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1 MLE is illuminating (continued)

Let D = {xn}N
n=1

log p(x1:N |η) =
N∑

n=1

log p(xn|η)

=
N∑

n=1

(log h(xn) + ηT t(xn)− a(η))

=
N∑

n=1

log h(xn) + ηT
N∑

n=1

t(xn)−Na(η).

1.1 Notes

Note that
∑N

n=1 t(xn) is sufficient for η.

∇ηL =
N∑

n=1

t(xn)−N∇ηa(η)

∇ηa(η) =
∑N

n=1 t(xn)
N

= E[t(x)]

1.2 Back to Linear Models

The idea behind both linear and logistic regression is as the following:

E[y|x] = f(βTx) , µ

• At linear regression f(a) = a

• At logistic regression f(a) =logistic(a)

y is endowed with a distribution that depends on µ

• At linear regression y ∼ N(µ, σ2)

• At logistic regression y ∼ Bernoulli(µ)
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Figure 1: Relation between variables

1.3 Generalized Linear Model

• Input enters the model via βT x , Q

• Conditional mean, E[y|x] , µ, is a function of Q called a response function or link
function.

• Y comes from an exponential family with parameter µ.

Now let us model the diversity of response variables.
Choices:

• We need to decide which exponential distribution family to use for the response. (this
is determined by the data type of y.

• We need to specify the response function f which is constrained but offers more free-
dom.

We will consider the canonical response function.
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