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Logistic Regression

We are going to use the same type of machinery from linear regression to do classification,
as illustrated by the graphical model in Figure 1. Let us reconsider binary classification
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Figure 1: Graphical model for linear and logical regression

(Note that the classes are now {0, 1} instead of {−1, 1}). Recall in linear regression that
yn ∼ N(βT x, σ2), which is not appropriate for binary classification because it will predict
non {0, 1} values, as well as values less than 0 and greater than 1 (as shown by the blue
line Figure 2). Furthermore, the addition of an outlier point will skew the fit of the line (as
illustrated by the red point and line in Figure 2). In classification yn ∈ {0, 1}, but we still
want yn to be a linear function of xn. So the question becomes: how do we combine xn and
β in a linear fashion to obtain yn?

Bernoulli:

Given the constraint yn ∈ {0, 1}, a natural choice is to model yn as a Bernoulli distribution,
as shown in Equation 1.

p(y|x) = µ(x)y (1− µ(x))1−y (1)

Where the parameter to the Bernoulli, µ, is a function of the input x. So what is this
function?
Q: Is µ(x) = βT x?
A: NO! We require 0 ≤ µ(x) ≤ 1, and as shown in Figure 2, these values will exceed this
interval. However, we can “squash” βT x to be confined to the interval [0, 1] by using what
is known as a logistic function: logistic(βT x : < → {0, 1})

Logistic Function:

µ(x) =
1

1 + e−η(x)
(2)
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Figure 2: Illustration of linear regression fit for points that have a value of 1 or 0. We see
that the fit, represented by the blue line, results in predictions that extend beyond 0 and 1
and thus is not suitable for the purpose of binary classification. Furthermore, the existence
of outliers, represented by the single red point, can bias the regression towards this point,
as illustrated by the red line.

η(x) = βT x (3)

This specifies the model:
yn ∼ Bernoulli(µ(x)) (4)

Where µ(x) is defined in Equations 2 and 3. A 1-D illustration of this function is provided
in Figure 3 for several different values of β, where we see that larger values of beta result
in steeper curve near βx = 0. In Figure 3, we also see that as βx approaches ∞, µ(x) goes
to 1 and as βx approaches −∞, µ(x) goes to 0.
Let us also examine the logistic function as a 2-D plot, as shown in Figure 4. We can see
from this figure that the logistic regression model implicity places a separating hyperplane,
βT x = 0, in the input space. The classifications are now measured in a probabilistic sense,
where p(y = 1|x, β) = µ(βT x). As illustrated in Figure 4, points far away from βT x = 0
all have a probability of 1, which implies that only the closest points matter when training
the model (as was the case with support vector machines). What’s also interesting is that
while outliers can skew the fit of linear regression models (as shown in Figure 1), they do
not have such an effect on logistic regression models.

MLE of β:

Maximum likelihood estimation in logistic regression is very similar to maximizing the
margin of separation in support vector machines (that is, the emphasis is placed on points
near the boundary). What remains is to determine the appropriate parameter β for our
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Figure 3: Plot of the logistic function (as defined in Equation 2) in a single dimension.
Notice that increasing values of β result in a steeper curve near βx = 0.

model, which is given by maximizing the log likelihood:

β̂ = max
β

log p(y1:N |x1:N , β) (5)

Where our data is {(xn, yn)}N
n=1. The log likelihood is given by the expression:

log p(y1:N |x1:N , β) =
N∑

n=1

log p(yn|xn, β) (6)

=
N∑

n=1

log (µ(xn)yn (1− µ(xn))1−yn) (7)

Note in the above equation that we condition on x (as compared to naive Bayes) and we
have suppressed the dependence on β. Taking the logarithm of the terms yields:

L =
N∑

n=1

yn log µ(xn) + (1− yn) log (1− µ(xn)) =
N∑

n=1

Ln (8)

Our main objective is to find the optimal β, so we must derive an expression for dL
dβi

, which
using the chain rule is:

dL

dβi
=

N∑

n=1

dL

dµ(xn)
dµ(xn)

dβi
(9)
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Figure 4: Two-dimensional plot of the logistic function to illustrate classification. We notice
that the line corresponding to βT x = 0 results in a hyperplane that separates the points
labeled as 0 or 1. Also note that points far from this hyperplane either have a value of
µ(x) = 0 (towards the lower-left of the figure) or µ(x) = 1 (towards the upper-right of the
figure), implying that outliers do not have a significant impact on the model. In this figure,
d1 = βT x1

||β|| > 0 and d0 = βT x0

||β|| < 0.

To keep a clean notation, we will define µ(xn) = µn. Using the calculus of logarithms, we
can easily find the first term of Equation 9 by differentiating Equation 8 with respect to µn:

dL

dµn
=

yn

µn
− (1− yn)

(1− µn)
(10)

However, the second term of Equation 9 requires some additional calculus. Now we can
express dµn

dβi
using the chain rule as:

dµn

dβi
=

dµn

dηn

dηn

dβi
(11)

The second term in Equation 11 is the easiest to compute, which from Equation 3 we see
is simply d(βT xn)

dβi
= xni. Computing dµn

dηn
is a little trickier as µn = 1

1+e−ηn . However, from
Equation 2 we can define the inverse function is defined as:

ηn ≡ log
µn

1− µn
(12)
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This is also referred to as the log odds. Now if we differentiate Equation 12 with respect to
µn using the chain rule and calculus of logarithms, we get:

dηn

dµn
=

1− µn

µn

(
(1− µn)− µn

(1− µn)2

)
=

1
µn(1− µn)

(13)

Simply inverting the above derivative gives us the derivative of µn with respect to ηn:
dµn

dηn
= µn (1− µn) (14)

Now combining the first and second terms for Equation 11, we get the following expression:
dµn

dβi
= µn (1− µn) xni (15)

Plugging this in for the second term for dL
dβi

in Equation 9, and combining the expression in
Equation 10, yields:

dL

dβi
=

N∑

n=1

((1− µn)yn − (1− yn)µn)
(µn(1− µn))

· (µn (1− µn) xni) (16)

=
N∑

n=1

(1− µn)yn xni − (1− yn)µn xni

=
N∑

n=1

yn xni − µn xni =
N∑

n=1

(yn − µn)xni

Where again, our dependency on β enters through the definition of µn (see Equation 2).
To close this derivation of the MLE, note that:

E[yn|xn, β] = p(yn|xn, β) = µn (17)

And therefore:
dL

dβi
=

N∑

n=1

(yn − E[yn|xn, β])xni (18)

Notice that this is analogous to the expression we had from linear regression:

dLLinReg

dβi
=

N∑

n=1

(yn − βT xn)xni (19)

Final Comments

We can apply regularization techniques to the logistic model as we did with linear regression
(see notes on Linear Regression for details).

LReg =
N∑

n=1

ynµn + (1− yn)µn + ||β||q (20)

Finally, let us examine the connection to the naive Bayes model. The logistic regression
model is what is known as a discriminative model, whereas the naive Bayes model is what
is known as a generative model. The differences between these models are highlighted in
Figure 5. It has been empirically observed that discriminative models outperform generative
models for larger amounts of data. The reasoning for this is still debated. Is it because large
amounts of data can potentially contain more outliers? Is the original underlying model
incorrect?
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Figure 5: Comparison of discriminative and generative models. Note that the above prob-
abilities should read p(yn|xn, β) and p(yn|xn, θ), respectively.
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