lHlumination

Adam Finkelstein & Tim Weyrich
Princeton University
COS 426, Spring 2008

Vs

Ray Casting

Vs

Ray Casting

Image RayCast(Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
Intersection hit = FindIntersection(ray, scene);
imagel[i][j] = GetColor(scene, ray, hit);

}

return image;

Without lllumination

Image RayCast(Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}

return image;

Wireframe

Vs

Ray Casting

Vs

lllumination

image[i][j] = GetColor(scene, ray, hit);

Angel Figure 6.2

Image RayCast(Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
Intersection hit = FindIntersection(ray, scene);
imagel[i][j] = GetColor(scene, ray, hit);

}

return image;

With llumination

Vs

Goal

+ Must derive computer models for ...
° Emission at light sources
° Scattering at surfaces
° Reception at the camera

+ Desirable features ...
° Concise
° Efficient to compute
° “Accurate”

Overview

+ Direct lllumination
° Emission at light sources
° Scattering at surfaces

+ Global illumination
° Shadows
° Refractions
° Inter-object reflections

Direct lllumination

Empirical Models

+ |deally measure irradiant energy for “all” situations
° Too much storage
° Difficult in practice

Point Light Source

+ Models omni-directional point source
° intensity (ly),

° position (px, py, pz),
° coefficients (ca, la, ga) for attenuation with distance (d)

I I,
I, = 2
ca+la-d+qa-d

Emission at Light Sources

« 1L (6y2,6,0,M) ...
° describes the intensity of energy,
° leaving a light source, ...
° arriving at location(x,y,z), ...
° from direction (6,9), ...
° with wavelength A y,2)

Light

OpenGL Light Source Models

+ Simple mathematical models:
° Point light
° Spot light
° Directional light

c
Spot Light Source

+ Models point light source with direction
° intensity (ly),
° position (px, py, pz),
° direction (dx, dy, dz)
° attenuation with distance d
° falloff (sd)

(pX, py! p) [] >

s ;L@ Ly
Light " ca+laxd +qaxd’
if(@>sc)l; =0

Directional Light Source

+ Models point light source at infinity
° intensity (ly),
° direction (dx,dy,dz)

N\
(dx, dy, dz) Xﬁi\\ N

O\

No attenuation
with distance I, =1,

Scattering at Surfaces i‘

« Ry(6,0,7,9,7) ...

° describes the amount of incident energy,
° arriving from direction (6,9), ...

° leaving in direction (y,y), ...

° with wavelength A

6.9

() '\

OpenGL Reflectance Model i‘

+ Simple analytic model:
° diffuse reflection +
° specular reflection +
° emission +

° “ambient” =
Based on model
proposed by Phong \ /

Overview w

.

» Direct lllumination

° Scattering at surfaces

+ Global illumination
° Shadows
° Refractions
° Inter-object reflections

Direct lllumination

Empirical Models i‘

+ |deally measure radiant energy for “all”
combinations of incident angles
° Too much storage
° Difficult in practice

6.9

) '\

OpenGL Reflectance Model w

.

+ Simple analytic model:
° diffuse reflection +
° specular reflection +
° emission +

° “ambient” =
Based on model
proposed by Phong \ /

Diffuse Reflection

+ Assume surface reflects equally in all directions
° Examples: chalk, clay

-

Diffuse Reflection

+ How much light is reflected?
° Depends on angle of incident light

dL =dAcos®

0 \dL
_dA

21

OpenGL Reflectance Model

+ Simple analytic model:
diffuse reflection +
specular reflection +
emission +
“ambient”

o
o
o
o

23

Diffuse Reflection

+ How much light is reflected?
° Depends on angle of incident light

Diffuse Reflection

+ Lambertian model
° cosine law (dot product)

I, =K, (N*L)I,

Specular Reflection

+ Reflection is strongest near mirror angle
° Examples: mirrors, metals

20

22

24

()
Specular Reflection
How much light is seen?
Depends on:
° angle of incident light
° angle to viewer
Viewer
J
()
OpenGL Reflectance Model
+ Simple analytic model:
° diffuse reflection +
° specular reflection +
° emission +
° “ambient” \ / ﬂ
J
()
OpenGL Reflectance Model

+ Simple analytic model:
° diffuse reflection +
° specular reflection +
° emission +
° “ambient”

4

/

J

29

e A
Specular Reflection

+ Phong Model

° cos(a)n This is a physically-motivated hack!

Viewer

IS =Ks(V'R)”IL

26

~ N
Emission

+ Represents light eminating directly from polygon

Emission = 0

J
s R
Ambient Term

+ Represents reflection of all indirect illumination

This is a total hack (avoids complexity of global illumination)!

30

]

OpenGL Reflectance Model

+ Simple analytic model:

31

)

OpenGL Reflectance Model

+ Sum diffuse, specular, emission, and ambient

Phong| Puubicat Rpecular Poowst

e N b
e
&

Y

33

ok

Direct lllumination Calculation

E

+ Multiple light sources:

Viewer

I=I+K,1, +Ei(KD(N.Li)1i +K;(V*R)"I)

35

OpenGL Reflectance Model

+ Simple analytic model:

\\\/'
ey

32

)

Direct lllumination Calculation

+ Single light source:

Viewer

I=1,+K,,+K,(N*L)I, +K (V*R)"I,

34

=

Direct lllumination Calculation
+ Multiple light sources:
)
y o

Viewer Note:

this is
shorthand

for

(Ir! Ig* Ib)

I=I+K,1, +Ei(KD(N.Li)1i +K;(V*R)"I)

36

4 N
Example

Tin Toy (Pixar Animation Studios)

J
4 N
Global lllumination
Greg Ward
4 N

E\h

Ray Casting (last lecture)

o),

+ Trace primary rays from camera
° Direct illumination from unblocked lights only

Light 1

Shadow. @
Ray .

View
Plane @
Light 2é

I=1,+K,I, + EL(KD(N L)+ K (V*R)"S,I,

4

4 N
Overview

+ Global illumination
° Shadows
° Transmissions
° Inter-object reflections

Global lllumination

J
38
e N
Shadows
+ Shadow term tells if light sources are blocked
o Cast ray towards each light source L,
o §,=0ifray is blocked, S, = 1 otherwise
~| o N\
Flane A Shadow
@ Term
I=1,+K,, +EL(KD(N-L)+KS(V~R)”)SL1L
J
40
e N
Recursive Ray Tracing

+ Also trace secondary rays from hit surfaces
° Global illumination from mirror reflection and

transparency - 1&

Viewer

View
Plane

Light2<%

N
I=1,+K 0+ (Ky(N*L)+ KV * RS, 1, Kl + K, 1)
N~ ”

42

Mirror reflections 5,]

+ Trace secondary ray in mirror direction
° Evaluate radiance along secondary ray and
include it into illumination model

Light 1@

Radiance
for mirror
é reflection ray
Light 2

I=Ip+K 01+, (Ky(N* L)+ Kg(V *RY)S, I, + Kol + K,y

43

Transparency

+ Transparency coefficient is fraction transmitted
o K; =1 for translucent object, K; = 0 for opaque

° 0 <K; <1 for object that is semi-translucent

Viewer

Plane

Transparency
@ Coefficient
Light 2 l

I=Ip+K, 1+, (Ky(N* L)+ Kg(V *RY)S, I, + Kl + Kyl

45

Refractive Tranparency o
For solid objects, apply Snell’s law:
1, sin®, =7, sin B,

T=(cos® -cos®)N - L
nr‘ T]I'

47

Transparency o

+ Trace secondary ray in direction of refraction
° Evaluate radiance along secondary ray and
include it into illumination model

View
Plane

Viewer

o Radiance for
é refraction ray
Light2

[=Ip+K, 1+, (Ky(N*L)+Ko(V *RY)S, 1, + Kl + K, 1

44

Refractive Transparency

« For thin surfaces, can ignore change in direction
° Assume light travels straight through surface

46

Recursive Ray Tracing o

» Ray tree represents illumination computation

Li,m(% | Ty
e]

Transmissim© Refiection
Ray w
n
Plane . A‘ @ Background Background

é‘ L \ir;(egon
Light2 Bac:gound
Ray traced through scene Ray tree

I=1,+K,, +EL(KD(N°L)+KS(V°R)”)SL1L +K I, + K. I,

48

Recursive Ray Tracing

» Ray tree represents illumination computation
I

Pixel

e "y 9
Light zé
Back

Ray traced through scene Ray tree
I=1,+K,, +EL(KD(N°L)+KS(V°R)”)SL]L +K I, + K. I,

49

Recursive Ray Tracing

* GetColor is called recursively

Rgb GetColor(Scene scene, Ray ray)
s
1
Intersection hit = FindIntersection(ray, scene);
Ray specular_ray = SpecularRay(ray, hit);
Ray refractive_ray = RefractiveRay(ray, hit);
Color color = Phong(scene, ray, hit) +
Ks * GetColor(scene, specular_ray) +
Kt * GetColor(scene, refractive_ray);
return color;

51

Summary

+ Ray casting (direct lllumination)
° Usually use simple analytic approximations for
light source emission and surface reflectance

* Recursive ray tracing (global illumination)
° Incorporate shadows, mirror reflections,
and pure refractions

All of this is an approximation
so that it is practical to compute

More on global illumination next time!

53

Recursive Ray Tracing

* GetColor is called recursively

Image RayTrace(Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
image[i][j] = GetColor(scene, ray);
}
}

return image;

50

Example

Red’s Dream (Pixar Animation Studios)

52

lllumination Terminology

+ Radiant power [flux] ()
° Rate at which light energy is transmitted (in Watts).

+ Radiant Intensity (I)
° Power radiated onto a unit solid angle in direction (in Watts/sr)
» e.g.: energy distribution of a light source (inverse square law)

+ Radiance (L)
° Radiant intensity per unit projected surface area (in Watts/mz2sr)
» e.g.: light carried by a single ray (no inverse square law)

+ lrradiance (E)
° Incident flux density on a locally planar area (in Watts/m2)
» e.g.: light hitting a surface at a point

+ Radiosity (B)
° Exitant flux density from a locally planar area (in Watts/m2)
54

