

Global Illumination

Adam Finkelstein & Tim Weyrich
Princeton University
COS 426, Spring 2008

Ray Tracing

 Trace secondary rays from hit surfaces in directions of specular reflection and refraction

 $I = I_E + K_A I_A + \sum_L (K_D (N \bullet L) + K_S (V \bullet R)^n) S_L I_L + K_S I_R + K_T I_T$

Ray Tracing

 Assume only significant indirect illumination is from specular reflection and refraction

 $L_o(x', \vec{\varpi}') = L_e(x', \vec{\varpi}') + \sum_{i=1}^{lights, spec, refr} f_r(x', \vec{\varpi}, \vec{\varpi}') (\vec{\varpi} \bullet \vec{n}) L_i(x', \vec{\varpi})$

Rendering Equation

• Compute radiance in outgoing direction by integrating reflections over all incoming directions

 $L_o(x',\vec{\varpi}') = L_e(x',\vec{\varpi}') + \int_{\Omega} f_r(x',\vec{\varpi},\vec{\varpi}') L_i(x',\vec{\varpi}) (\vec{\varpi} \bullet \vec{n}) d\vec{\varpi}$

Rendering Equation

 Compute radiance in outgoing direction by integrating reflections over all incoming directions

 $L_o(x',\vec{\omega}') = L_e(x',\vec{\omega}') + \int_{\Omega} f_r(x',\vec{\omega},\vec{\omega}') L_i(x',\vec{\omega}) (\vec{\omega} \bullet \vec{n}) d\vec{\omega}$

 $L(x,\vec{w}) = L_e(x,x \circledast e) + \int f_r(x,x' \circledast x,x \circledast e) L(x' \circledast x) V(x,x') G(x,x') dA$

Challenge · Rendering integrals are difficult to evaluate ° Multiple dimensions ° Discontinuities ■ Partial occluders Highlights Caustics $L(x,\vec{w}) = L_e(x,x \ \hbox{\it le } e) + \int f_r(x,x' \ \hbox{\it le } x,x \ \hbox{\it le } e) L(x' \ \hbox{\it le } x) V(x,x') G(x,x') dA$

Overview

- · Global illumination
 - ° Rendering equation
- · Solution methods
 - ° Sampling
 - Distribution ray tracing
 - Monte Carlo path tracing
 - Bidirectional path tracing
 - Discretization
 - Radiosity

Overview

- · Global illumination
 - Rendering equation
- · Solution methods
 - ➤ Sampling
 - Distribution ray tracing
 - Monte Carlo path tracing
 - Bidirectional path tracing
 - Discretization
 - Radiosity

• Estimate integral for each reflection by sampling incoming directions $L_o(x',\bar{\omega}') = L_e(x',\bar{\omega}') + \sum_{nsamples} f_r(x',\bar{\omega},\bar{\omega}') L_i(x',\bar{\omega})(\bar{\omega} \bullet \bar{n}) d\bar{\omega}$

Monte Carlo Path Tracing

• Estimate integral for each pixel by sampling paths from camera

Camera

Camera \overline{n} $\overline{\omega}_5$ $\overline{\omega}_6$ Ω where $T(x,\overline{\omega}') = \int_{\Omega} f_r(x',\overline{\omega},\overline{\omega}')g(x,\overline{\omega})(\overline{\omega} \bullet \overline{n})d\overline{\omega}$

Bidirectional Path Tracing

• Role of source and receiver can be switched

·uu

Radiosity Equation

 $L(x' \circledast \ x'') = L_e(x' \circledast \ x'') + \int f_r(x \circledast \ x' \circledast \ x'') L(x \circledast \ x') V(x,x') G(x,x') dA$

Assume everything is Lambertian

$$\rho(x') = f_r(x \otimes x' \otimes x'')\pi$$

$$L(x') = L_e(x') + \frac{\rho(x')}{\pi} \int_S L(x) V(x,x') G(x,x') dA$$

Convert to Radiosities

$$B = \int_{\Omega} L_o \cos \theta d\omega \qquad L = \frac{B}{\pi}$$

$$B(x') = B_e(x') + \frac{\rho(x')}{\pi} \int_S B(x) V(x, x') G(x, x') dA$$

Radiosity Approximation

$$B(x') = B_e(x') + \frac{\rho(x')}{\pi} \int_S B(x) V(x,x') G(x,x') dA$$

Discretize the surfaces into "elements"

$$B_i = E_i + \rho_i \sum_{j=1}^{N} B_j F_{ij}$$

where
$$F_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_i} \frac{V_{ij} \cos \Theta_i' \cos \Theta_o}{\pi r^2} dA_j dA_i$$

Radiosity Approximation

System of Equations

$$B_i = E_i + \rho_i \sum_{j=1}^N B_j F_{ij}$$

$$E_i = B_i - \rho_i \sum_{j=1}^N B_j F$$

$$B_i - \rho_i \sum_{j=1}^N B_j F_{ij} = E_i$$

$$B_{i} = E_{i} + \rho_{i} \sum_{j=1}^{N} B_{j} F_{ij}$$

$$E_{i} = B_{i} - \rho_{i} \sum_{j=1}^{N} B_{j} F_{ij}$$

$$B_{i} - \rho_{i} \sum_{j=1}^{N} B_{j} F_{ij} = E_{i}$$

$$\begin{bmatrix} 1 - \rho_{1} F_{1,1} & \cdots & -\rho_{1} F_{1,n} \\ -\rho_{2} F_{2,1} & 1 - \rho_{2} F_{2,2} & \cdots & -\rho_{2} F_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ -\rho_{n-1} F_{n-1,1} & \cdots & -\rho_{n-1} F_{n-1,n} \\ -\rho_{n} F_{n,1} & \cdots & 1 - \rho_{n} F_{n,n} \end{bmatrix} \begin{bmatrix} B_{1} \\ B_{2} \\ \vdots \\ B_{n} \end{bmatrix} = \begin{bmatrix} E_{1} \\ E_{2} \\ \vdots \\ E_{n} \end{bmatrix}$$

$$(1 - \rho_{i} \sum_{j=1}^{N} F_{ij}) B_{i} - \rho_{i} \sum_{j=1}^{N} F_{ij} B_{j} = E_{i}$$
This is an energy balance equation

$$(1 - \rho_i \sum_{i=1}^{N} F_{ii}) B_i - \rho_i \sum_{i=1}^{N} F_{ij} B_j = E_i$$

$$B_i A_i = E_i A_i + \rho_i \sum_{j=1}^{N} F_{ji} B_j A_j$$
 \leftarrow energy balance equation

Radiosity

- Issues
 - ° Computing form factors
 - ° Selecting basis functions for radiosities
 - ° Solving linear system of equations
 - ° Meshing surfaces into elements
 - ° Rendering images

Radiosity

- Issues
 - ° Computing form factors
 - ° Selecting basis functions for radiosities
 - ° Solving linear system of equations
 - ° Meshing surfaces into elements
 - ° Rendering images

Form Factor

 Fraction of energy leaving element i that arrives at element j

$$F_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_i} \frac{V_{ij} \cos \Theta_i' \cos \Theta_o}{\pi r^2} dA_j dA_i$$

32

Radiosity

- Issues
- Computing form factors
 - ° Selecting basis functions for radiosities
 - ° Solving linear system of equations
 - ° Meshing surfaces into elements
 - Rendering images

Solving the System of Equations

- · Challenges:
 - Size of matrix
 - ° Cost of computing form factors
 - Computational complexity

Solving the System of Equations

- · Solution methods:
 - ∘ Invert the matrix O(n³)
 - ° Iterative methods − O(n²)
 - ° Hierarchical methods O(n)

 $\mathbf{x} = \mathbf{x}$

Gauss-Seidel Iteration

- 1 for all i
- $2 B_i = E_i$
- 3 while not converged
- 4 for each i in turn
- $5 B_i = E_i + \rho_i \sum_{j \neq i} B_j F_{ij}$
- 6 display the image using B_i as the intensity of patch i.

Gauss-Seidel Iteration

- · Two interpretations:
- ° Iteratively relax rows of linear system
 - ° Iteratively gather radiosity to elements

$$\begin{bmatrix} 1 - \rho_1 F_{1,1} & . & . & . & - \rho_1 F_{1,n} \\ - \rho_2 F_{2,1} & 1 - \rho_2 F_{2,2} & . & . & - \rho_2 F_{2,n} \\ . & . & . & . & . \\ - \rho_{n-1} F_{n-1,1} & . & . & . & - \rho_{n-1} F_{n-1,n} \\ - \rho_n F_{n,1} & . & . & . & 1 - \rho_n F_{n,n} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ . \\ . \\ B_n \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \\ . \\ . \\ E_n \end{bmatrix}$$

Gauss-Seidel Iteration Two interpretations: ° Iteratively relax rows of linear system ° Iteratively gather radiosity to elements

Progressive Radiosity

- · Interpretation:
 - ° Iteratively shoot "unshot" radiosity from elements
 - ° Select shooters in order of unshot radiosity

Progressive Radiosity · Adaptive refinement

Progressive Radiosity

Progressive Radiosity

43

Radiosity

- Issues
- Computing form factors
 - ° Selecting basis functions for radiosities
 - ° Solving linear system of equations
 - ° Meshing surfaces into elements
 - ° Rendering images

Surface Meshing

- · Store radiosity across surface
 - ° Few elements
 - ° Represents function well
 - ° Few visible artifacts

Cohen & Wallace

46

Artifacts of Bad Surface Meshing

Adaptive Meshing

Refine mesh in areas of high residual

 Capture discontinuities in radiosity across a surface with explicit mesh boundaries

Lischinski et al.

Discontinuity Meshing

 Capture discontinuities in radiosity across a surface with explicit mesh boundaries

Discontinuity

Mesh

Lischinski et al.

Summary

- · Global illumination
 - ° Rendering equation
- · Solution methods
 - Sampling
 - Distribution ray tracing
 - Monte Carlo path tracing
 - Bidirectional path tracing
 - Discretization
 - Radiosity

Photorealistic rendering with global illumination is an integration problem