
The Simple Economics of Optimal Auctions

Jeremy Bulow; John Roberts

The Journal of Political Economy, Vol. 97, No. 5. (Oct., 1989), pp. 1060-1090.

Stable URL:

http://links.jstor.org/sici?sici=0022-3808%28198910%2997%3A5%3C1060%3ATSEOOA%3E2.0.CO%3B2-8

The Journal of Political Economy is currently published by The University of Chicago Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/ucpress.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Fri Oct 19 06:10:40 2007

http://links.jstor.org/sici?sici=0022-3808%28198910%2997%3A5%3C1060%3ATSEOOA%3E2.0.CO%3B2-8
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/ucpress.html


The Simple Economics of Optimal Auctions 

Jeremy Bulow and John Roberts 
Stanford C'nzz~rrs~t) 

We show that the seller's problem in devising an optimal auction is 
virtually identical to the n~onopolist's problem in third-degree price 
discrimination. More generally, many of the important results and 
elegant techniques developed in the field of mechanism design can 
be reinterpreted in the language of standard micro theory. We illus- 
trate this by considering the problem of bilateral exchange with pri- 
vatelv known values. 

I. Introduction 

An "optimal auction" is a bidding mechanism designed to maximize a 
seller's expected profit. The literature on optimal auctions has mush- 
roomed in recent years (see, e.g., Harris and Raviv 1981a, 19816; 
Myerson 198 1; Riley and Samuelson 198 1; Milgrom and Weber 1982; 
Matthews 1983; Maskin and Riley 1984a, 19848) and has provided the 
basis for the more general study of efficient mechanism design.' 

Unfortunately, this field has been a difficult one for most econo- 
mists, seemingly bearing little relation to traditional price theory. This 
paper greatly simplifies the analysis of optimal auctions by showing 

hluch of the work reported here was done while Bulow was tisiting the Graduate 
School of Business at the University of Chicago. We wish to thank Milton Harris, Paul 
Milgrom, Kevin M. Murphy, Roger hlyerson, Hugo Sonnenschein, Sherwin Rosen, 
Bob M'ilson, and an anonynlous referee for valuable discussions and comments. The 
financial support of the Sloan Foundation and the National Science Foundation is 
gratefully acknowledged. 

' Examples of research employing mechanism design techniques include studies of 
bilateral monopoly and bargaining (Myerson and Satterthwaite 1983), multilateral par- 
tial equilibrium exchange (LVilson 1985), regulation of a monopolist without knowing 
its costs (Baron and Myerson 1982), and dissolution of a partnership (Cramton, Gib- 
bons, and Klemperer 1987). 
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that it is essentially equivalent to the analysis of standard monopoly 
third-degree price discrimination. The auctions problem can there- 
fore be solved by applying the usual logic of marginal revenue versus 
marginal cost. The same logic also clarifies the celebrated results on 
the revenue equivalence of various auctions and many of the results 
concerning bilateral monopoly. 

Our primary purpose is not to obtain new results, though we do 
somewhat extend earlier work, but rather to connect existing results 
to familiar ideas. We hope that this reinterpretation of optimal auc- 
tion theory will give readers a better understanding of a wide range of 
private information problems and, thus, perhaps lead to new insights. 

11. The Optimal Auction Problem 

The literature on optimal auctions begins with the work of L'ickrey 
(1961). He considered the following situation. A seller values an item 
at zero. She has the option to sell it to one of n risk-neutral bidders. 
Each bidder alone knows the value, 7~, that he places on the good. 
Because the seller and the other buyers are uncertain about this value, 
it appears to them to be a random variable. It is assumed to be com- 
rllon knowledge among all the buyers and the seller that everyone 
views the buyers' values as independent draws from a common distri- 
bution F(v), with F ( u )  = 0 and F(z) = 1. That is, everyone (including 
i) agrees that the probability that 71i is less than 71 is given by F(71), 
everyone knows that everyone knows this, everyone knows that every- 
one knows that everyone knows this, ad infinitum. The seller is con- 
sidering two alternative ways to sell the item: a sealed-bid first-price 
auction, in which the high bidder wins and pays the amount he bid, 
and a sealed-bid second-price auction, in which the high bidder wins 
but pays only the amount bid by the second-highest bidder. The issue 
is, Which of these methods should the seller use to maximize her 
expected profit? 

Either choice induces a game among the potential buyers, with each 
having to decide how much to bid as a function of his valuation for 
the good. Vickrey noted that when the second-price auction is used, 
each bidder has a dominant strategy of bidding his true valuation. 
This is because altering his bid from his value changes the outcome of 
the auction in only two cases: when underbidding causes him not to 
be the high bidder although his value is highest (so he gets a zero 
surplus instead of a positive one), and when bidding more than his 
value causes him to get the good but pay more than it is worth to him 
(because the next-highest bid exceeds his actual valuation). 

Given that each bidder will announce his true value in the second- 
price auction. it is clear that an individual with value -0 will win with 
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probability F('" = [F(zI)]("'I,which is just the probability that all ')((71) 

others will have values (and bids) below v .  It is also clear that his 
expected payment will be 

( I ) I - ( I )  = I ( I )  - 6F'" - "(2Ll)dul 

and that his expected payment, contingent on winning, will be 

which is the expected value of the second-highest valuation, given 
that -0 is the highest. 

With a first-price auction, the strategic interaction among the bid- 
ders is not trivial; there is an incentive for each bidder to shade his bid 
below his value, trading off a reduced probability of winning against a 
lower payment if he wins. Vickrey showed that, in fact, i t  is equilib- 
rium behavior for a bidder with value to bid the amount B(n) 11 

defined above. (A largely graphical treatment of these results is pro- 
vided in the Appendix.) Vickrey's celebrated revenue equivalence 
result follows immediately from B(71) being the optimal bid. Given 
symmetric, risk-neutral bidders with independent valuations, the ex- 
pected revenue from the first- and second-price auctions is the same 
because the bidder with the highest value always wins under either 
auction (note that B(71) is increasing) and the winner's expected pay- 
ment conditional on winning is the same amount, B(~I) ,  under either 
auction. 

Although there was a steady stream of work on auctions over the 
two decades following Vickrey's paper, the literature expanded dra- 
matically during the 1980s. A particularly seminal piece-both for 
the results obtained and for the methods introduced-is that of My- 
erson (1981). Myerson extended earlier work in two important ways. 
The first was to consider the case of asymmetric bidders, that is, 
bidders whose (privately known) valuations of the object are drawn 
from independent, but not necessarily identical, probability distribu- 
tions. These distributions are assumed to be common knowledge, so 
that all bidders and the seller know the distribution from which each 
bidder's value is drawn. With resale excluded, this allows the seller to 
discriminate among bidders. The second extension was to consider ull 
possible ways of selling the good rather than just a prespecified set of 
alternative auction forms as Vickrey had done. In this context, Myer- 
son formulated and solved the "optimal auction design problem": 
among all possible ways of selling the good, which one should the 
seller use if she wants to maximize her expected net revenues? 
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Myerson's solution gives an explicit formula for the optimal auction 
with asymmetric bidders. He also extended Vickrey's revenue equiva- 
lence result to show that any two mechanisms that always lead ;o the 
same allocation of the good (and meet one further trivial condition) 
would yield the same expected revenue. Finally, the methods he in- 
troduced have since been widely applied to other problems involving 
private information. 

Note that the optimal auction design problem is extremely com- 
plex. There are a myriad of possible ways of allocating and charging 
for the good: a simple posted price; the various common forms of 
auctions, including first- and second-price sealed-bid auctions, and 
ascending and descending oral auctions (each of which could be 
modified by using reservation prices and fees charged for the 
privilege of bidding); less common auction forms such as the "all-pay" 
auction, in which the highest bidder wins but everyone pays the 
amount he bid2-the list seems limited only by the imagination. 

The crucial breakthrough in this research effort was to identify a 
method of formulating the optimal auction problem that immensely 
simplified its solution. The key insight is to use the "revelation princi- 
ple" (see Myerson [1981] for an exposition). This states that in search- 
ing for an optimal method of selling the good it is sufficient to con- 
sider only "direct revelation mechanisms." In these, bidders are asked 
to announce their valuations directly, and the seller commits herself 
to using rules for allocating the good and for charging the buyers that 
ensure both that the buyers will be willing to participate and that each 
will find it in his interest to announce his true valuation. Given this 
result, the problem of selecting an optimal way to sell the good re- 
duces to a relatively simple constrained maximization problem: max- 
imize the seller's expected revenues by the choice of functions giving 
the probability of allocating the good to each buyer and the payment 
to be made by each (both as functions of the announced values), 
subject to the "participation constraints" that each bidder receive non- 
negative expected surplus and the "incentive constraints" that it be 
equilibrium behavior for bidders to reveal their true valuations. 

While this is an immense simplification of the problem, its solution 
is still complex, and the literature on optimal auctions has remained 
difficult despite such excellent surveys as those of Milgrom (1985, 
1987, 1989) and McAfee and McMillan (1987). 

In the next section we present a simple and easily interpreted rec- 
ipe for constructing the optimal auction. This approach connects di- 
rectly to the standard monopoly problem of third-degree price dis- 

'Lobbying and other rent-seeking activities and wars of attrition are examples of 
economic situations relevantly modeled as all-pay auctions. 
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crirnination. In Section IV, we show that this recipe actually works by 
arguing that Myerson's optimal auction problem is essentially mathe- 
matically identical to the price discriniination problem, and so their 
solutions are also in close correspondence. This connection between 
the two problems casts light on both. In Section \.' we then show how 
formulae derived in Section IV for the expected revenues of a mo- 
nopolist or  a seller in an auction yield a strong revenue equivalence 
result. Section \'I is concerned with a technical problem corre-
sponding to the nlarginal revenue curve's not being everywhere de- 
creasing. Section \.'I1 contains a discussion of bilateral exchange when 
neither the buyer nor the seller knows the other's value. This section 
builds on the methods developed earlier and illustrates their wider 
applicability. Section VIII is a brief conclusion. 

111. 	 A Recipe for Solving the Optimal Auction 
Problem in the "Regular Case" 

Assume that there are n risk-neutral potential bu?ers for a good. Each 
buyer i values the good at an amount v,, known only to him, which is 
considered by everyone (including the buyer) to have been drawn 
from- a distribution with cumulative density F; ,  F,(I;,) = 0, F,(z?,) = 1. 
The  draws for the different individuals are independent. T h e  differ- 
ing distributions from which buyer values are drawn are cornmon 
knowledge among all buyers and the seller. 'The seller has a value 
known to be zero. (Generalization to the case in which the seller's 
value is a known, positive amount, 7 j 0 ,  is trivial.) What sales mechanism 
will maximize the seller's expected profits? 

As a specific example, assume that A's value is drawn from a distri- 
bution with uniform density bet~veen zero and 10; B's value is dra~vn 
from a uniform distribution between 10 and 30. If these are the only 
t\\.o bidders, a traditional English (open, ascending-bid) auction 
would lead to B's always winning and paying an expected price of five 
(where A will drop  out on average). A minimum bid of 10 will cause B 
always to bid 10, raising expected revenue to 10. A minimum bid of 
15 will lead to no bids one-quarter of the tirne (when B's value is less 
than 	15) and to a bid of 15 three-quarters of the tirne. Expected 
revenue becomes x 115 = 11.25. Our  question is, How does one 
construct a mechanism that extracts the maximum possible expected 
revenue? T h e  answer is given below. 

1. For each bidder, graph the inverse of his cumulative distribution 
function, with value -0 on the Y o r  "price axis" and the probability that 
the buyer's value exceeds a certain value, 1 - F,(-ij)= q, on the X or  
"quantity axis." For each bidder, we then have something that looks 
like a dernurld curtle, with the bidder's maximum possible value being 
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the price at a quantity of zero and the bidder's minimum possible 
value being the price at a quantity of one. 

2. From the demand curve for each bidder draw a murprtal TPZ~P?ZILP 

curve, calculated the way we always calculate marginal revenue curves 
from demand curves: Multiply "quantity," q = 1 - F,(u), times 
"price," -0 = FlP ' (1  - q), and take the derivative with respect to 
"quantity": 

Now express this as a function of 7 1 : ~  

We define MR,(-o) = - for all 71 < zl,. 
3. Conduct the following "second marginal revenue auction": (a) 

Have each bidder announce his value. (We shall show below that 
bidders will not have an incentive to lie.) ( 6 )  Translate each bidder's 
value to a marginal revenue, which we shall assume for the moment is 
nlonotonically increasing in the buyer's value. Consider the seller to 
be a bidder with a value and marginal revenue of zero. (c) Award the 
good to the bidder with the highest marginal re.rienur. The  price paid is 
the lowest -cjulue the bidder could have announced without losing the 
auction. If no bidder has a positive marginal revenue, then the seller 
"wins" the auction and there is no sale. If only one bidder's value 
translates to a positive marginal revenue (say that of bidder l ) ,  then 1 
gets the item at a price equal to his value ?I,* at which MR,(nf) = 0, that 
is, at the lowest value he could have had and still had a positive 
marginal revenue. If more than one bidder announces a value that 
translates to a positive marginal revenue, the one with the highest 
nlarginal revenue (say bidder 1) gets the item at a price determined by 
taking the second-highest marginal revenue, say iZ12, and charging the 
winner the value, M R I  '(iZ12), that he would have had if his marginal 
revenue had been iM2. 

Note that the bidder with the highest -c~ulue will not always win the 
auction because he will not always have the highest murp'?lal re71enue. 
Note too that honest reporting of values is a dominant strategy for 
bitlders. If a bidder wins the auction, the amount he pays is indepen- 

"hose familiar with the optimal auctions literature will recognire this expression as 
hlyerson's "virtual utility." Similar formulae ofren appear in incomplete irlformation 
analyses and bear the interpretation gi\.en here. 
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FIG.1.-(:onstruction of an optimal auction 

dent of his report since it is always the lowest amount he could have 
bid and still have won. Any lie that changes the outcome of the auc- 
tion will reduce the liar's utility, while any lie that does not affect the 
outcome also does not affect the amount paid by the liar and so does 
not change the liar's utility. Finally, note that the value at which a 
bidder's marginal revenue equals zero can be interpreted as a reserva- 
tion price for this bidder since it is the lowest price he would ever be 
charged for the good, and there is no point to his bidding if his actual 
value is less than this level. 

In figure 1 a buyer has a value distributed between 11 and 8.The 
reservation price for him is set at r, which corresponds to his marginal 
revenue equaling zero. (In the case in which the seller's value is -oo > 0, 
the reservation price would be set at the point at which the buyer's 
marginal revenue equals no.) If this bidder has the highest marginal 
revenue and the bidder with the next-highest marginal revenue has a 
marginal revenue of M y , then this bidder will win the auction and pay 
a price of P, the lowest value he could have had and still have had the 
maximal marginal revenue. The other buyers pay nothing. For sym- 
metric bidders this is clearly identical to a second-price auction; for 
asymmetric bidders, it is possible for one bidder to have the highest 
value and another the highest marginal revenue, just as in conven- 
tional price discrimination across markets. 

In the numerical example considered above, buyer A with a value 
distributed uniformly between zero and 10 can be thought of as hav- 
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ing the inverse demand curve pA = 10 - 10qA. His marginal revenue 
curve (in terms of quantity) is pA = 10 - 20qA. Similarly, B's demand 
curve ispB = 30 - 20qB, and his marginal revenue curve ispB = 30 -
40qB. Substituting from the demand functions, we see that the corre- 
sponding MR, functions are 

Thus MR.4 2 0 - 0 ~2 5, MRB 2 0 G 7 1 ~2 15, and MRA 2 MRBG v~ 
2 nB - 10. Consequently, if -oA 2 5 and 7 1 ~> nB - 10, A wins and 
pays the larger of his reservation price, five, and 718 - 10. If Z ~ B2 15 
and 7 1 ~> 7 1 ~+ 10, B is the winner at the price max(l5, -oA + 10). If nA 
< 5 and 7 1 ~< 15, no sale is made. For example, if A announced his 
value as vA = 8, then MRA = 6. If B announced his value as 7 1 ~= 17, 
then MRB = 4. So A would have the higher marginal revenue, even 
though vA < vB, and he would win the auction. He would pay seven 
since if 7 1 ~were seven, then MRA would be four, the actual value of 
MRn(vn). 

The major remaining detail is to discuss what happens when the 
marginal revenue curve of an individual is not monotonically decreas- 
ing in quantity or, equivalently, increasing in his value. This case will 
be discussed in Section \.'I. 

Finally, it is easy to generalize to the optimal mechanism fbr an 
auction in which the seller has k identical goods to sell, but each buyer 
still wants only one unit. Simply run a "(k + 1)st marginal revenue" 
auction, with each of the winners (the k individuals with the highest 
marginal revenues) paying the price on his demand curve corre- 
sponding to the greater of the (k + 1)st marginal revenue and zero 
marginal revenue. Reservation prices remain as before if the seller's 
value of each item is zero. The generalization to a seller who can 
produce extra items at increasing marginal cost should also be clear. 
Sell k units to the buyers with the k highest marginal revenues, where 
the kth-highest marginal revenue is greater than the marginal cost of 
the kth unit and the (k + 1)st marginal revenue is less than the corre- 
sponding marginal cost. Each of the k buyers pays the value on his 
demand curve associated with the greater of the kth marginal cost and 
the (k + 1)st marginal revenue, in other words, the minimum value 
the buyer would have had to have to qualify to receive a unit. 

This rule for the optimal auction reveals some interesting features. 
First, the allocation of the good may not be optimal ex post: the good 
nlay stay with the seller who values it at zero when a buyer places 
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positive value on it, and, as noted, it may be allocated to one buyer 
when another values it more highly. Second, some simple compara- 
tive statics are possible. For example, raising the seller's valuation 
from zero to 710 > 0 raises each individual's reservation price, from 
MR, '(0) to MR, ' ( 7 1 ~ ) .  Therefore, the probability of a sale falls. Sup- 
pose, however, that for a given set of buyers' values, a sale is still 
made. Then it will be made to the same bidder as before. Moreover, 
the price he pays will be affected only if the next highest marginal 
revenue is less than no, in which case the price rises to the buyer's new 
reservation price. As another example, consider any change in the 
distribution F,  of buyer i's values that decreases MR, as a function of 
71,. This shift will raise bidder i's reservation price. Further, for any 
value of I),, the shift will decrease 2's probability of winning the good 
and increase the price he pays when he wins. In fact, it is easy to 
construct examples in which a buyer's demand curve shifts upward 
and yet the buyer's probability of winning the auction and expected 
surplus are both decreased. (Analogously, a nlonopolist may respond 
to an increase in demand by reducing quantity sold and consumer 
surplus.) 

This recipe in terms of demand and marginal revenue curves is 
obviously reminiscent of the familiar solution of the third-degree 
price discrimination problem. Some of the common elements deserve 
special comment. 

1. Because MR = - m  for all values below the lower end of the 
support of a buyer's valuation, buyers can never pay less than the 
lowest values in their distributions. Just as in the standard monopoly 
problem, if the monopolist knows that no customer has a value less 
than .i/, then even if she should decide to sell to every customer in a 
market, she still will not charge a price below .i/. 

2. Just as in the monopoly problem, goods are allocated to buyers in 
the priority established by their marginal revenues. Just as in the 
monopoly problem, the price a buyer pays is the lowest value he could 
have had and still end up buying the good. Finally, no buyer from the 
part of the demand curve or distribution with negative marginal reve- 
nue is ever given a unit, even if the capacity constraint is not binding. 

3. Just as in the monopoly price discrimination problem, we have 
implicitly ruled out resale if someone other than the highest-value 
buyer wins the a ~ c t i o n , ~  and to avoid the durable goods monopoly 

In the monopoly context, we usually assume that if resale is possible, the best the 
seller can do is set the same price in each market-equivalent to running a second-price 
auction in the auctions case. However, when resale is allowed, the monopolylauctions 
analogy fails. The reason is that, with monopoly, we assume that if prices are set 
differently in different markets so that resale will occur, the resale market will be 
competitive. In  the auctions problem, resale involves a problem of bilateral monopoly. 
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problem, we have assumed that the seller can make a promise not to 
hold another auction if there is no sale the first time. The  point here is 
not just to note these major assuniptions, but to emphasize that for 
every assumption we make in one problem, we make a corresponding 
assumption in the other. For example, our  analysis of auctions as- 
sumes risk neutralit) throughout. The  corresponding assumption in 
the theory of monopoly is that either a monopolist's customers are 
risk neutral or  the monopolist is constrained to simply setting a price 
in each market (for, if not, standard monopoly pricing does not max- 
imize the profits of a monopolist). This linking of assumptions is a 
consequence of the mathematical linkage between the monopoly and 
optimal auctions problems, which we now demonstrate. 

IV. 	 Price Discriminating Monopoly and 
Optimal ~ u c t i o n s ~  

In this section we first develop an unconventional representation of 
the third-degree monopoly price discrimination problem. Despite the 
unfamiliarity of the resulting mathematics, the solution is, of course, 
just the usual one. We then show that the optimal auctions problem by 
Myerson can be described by the same objective function and an only 
slightly different constraint, so the correspondence between the two 
becomes clear. 

Consider a monopolist who sells in n different markets. Each price- 
taking consumer in each market is interested in buying at most one 
unit of the good. Customers in market z hale values between v,and a,, 
with F,(v) customers having a value less than o r  equal to v. Take F,(a,) 
= 1, so that the mass of potential consumers in each market is one. 
Marginal revenue is assumed to be downward sloping in all markets, 
and the monopolist has constant marginal costs of zero up to a capac- 
ity of (i units, where (i is a random variable between Q and that 
takes on the value Q with probability h(Q. We assume-that the mo- 
nopolist can set prices (and, implicitly, market quantities) contingent 
on the realized value of 4and that she seeks to maximize expected 
profits by her choice of price in each market. 

Given that prices can depend on Q, we define p,(v, Q as the proba- 

Milgrom (1987) discusses auctions with resale and without reservation prices in the case 
in which all buyers' values are common knowledge. In fact, the no-resale assumption is 
not necessary in most models with symmetric buyers, such as those of Vickrey (1961) 
and Riley and Samuelson (1981). However, an implicit no-resale assumption is made in 
Myerson (1981) and in Milgrom and Weber's (1982) analysis of the "general symmetric 
case," which treats nonindependent values. 

This section is relatively technical and might be skimmed or  skipped on first 
reading. 
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bility that a buyer in market i with value zj will acquire a unit if the 
monopolist's capacity is Q. We shall need this general formulation 
(with p depending on Q) in Section V, where we consider marginal 
revenue curves that are not everywhere downward sloping. However, 
for now p,(u, Q) is one if the monopolist with capacity Q will set a price 
less than or equal to u in market i and p,(-o, Q) is zero if the monopolist 
will choose a price above -o (as long as buyers act as price takers, which 
is rational when there is an atomless mass of them, and the monopo- 
list sets prices so that total demand does not exceed Q). Further, we 
define 

as the unconditional probability that a buyer in market i with value 11 

will get a unit (or equivalently that price will be less than or equal to 71). 

Since the expected social value of the units sold is the sum of the 
buyers' expected consumer surplus and the monopolist's expected 
revenues, the monopolist can be thought of as maximizing the ex- 
pected social value of the units sold minus the expected consumer's 
surplus. 

The expected social value of units sold can be written as 

or, equivalently, 

where h ( u )  = dF,(z~)/du> 0 is the number (density) of customers in 
market i with value zl. Note that expected unit sales in market i equal 

By noting that a buyer in market z with a value of 11, will recei~e Lero 
expected consumer's surplus, since there can never be any incentive 
to set the price in market z below TI,, we are able to calculate the 
expected consumer's surplus from a graph such as that in figure 2. In 
the figure, we consider a simple example of a market in which buyer 
values are distributed between zero and 100 and in which, with proba- 
bility .5, the monopolist charges a price of 50 and, with probability x, 
she charges a price of 100x or less, .5 <x 5 1. (This might happen, for 
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Expected consumer's 

of a buyer with a valu 


I 
I 
I 

example, if an optimi~ing monopolist sold in one market with a de- 
mand curve p, = 100 - q, and the monopolist's capacity was uni- 
formly distributed between zero and 100.) Thus a buyer with a value 
of 80 can expect, with probability .5, to buy a unit for 50 and, with 
probability .3, can expect to buy a unit for a price uniformly distrib- 
uted between 50 and 80.  So j , ( v )  is Lero for v < 50 and is .01u for 100 
r -o 2 50. Integrating along the value axis and noting that with one 
market ?,(?I) = p,(v), we see that a buyer with a value of v has an 
expected consumer's surplus of $::, $,(x)dx. 

Using this formula for the consumer's surplus of a buyer with value 
zl, we find that total expected consumer's surplus is 

or, equivalently, 

The  monopolist's revenues can now be written as (2) minus ( 3 ) :  
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and her problem becomes one of maximizing (4) subject to the feasi- 
bility constraint on sales relative to capacity, 

by choosing prices in each market or,  equivalently, the value at which 
p,(zl, Q) switches from zero to one. This maximi~ation is also subject to 
the additional conditions that 0 5 p,(zl, Q a 1 and that pz be nonde- 
creasing in 1 1 .  This latter condition reflects the impossibility of finding 
a price that will make a higher-valued buyer take a unit less often than 
a lower-valued buyer in the same market. 

We now note two features of (4) and ( 5 ) that will gi\e this problem 
some of the simplicity and familiarity it deserves. First, since the mo- 
nopolist is allowed to make her allocation rule contingent on Q, we 
can sohe the optimization problenl separately for each Q. Therefore, 
we can simply maximize 

subject to 

Second, defilling z (v ,  x)  to be zero for x > -o and one for x 5 u,we can 
rewrite the last term in (4 ' )  b y  noting that 

With this substitution, expected revenues ( 4 ' )  can be expressed as 
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However, the expression in brackets is just M R , ( v ) .  Therefore, ex- 
pected revenues are 

and, subject to the constraints, the seller wants to select the p, func-
tions to maximize the expected marginal revenues of those receiving 
the good. 

Since , ~ , ( T J )> 0 enters in both the objective and the constraint 
linearly and both are linear in p,(z~,Q J ,  the solution is clear: put as 
much weight as possible (p,(v,  QJ = 1 )  on high values of M R , ( u )  and 
none on low values. Since M R ,  is assumed increasing, the constraint 
dpl(zl, Q ) / ~ T J  r 0 is not binding. So for each Q ,  the monopolist should 
(1) sell to all buyers in each market for whom M R , ( v )  2 0 if the 
quantity constraint ( 5 ' )is not binding and (2) if the constraint is bind- 
ing, allocate units to the buyers with the highest marginal revenues, 
by choosing prices to equate the marginal revenues of the lowest- 
valued buyers actually supplied in each market. 

We shall now show that the optimal auctions problem solved by 
Myerson (1981)is virtually identical to this formulation of the monop- 
oly problem. In the auction context, n is the number of bidders rather 
than the number of markets, and F,(-o)is the probability that buyer i's 
value is less than v rather than the number of buyers in market i with 
values below v .  Furthermore, in the auctions case the probability that 
a buyer with value v in market i will win the auction must be written as 
a function p i ( u l , . . . ,TI,) of the values of all the bidders rather than as a 
function of his value and the quantity sold. However, defining & ( v )  
for the auctions problem as E ( p , ( v , , . . . , v ,- I ,  v , zl,, ] ,  . . . ,TI,)),we still 
have & ( T I )  as the unconditional probability that the buyer with distri- 
bution F j (frorn market i )will receive the good, just as in the monopoly 
problem. 

Defining Si(7))as the expected surplus of the ith bidder if his value is 
Z J ,  Myerson notes that equilibrium in the game induced by any set of 
action rules requires that 

The reason is that a buyer with a value of zl + d v  can achieve at least 
the surplus of a buyer with a value of T I ,  plus P,(v)dv, simply by imitat- 
ing the bidding strategy of a buyer with a value of v .  Similarly, a buyer 
with a value of v can achieve at least S,(TI  + d v )  - $ , ( I )  + dv)d-o. 
Therefore, surplus must be increasing in zl at a rate of ~ , ( T J )in order to 
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induce correct revelation of values, while the revelation principle 
means that correct revelation can be assumed to be induced. 

Equation (8) implies that buyers with lower values will have lower 
surpluses, so the lowest surplus in any market z will be achieved by a 
buyer with value TI,. Since the seller's expected revenue is the expected 
value of the good to the auction winner less expected surplus, under 
the optimal auction the seller will obviously set S,(y,) = 0, the lowest 
Lalue possible. Therefore, the surplus to a buyer i with value u, S,(ZI), 
equals 

just as in the monopoly problem. Total expected consumer's surplus 
can be written then as (3),  if we bear in mind that p,(v,) is now the 
expected value over Z I L ,  = (ul,. . . ,vlL,,u,+1 ,  . . . ,ZJ,,)ofp,(z~,,. . . ,zJ,,). 
Myerson's objective function in the optimal auctions problem is then 
just (4) or, equivalently, (7), precisely as in the monopoly problem. 

The seller in an auction maximizes (4) or (7) subject to the capacity 
constraint 

which says that the seller cannot promise to deliver more than one 
unit. Again, there are also constraints that 0 5 p,(vl, u?, . . . , ZJ,,)5 1 
and dp,(-ol, . . . ,v,,)ldv,r 0. The second arises because it is impossible to 
design a mechanism (pick p, functions) that will make a buyer follow a 
strategy that leads to a lower probability of winning the auction when 
he has a higher value. In any given mechanism, buyers trade off 
raising their probability of receiving a good against raising expected 
payments. If a low-value buyer finds it worth paying some extra 
amount to raise the probability of receiving the good, then a high- 
value buyer, whose higher valuation makes the increased probability 
even more valuable, would certainly do so as well. Therefore, if all 
types of buyers maximize utility, a higher-value type will always 
choose a strategy that leads to at least as high a probability of receiving 
the good as a lower-value type. 

Thus the mathematical problem facing the auction designer is es- 
sentially equivalent to the monopolist's problem. There are two dif- 
ferences: in the monopoly problem the choice variables are the proba- 
bilities p,(zl,, Q), while those in the monopoly problem are p,(ul, . . . , 
v,,); the capacity constraint in the monopoly problem is 
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while the corresponding constraint in the auctions problem is 
C p , (z~~ ,  5 1. Note, however, that even these differences are . . . , v,) 
less than what might appear. First, the arguments of the p, functions 
other than v,-namely, Q and v - ,--are both random variables distrib- 
uted independently of 71,. Second, when we consider p,, these variables 
can be taken as given and known: Q by assuniption and v-, because 
the other agents will be induced to reveal their valuations correctly. 
'Third, as noted, both constraints bear a capacity interpretation. In 
fact, the only important difference is the absence of thef,(u) in the 
auction constraint. But even this does not change the nature of the 
solution. 

To  solve the auction problem, substitute in (4) as above to obtain 

and now write this as 

This formulation makes clear the linearity of the objective function 
in p,. 

Thus the expected contribution to profit from increasing the prob- 
ability of allocating the good to buyer z whenever the vector of buyer 
values is (vl, . . . , v,,) is the probability that buyers will have exactly 
those values, II;= fi(v,), times MR,. Combined with (9),this obviously 
means that, for each vector (vl, . . . , v,J, profits are maxinli~ed by 
allocating the good to the highest marginal revenue bidder with prob- 
ability one in all cases, as long as the highest marginal revenue is 
greater than zero. As in the monopoly problem, MR,(v,) is indepen- 
dent of the p functions and of the values of any bidder other than 2 .  

Finally, we note that the derivation leading to (10) is valid for all 
mechanisms that meet incentive compatibility and participation con- 
straints, regardless of whether such a mechanism is optimal. The 
participation constraints' being binding was used only in showing 
S,(LJ,)= 0. The implication is that the expected revenue from uny 
mechanism can be written as 

= expected MK of winning bidder - K, 

where K is the sum of the expected surpluses of the n bidders if each 
had the lowest value in the support of his distribution. Obviously a 
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monopolist or auction seller will never choose to give buyers with the 
minimum possible value any consumer surplus, and so he will set K = 

0. If we restrict ourselves to mechanisms for which K = 0, as we shall 
do for the remainder of the paper, it is clear from (1 1) that any 
mechanism is an optimal auction mechanism if it always allocates the 
good to the bidder with the highest positive marginal revenue, with 
no sale occurring when all bidders have negative marginal revenues. 

Note that this solution does not specify how to charge for the good 
in the auction, just how to assign it .  Of course, whatever method is 
used to determine payments must meet the incentive and participa- 
tion constraints, so that each bidder will report his value honestly and 
will participate no matter what his value. One such is the system 
discussed before of charging the lowest value that the winner could 
have announced and still have had the highest positive marginal reve- 
nue: it gives expected surplus of zero to a bidder with value v, = ?I,, 
each bidder's expected surplus is an increasing function of his valua- 
tion, and, as argued above, i t  has the property that no one can gain by 
misrepresentation. However, we shall see in the next section that 
there may be other optimal payment schemes. 

T o  summarize, just as in the monopoly problem, the seller in the 
auction has an objective function that can be interpreted as maximiz- 
ing the expected marginal revenue of the consumers who receive 
units subject to a capacity constraint. Just as in monopoly, the prob- 
lem is solved by allocating the unit(s) to the buyer(s) with the highest 
marginal revenue(s). Finally, the solutions to the two optimization 
problems are similar: in both, units are allocated to buyers with prior- 
ity based on marginal revenue until either quantity is exhausted or 
there are no buyers left with positive marginal revenue. 

One other essentially technical point remains: Because we assumed 
that marginal revenue was downward sloping in quantity within each 
market, we could be sure that if the monopolist wants to sell to a 
particular buyer in any given market, she should also want to sell to all 
higher-value buyers. What if marginal revenue is not downward slop- 
ing? According to the current setup of the problem, one would like to 
sell to some buyers with a lower value but higher marginal revenue 
before other buyers with higher values but lower marginal revenues. 
But higher-value buyers will always be willing to buy whenever lower- 
value buyers want to buy, so it is impossible to make the probability 
that a high-value buyer will acquire a good less than the probability 
that a low-value buyer will acquire the good. Mathematically, if mar- 
ginal revenue is not always downward sloping, the constraint that 
af+(v)ld-o r 0 becomes binding. This constraint is the concern of Sec- 
tion VI ,  where we explain what Myerson calls the "general case." 
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V. Revenue Equivalence 

We are now ready to explore further the single most important result 
in Myerson's paper, the calculation of the expected revenue from the 
optimal-or any other-auction. This result in turn yields a strong 
revenue equivalence result. 

Consider a monopolist with a random capacity constraint who sells 
in several markets. Then, as shown in the preceding section, regard- 
less of what algorithm the monopolist uses for determining prices" 
(and therefore quantities) in each market as a function of total avail- 
able quantity, expected revenue can be written as 

where &(a) is the probability that a buyer in market i with value -o will 
be assigned a unit of the good and f,(u) is the density of buyers in 
market i with value v .  That is, expected revenue can be found by 
summing, over all buyers in all markets, the marginal revenue of each 
buyer times the probability that the buyer will receive a unit. (When 
probabilities are all one and zero, this is just saying that total revenue 
is the sum of the marginal revenues of all units sold.) This formula, 
which is just (7) averaged over all possible quantity constraints, holds 
regardless of whether the monopolist optimizes or not. 

Another way of restating (12) is that expected revenue equals the 
expectation of the product of the number of sales and the average 
marginal revenue of those who buy. For auctions we think of the 
seller as a buyer with a marginal revenue of zero. This implies that the 
number of sales is always one and the average marginal revenue of 
those who buy is just the marginal revenue of the one winning bidder. 
Therefore, we can interpret (12) as saying that the expected re-oenue from 
any,feasible auction is the expected marginal re-oenue of the winning bidder. 

This formula is central. Most obviously, it makes clear why the 
optimal auction gives the good to the bidder with the highest mar- 
ginal revenue. Moreover, it carries immediate implications for com- 
paring expected revenues across auctions. 

If the winner under one such auction rule is also the winner under 
a second auction rule, then the two auctions will yield the same ex- 
pected revenue. Therefore, with symmetric buyers, first- and second- 

'Provided she never charges any buyer less than the lowest value he could possibly 
place on the good. The corresponding qualification in interpreting this equation in the 
auction context, which we shall do  below, is that each bidder 2 receive zero expected 
surplus when u, = u,. 
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price auctions always yield the same expected revenue: since the bid- 
der with the highest value will always win in both auctions, the 
expected marginal revenue of the winning bidder is the same in both. 
It is also clear that the optimal reservation price occurs when MR = 0 
for each buyer and that this reservation price is independent of the 
number of bidders. Furthermore, any mechanism that always awards 
the good to the highest marginal revenue buyer (including the seller 
as a buyer with MR = 0 )  yields the same expected revenue. There- 
fore, such a mechanism is optimal. For symmetric bidders, both first- 
and second-price auctions with appropriately chosen reservation 
prices are optimal, provided marginal revenue is downward sloping. 

If buyers are not symmetric, then first- and second-price auctions 
will not always have the same winner because sometimes a lower- 
valued buyer can win a first-price auction, while the highest-valued 
bidder always wins under the second-price auction. Therefore, ex- 
pected revenues are also generally different. While neither auction is 
optimal, whether a first-price or second-price auction will have higher 
expected revenue for asymmetric buyers depends on whether, when 
a buyer wins the first-price auction without having the highest value, 
that buyer on average has a higher or lower marginal revenue than 
the buyer with the highest value. 

VI. 	 Optimal Auctions in the General Case: 
"Ironing Out" the Marginal Revenue Curve 

In this section we deal with the technical problem of how to design an 
optimal auction when Z J  - { [ l  - F,(v ) ] /J ( -o ) )is not necessarily mono- 
tonic. Myerson's solution of this general case again turns out to be 
equivalent to the solution to the monopoly problem when marginal 
revenue is not downward sloping. We begin by discussing this latter 
problem. 

Consider a conventional monopolist whose marginal revenue curve 
is not always downward sloping. For example, figure 3 graphs the 
marginal revenue curve for a monopolist facing a demand curve p = 

100 - 2q for 0 5 q 5 20 andp  = 70 - .5q for 20 5 q 5 100. Then MR 
= 100 - 4q for 0 5 q 5 20 and jumps discontinuously to MK = 70 -
q for q > 20. 

Suppose that the firm has constant marginal costs. In our numerical 
example, if costs exceed 50 per unit or are less than 20 per unit, the 
monopolist's problem is simple: There is only one point at which MR 
= MC. However, if costs are in the midrange, the problem is harder. 
In figure 3, where we assume constant marginal costs of 40, the mo- 
nopolist would like to collect the marginal revenue of the first 15 
buyers, who have values greater than 70 and marginal revenues 
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FIG. 3.-"Ironing" a marginal revenue curve 

greater than 40, skip the next file buyers with values between 70 and 
60 and marginal revenues between 40 and 20, and then sell to the 
buyers with values between 60 and 55 and marginal revenues between 
50 and 40. Unfortunately, it is impossible to devise a mechanism in 
which a buyer with a value between 55 and 60 will receive a good 
more often than a buyer with a value between 60 and 70. In terms of 
Section IV, we face a constraint that d p , / d v  2 0.' 

In the case of figure 3, the losses on units 15-20 (area A)  exactly 
equal the profits on units 20-30 (area B). So the monopolist with 
constant marginal costs of 40 is indifferent to selling 15 units at a 
price of 70 or 30 units at a price of 55. If costs were greater than 40, 
area A would be greater than B and the firm would produce less than 
15; with costs less than 40, the firm would produce more than 30 
units. So the firm operates as though it is facing an "ironed-out" 
marginal revenue curve that has MR = 40 for 15 5 q 5 30." 

What if the firm has zero marginal costs up to 20 units and then hits 
a capacity constraint? Ideally, the monopolist would like to sell to the 
14 buyers with the highest reservation prices, skip six buyers, and 
then sell to the next six. However, this is impossible because of the 
dp, ld-c~2 0 constraint. The best the n~onopolist can do is sell to the top 

' Sfyerson establishes this condition as a riecessary condition for obtaining correct 
revelation.
'If marginal costs equaled 40, a monopolist facing the ironed marginal revenue 

curve would be indifferent to selling any quantity between 15 and 30. .4firm facing the 
marginal revenue curve in fig. 3 will also be indifferent to any quantity from 15 to 30, 
but only if it u5es the lottery procedure described in the next two paragraphs. 
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15 buyers and give all the buyers on the ironed part of the marginal 
revenue curve a l/3 chance of receiving a unit, through a lottery, which 
will make the shadow value to the monopolist of the last five units 
equal to the ironed marginal revenue of 40, times five." 

The seller wishes to sell to the top 15 buyers and give each of the 
next 15 a ' / 3  chance of buying. She therefore gives buyers a choice: 
either participate in a lottery or pay a higher price and acquire a unit 
for sure. In order to attract the thirtieth-highest-valued buyer into the 
lottery, a winner of the lottery must be given a unit for his value of zl 
= 70 - .5(30) = 55. The price of getting a unit for sure must be just 
low enough so that the fifteenth buyer, with a value of 70, will decide 
to buy. That buyer can have an expected surplus of 1A(70 - 55) = 5 
from entering the lottery since y l 5  of all lottery participants will win. 
Therefore, he must be offered a certain unit at a price of 65 to 
guarantee the same surplus. 

By running this lottery, the monopolist earns 65 x 15 + 55 x 5 = 

1,250 versus 60 x 20 = 1,200 if she just charges a market-clearing 
price of 60. The difference of 50 (area A in fig. 3) is just the differ- 
ence, for q = 20, of the area under the ironed marginal revenue 
curve and above the original marginal revenue curve. 

Myerson's analysis of optinla1 auctions in the general case allows for 
the possibility that marginal revenue is not downward sloping. His 
solution irons the marginal revenue curve for each buyer just as 
above, although the exposition is in terms of the total revenue as a 
function of v rather than marginal revenue as a function of q. 

With ironed marginal revenue curves, there is some probability that 
one or more of the top two buyers will be on the ironed part of the 
curve. For example, consider an auction with symmetric buyers, for 
each of whom F ( v )  = .02(z1- 20), 20 5 v 5 60, and F(v) = .5 + .003v 
for 60 5 v 5 100. In terms of our analogy, each of these buyers has a 
demand curve identical to the one in figure 3, with quantities multi- 
plied by .0 l .  Buyers with values between 55 and 70 would then be on 
the ironed segment. If both buyers' values put them on the ironed 
part, Myerson specifies that a lottery occur, with the winner of the 
lottery paying the equivalent of 55 in the example above. 

If only the second-highest marginal revenue bidder is on the flat 
part of the curve, the bidder with the highest marginal revenue pays a 
price that would have made the lowest-value buyer on the part of the 
marginal revenue curve before the flat (the buyer with the value of 70 
in our example) indifferent to buying and participating in a lottery. 

"The reader should be able to confirm that changing the lottery to average over 
more ot- less than the 15 buyers on the ironed part of the marginal revenue curve will 
reduce the average nlarginal revenue of' the lottery participants. 
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Note that while Myerson specifies that the lotteries be "fair," there is 
no need for this: The auctions lottery could always award the good to 
the buyer whose name came first in the alphabet, a system Bulow likes 
better than Roberts. Because the ironed marginal revenue of all 
buyers who enter a lottery is the same, discrimination among these 
buyers does not alter either the expected (ironed) marginal revenue 
of the winning bidder or the expected revenue from the auction.'' 

VII. Bilateral Exchange with Private Values 

'The solution methods developed in the optimal auctions literature 
are widely applicable to problems involving private information. In 
this section we illustrate how the marginal revenuelmarginal cost logic 
developed above can make the solution to such problems more intui- 
tive. We focus on the problem of social efficiency in bilateral monop- 
oly when both the buyer's and the seller's valuations for the object are 
private information. 

Note that the "optimality" of optimal auctions relates to the max- 
imization of seller surplus rather than social efficiency." However, 
designing a socially efficient auction mechanism when the seller's 
value is known is easy: a second-price auction with a reservation price 
equal to the seller's value does the trick, and if both seller and buyer 
values are known, then even the mechanism that is privately optimal 
for the seller (essentially charging the highest-valued buyer his full 
value, assuming that it exceeds the seller's value) will be socially effi- 
cient. However, when both buyer and seller values are private knowl- 
edge and it is unclear whether gains from trade exist, it is not possible 
to design a mechanism that results in transfer of the good exactly 
when the gains from trade are positive. This result was first shown by 
Myerson and Satterthwaite (1983). In this section we use the logic 
developed earlier to derive both their impossibility result and their 
mechanism for maximizing expected gains from trade subject to the 
constraints arising from the private information about values and the 
concomitant opportunities to misrepresent them strategically. 

Assume that a single buyer has a value, v, drawn from a distribution 
F(v), F(v) = 0, F(Z) = 1,dFldv = , f ( - r ~ )  > 0, for v 5 v 5 Z. The potential 
seller has a value, s, drawn independently from a distribution G(s),  

l o  It shoi~ld be noted that Pratt and Zeckhauser (1986) treat precisely this problem in 
the monopoly context and present the ironing procedure. Earlier, Mussa and Kosen 
(1978) were the first to fully develop the ironing procedure for marginal revenue in 
their analysis of product quality. And Hotelling (1931), in discussing monopoly in 
exhaustible resources, also did a numerical example of ironing a marginal revenue 
curve, although he did not use the then-new terminology of "marginal revenue.'' 

11 We should note, however, that in Vickrey's original work he was primarily con- 
cerned with issues of social efficiency. 
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also on [?I, 31, with dG/dS = y(s) > 0 for I, 5 s 5 3.That is, the range of 
possible values is the same for the buyer and seller. Gains from trade 
may or may not be possible, depending on the actual values of s and v. 
Is there any mechanism that can guarantee ex post efficient trade, 
and, if not, how can expected gains from trade be maximized? 

The problem of whether an efficient mechanism exists is most eas- 
ily solved by creating a fictitious, risk-neutral broker whose job it is to 
maximize expected profits subject to the constraint of having trade 
take place if and only if -0 s. If the expected profit-maximizing 
mechanism, which maximizes expected buyer payments less expected 
seller receipts, yields negative expected profits, then clearly the buyer 
and seller cannot achieve efficiency on their own (e.g., without a sub- 
sidy from some third party). 

The broker's job is considerably simplified by her ability to choose 
mechanisms that make the buyer's payment contingent on the seller's 
value and similarly make the seller's revenue contingent on the 
buyer's value, while ensuring that both are reported correctly. There- 
fore, the broker can solve separately the problems of maximizing 
expected revenue subject to efficiency constraints contingent on 
knowing the seller's value, and minimizing expected payments to the 
seller contingent on knowing the buyer's value, with the broker's 
profit being the difference between buyer payments and seller re- 
ceipts. 

From (4') we find that the broker's objective function when faced 
with one buyer can be written as 

max j f p u  s - 1 f(il) 1 p(r, s)dxdil 
I' 5 7 

or, equivalently from ( 7 ) ,  

where 

subject to the efficiency constraints 

The constraint that trade must always and only occur when the 
buyer's value equals or exceeds the seller's renders the maximization 
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trivial. Simply put, if the seller's value is s, the broker can do no better 
than offer the good to the buyer at a take-it-or-leave-it price of s, 

thereby giving the buyer all the gains from trade. 
But the broker must also induce the seller to sell whenever s 5 v.  If 

we regard the broker as a monopsonist relative to the seller in the 
same way she is a monopolist relative to the buyer, the broker's prob- 
lem with the seller is to minimize 

where 

subject to 

The simplest-and essentially the only-way of meeting the effi- 
ciency constraint of having the seller agree to sell whenever s 5 71 is to 
offer the seller a take-it-or-leave-it price equal to v,  giving all the gains 
from trade to the seller. 

Combining the buyer and seller results, we find that the broker 
must give each party all the gains from trade. To  do this, the broker 
must run a loss equal to the expected gains from trade, implying that 
a subsidy of like amount is required if efficiency is to be achieved. 

Thus ex post efficiency cannot be achieved in bilateral trade with 
private information on both sides if the buyer's and seller's ranges of 
possible values coincide. Further, generalization to the case of over- 
lapping but not identical ranges for buyer and seller values is simple. 
If buyers can have values as high as $ > 3,the highest possible value 
for s, we know that all such buyers will have to be treated like buyers 
of value isl: they can always imitate those buyers, who will receive the 
good with probability one, and so there is no way to prevent such 
mimicry. Similarly, if sellers can have values as low as J < g, all sellers 
with values s < are indistinguishable, for the purpose of this analy- 
sis, from sellers with values y. 

If full ex post efficiency is unattainable, what then is the best that 
can be done? 

The mechanism that maximizes efficiency subject to a feasibility 
constraint is derived in two parts. First, we find the most efficient 
mechanism that gives the broker zero expected profits. Second, stan- 
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dard mechanism design tricks are used to create an equivalent mecha- 
nism that yields the broker zero actual (rather than expected) profits, 
allowing the buyer and seller to dispense with the broker altogether. 

Expected gains from trade can be written as 

Combining (13), which gives the buyer's expected payments, and (16), 
which gives the seller's expected receipts, yields an expected profit 
constraint of the form 

This inequality was obtained by Myerson and Satterthwaite as neces- 
sary and sufficient for optimality of a mechanism that calls fbr trade 
with probability p(v, s). 

The problem of' solving (19) subject to (20) is just a simple Ramsey 
pricing problem. The solution is familiar: specify first that trade will 
occur whenever MR > hlC.  For cases in which MR < MC, assign 
priority based on the ratio of (-0 - s)l(MC - MR) ("efficiency" gained 
to "profits" lost). Allow trade in as many cases as possible using this 
priority scheme up to the point at which (20) equals zero.'" domi-
nant strategies mechanism that achieves the result begins by specify- 
ing that trade will occur when and only when the ratio of (v - s)l(MC 
- MR) exceeds the critical level corresponding to (20) equal to zero. 
Each participant is asked to reveal his or her true value. If trade does 
not occur, no money changes hands. If trade occurs, the buyer pays 
the minimum value he could have announced, given the seller's value, 
for trade to have occurred. Similarly, if trade occurs, the seller re- 
ceives the maximum value she could have announced, given the 
buyer's value, for trade to have occurred. Note that, no matter what 
the values of v and s, both the buyer and the seller receive nonnega- 
tive surplus, so the participation constraint is met. Further, now-
familiar arguments show that correct revelation is a dominant strat- 
egy for each party, so the incentive constraints are also met. 

Note that if we have chosen p(v, s) in such a way that (20) equals 
zero, the expected receipts of the seller exactly equal the expected 
payments of the buyer. However, there is no guarantee that actual 

" If the diqtiibutions of buyer and seller \aluations are not "well behaved'' so that 
marginal revenue and marginal cost curves are not downward and upward sloping, 
respectively, we must use an ironing technique similar to that employed in Sec. V. 
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I-eceipts and payments are equai for aii -0 and s. Thus we still must go 
from this mechanism to one in which actual seller receipts equal ac- 
tual buyer payments. 

To do this, we create another game with a Bayesian Nash equilib- 
rium outcome that is the same as the equilibrium in the dominant 
strategies game. We have the buyer write down his expected payment 
in the dominant strategy game, inferring his value from what he 
writes. Similarly, the seller writes down her expected receipts, and we 
infer her value from what she writes. Finally, we calculate the ex- 
pected receipts of the seller unconditional on her value, which equals 
the expected payments of the buyer unconditional on his value. 

Our new mechanism specifies payments by the buyer equal to what 
the buyer has written plus what the seller has written, less the un- 
conditional estimate of paymentslreceipts. The good is transferred 
whenever the inferred buyer and seller values would imply trade in 
the earlier game. Note that the expected payments of any buyer are 
exactly those in the game with dominant strategies, since from his 
point of view the expectation of the seller's expected receipts condi- 
tional on the seller's value equals the unconditional estimate of the 
seller's receipts. The same reasoning for the seller implies that both 
parties will have the same expected payoffs from any announcement 
of their value that they have in the game with dominant strategies, 
provided that the other party always truthfully reveals his or her 
value. Therefore, buyers and sellers announce the same values as in 
the dominant strategies game, and we have created a mechanism that 
maximizes efficiency subject to the constraint that buyer payments 
equal seller receipts. 

An example of a mechanism that meets the requirements of this 
section was given by Chatterjee and Samuelson (1983) for the case 
in which both buyer and seller have values drawn from the same 
uniform distribution. Have each write down a price. If the seller asks 
for more than the buyer bids, no trade occurs. Otherwise, trade oc- 
curs at the average of the bid and ask prices. In this uniform and 
identical distribution case, the Chatterjee-Samuelson mechanism 
leads to the identical payoffs and outcomes as the revelation mecha- 
nism described in the last few paragraphs. 

VIII. Conclusion 

We have shown how some of the central results of the theory of mar- 
kets under incomplete information can be interpreted and under- 
stood in terms of familiar microeconomic theory. We hope and expect 
that this will both broaden the impact of these results and lead to a 
better understanding of other problems of this nature. 
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Appendix 

Revenue Equivalence in Auctions with Symmetric Bidders 

This Appendix focuses on a graphical treatment of the results of Vickrey 
(1961)discussed in Section I .  We begin by analyzing a second-price auction. 
The  dominant strategy for each bidder is to bid his true value. This is because 
a buyer's altering his bid from its true value, v, has no effect on whether he 
wins and what he pays, except in two cases, and in these it is harmful. In the 
first case, the highest other bid, b, exceeds -o and the buyer bids more than b. 
Then he gets a surplus of 11 - b < 0 instead of the zero he would have gotten 
from bidding 11. In the second, b is less than 71 and the buyer underbids by 
enough that his bid is less than b. Then he gets zero surplus instead of 2) - b > 
0. Therefore, over- o r  underbidding can reduce but cannot increase a buyer's 
surplus. 

Given correct revelation, the expected payments and profits of a bidder in a 
second-price auction can be seen in figure A 1. This figure graphs a bidder's 
possible valuation of the auctioned good against the likelihood of winning the 
auction. In the special case in which there are only two bidders, each with 
values independently and uniformly distributed between zero and 100, the 
curve becomes a straight line from (0 ,  0 )  to (1 ,  100). With symmetric bidders, 
a bidder with value will win the auction whenever his value is highest, and 
that will occur with probability [F(v)ln- '= F n ' ( v ) ;that is, the probability that 
that bidder will win is the probability that the other n - 1 bidders will all have 
a value of 11 or  less. In the numerical example, a bidder with a value of v will 
have a probability of winning of .Olu. 

0 
0 F "" (v) 1 

Probability of winning the auction 
FIG. A1 
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With each bidder bidding his true value, the expected payment of a bidder 
with value v is 

that is, the area P ( v )in figure A l .  The expected payment contingent on winning 
is the expected second-highest value contingent on v being highest, B ( v )  = 
P(u)/Fn- ' ( tr) .In the numerical example, if v = 80, the bidder will win the 
auction with a probability of .8 ( F n - ' ( u )= .8), pay an average o f 4 0  (B(u)= 
40) when he wins, and make expected payments of 32. 

Note that the marginal rosf to the bidder of winning the auction when the 
highest value of any other bidder is z1 can be calculated as the derivative of 
expected payments with respect to the probability of winning when the high- 
est-value type of bidder you are defeating has a value of v,  d P ( v ) / d F n  ' ( v )  = 11. 
This is a necessary condition for a symmetric equilibrium for any type of 
auction that always awards the object to the highest bidder since a bidder with 
a value of u must be just indifferent to bidding enough to beat a competitor 
with the same value. The expected surplus of a bidder is the area S(u) ,which 
equals the bidder's value times his probability of winning the auction less 
expected payments. Inspection of figure A1 indicates the following formulae: 

We now consider first-price auctions. Assume that each bidder with value 
u bids an amount B ( v ) ,which, in terms of figure A2, equates area C and area 
D. In the numerical example, the bidder with a value of 80 bids 40, paying 
more in the first-price auction than in the second-price auction whenever the 
second-highest bidder's value is below 40 (the difference represented by area 
C) and less when the second-highest bidder's value is above 40 (represented 
by D). 

If everyone's bidding B ( v )  is an equilibrium, "revenue equivalence" will 
hold: the bidder with the highest value will win both auctions and make the 
same expected payments in either because B(71) is the expected bid in the 
second-price auction. However, to prote that this is an equilibrium, we must 
show that if all ( n  - 1) other bidders follow this strategy, then it will pay the 
nth bidder to follow the same stratepv. 

- I  

Note first that under the specified strategies, the bidder with value 11 wins 
with probability Fr ' - ' ( v )  and gets expected surplus [ v  - B ( v ) ] F " ' ( v )= 

u F "  ( 1 1 )  - P(z1). Now consider what happens if he decides to deviate by 
bidding less than the specified amount. Let the detiation be to bid only B ( I J ' ) ,  
u' < v ,  as in figure A3. 

By making the lower bid, which will succeed only with probability F " - ' ( v ' ) ,  
the bidder reduces his expected payment to B(u')Fn-  ' ( u ' )  = P ( u l ) ,a reduction 
of H + I + J or, equivalently, G + H. Howeter, his expected gross benefits 
fall by G + H + F, so the buyer's net surplus is now only IJF"-'( v ' )- P ( u l ) ,a 
net reduction of area I;. So the deviation is not worthwhile. In the example, if 



0 F "'I(v) 1 
Probability of winning the auction 

FIG.A2 

0 

0 F"'I(v') F"" (v) 1 

Probability of winning the auction 
Frc.. A3 
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a bidder with a value of 80 acted like a bidder with value 70 and so bid 35, his 
expected payments would drop  from .8 x 40 = 32 to .7 x 35 = 24.3. 
However, net surplus would fall from .8(80) - 32 = 32 to .71 10) - 24.5 = 
31.5. Analogously, expected surplus is reduced by bidding more than B(v). 
Thus the specified strategies constitute a (Bayesian) Nash equilibrium and so 
revenue equivalence obtains. 

The  analysis above can be easily modified to allow for the seller's imposing a 
common reservation price or- minimum bid. Instead of graphing u against 
F" '(v), graph M(71, I) = max(v, r) against F n -  '(v). T h e  term M(71, I) can be 
thought of as the marginal cost of winning the auction against a bidder with 
value v, o r  M(v, r) = dP(v, r ) i d F n l ( z ~ ) .  In a second-price auction, a bidder 
with a value of 11 2 r will bid v and make expected payments of P(v, r). In a 
first-price auction, such a bidder \\.ill offer B(71, I) = In the P(v, r ) I F " ~ l ( ~ ) .  
example, a bidder with a value of 80 facing a reservation price of 30 will bid 
80 in a second-price auction and make expected payments of 50 x .3  + 63 x 
.3 + 0 x .2 = 44.5,l"r 44.5i.8 = 55.625 = B(80, 50) contingent on winning 
the auction. In the first- rice auction the eauilibrium bid is 55.625. 

It is also easy to derive a revenue equivalence result graphically for multi- 
ple-goods auctions, where the seller is offering k identical goods and each 
buyer wants only one unit. Simply graph 11 (or M(v, r) to allow for reservation 
prices) against G - ' ( Z J ) ,  where G - l ( v )  is the probability that the kth-highest 
value among the n - 1 other bidders is less than or  equal to v (and so 
represents the probability that a buyer with a value of v will make a successful 
bid in a symmetric equilibrium). If we apply the same analysis as before, it is 
easy to show revenue equivalence between an  auction that allocates items to 
the top k bidders who all pay the (k + 1)st-highest bid and an auction that 
allocates items to the top k bidders who each pay their own bid. 

Finally, the same graphical technique can be employed to show revenue 
equivalence for other forms of auctions, such as the all-pay auction in which 
all bidders pay their bid regardless of whether they win. The  equilibrium all- 
pay bid for a bidder with a value greater than r is just P(71, r)-the expected 
payment the bidder would make in a first- o r  second-price auction. 
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