?]Hn(cn I mn)n—l_ J‘m" Hn(t I mn)dpn(t)

Cn

< i,(my), ...(2.8)
which merely verifies the obvious. Therefore lim Supy » » Pi(my) < f(v) by Lemma A. On
the other hand, using the equality (2.6) from fe?nma B,

™ [pd) (O 1dHL¢ | my)

lim inf, 5 , =< =0
n=o - [1—H(c| my)]

for each c>sup{c,} with c<b(v). Therefore, lim inf,, , p(my) = lim i,(m,) = B(v).

Thus p,(m,)—p(v), and therefore P,—u(b(v), v) almost surely for each v e V.

The assumption that the density f(-| v) is positive on the boundary of £S(v) plays a
crucial role in the above proof. It is hardly plausible that this is actually crucial. Pre-
sumably an alternative proof could be constructed by considering a sequence {¢;} with
§—0 as /- oo in which for each / one truncates S at b—g,.

The Assumption 5 that b is strictly increasing at v is, however, crucial to the required
continuity of @ at b(v). This is evident in Example 3, where b is actually constant (the lack of
compactness is not important in Example 3; Wilson [2] gives another, more complicated,
example satisfying compactness).

If u(s, v) = v then the compactness of .S is not essential since one can always achieve
this via an appropriate transformation. In this case, the form that Theorem 4 would take
if ¥ were unbounded below presumably corresponds to an appropriate generalization of
Gnedenko’s famous theorem on extreme-value distributions (cf. W. Feller [1]).

Lastly, the assumption that a bidder’s payoff is linear in the bid is apparently irrelevant,
since Lemma B shows that asymptotically each bidder is indifferent whether or not he wins
the item, and the probability 1/n of winning converges to zero. One can also see that a
bidder’s expected payoff is of the order of 1/n* since (2.6) shows that his conditional
expected payoff given that he wins is of the order of 1/n (recall that p,(s) < 0,(s) < i,(s)).
For instance, in Examples 1, 2 and 3 a bidder aims for a conditional expected * profit ”
percentage given that he wins of 1/, [1—min (1, 1/s)"~2?]/(n—2), and 1/(3n—2) respectively,
and of course this is also the seller’s expected percentage “ loss ”” in Examples 2 and 3.

3. CONCLUSIONS

I have shown that, with certain regularity conditions satisfied, the sale price converges
almost surely to the “ true value ” as the number of bidders increases, even though each
bidder observes only incomplete sample information about the value. In my view this
result adds substance to several often-cited ideas. First, there is the notion that a sale price
conveys ‘“ all ” of the relevant information among the agents in an economy. Second is the
presumption that a theory of price formation is, or at least is consistent with, a theory of

2L—44/3
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value. And third, there is the premise underlying Walrasian models that an agent in a
‘ perfectly competitive ”” economy can, or must, regard a prevailing system of prices as
parameters. And lastly there is the conjecture underlying studies of Walrasian models that
a theory of price formation will some day justify their restrictive assumptions. Of course
none of these are established firmly here, but I would guess at least that the latter may
ultimately succeed—in some way more realistic than the theory of the core of economies
with its untenable assumption of complete information; cf. Wilson [3].

There remains the question of how to deal with cases such as Example 3 in which the
sale price persists in the limit as a random variable. I think that it calls for a theory in which,
even with perfect competition, prices are possibly random—as for instance in the theory of
temporary equilibria.
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