
More on the EM Algorithm

The Expectation Maximization algorithm is a general purpose method for �nd-
ing the MLE in a model with hidden variables. It does not require committing
to any particular model. It consists of two steps:

• E-step: ��ll in� the latent variables using the posterior (�expectation�)

• M-step: maximize the expected Complete Log Likelihood with respect to
the parameters

The variables used are

D = {x1, . . . , xN} are the observed data

Z are the hidden random variables

Θ are the model parameters

The goal is to �nd parameters that maximize the Complete Log Likelihood:

θ̂ = arg max
θ

log p(X,Z|θ) = arg max
θ

[log p(Z|θ) + log p(X,Z|θ)]
Complete Log Likelihood

In the latent variable setting,

= arg max
θ

log
∑
z

p(z|θ)p(X|z, θ)

Jensen's Inequality

If λ ∈ (0, 1) and we have a convex function f ,

λf(x) + (1− λ)f(y) ≥ f (λx+ (1− λ)y)

We can generalize this to expectation with the formula

E [f(X)] ≥ f (E [X])

This applies for a convex f , if f is concave we simply �ip the inequality.

EM Objective Function

From before, we have

log p(X|θ) = log
∑
z

p(z|θ)p(X|z, θ)

= log
∑
z

p(z|θ)p(X|z, θ)q(z)
q(z)
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for some distribution q(z) over the latent variables. Using the de�nition
E [f(X)] =

∑
x p(x)f(x), we have

log p(X|θ) = logEq

[
p(Z|θ)p(X|Z, θ)

q(Z)

]
Now we apply Jensen's Inequality, noting that the log function is concave:

log p(X|θ) ≥ Eq
[
p(Z|θ)p(X|Z, θ)

q(Z)

]
= Eq [log p(Z|θ)]+Eq [log p(X|Z, θ)]−Eq [log q(Z)] = L(θ; q)

which is the EM objective function.

Coordinate Ascent

EM proceeds by coordinate ascent. For instance, at iteration t, we start with
q(t) and θ(t):

• E-step: q(t+1) = arg maxq L(q, θ(t)) = p(Z|X), which is the posterior

• M-step: θ(t+1) = arg maxθ L(q(t+1), θ)

Why is q optimal? Are we maximizing L?
From before,

L(q, θ) = Eq [log p(X,Z|θ)]− Eq [log q(Z)]

Because the second term is constant with respect to θ, it will not a�ect our
optimization. Thus, we are only concerned with the �rst part of L, which is the
expected complete log likelihood.

Claim: when q = p(Z|X, θ) is the posterior, L(q, θ) is optimized with respect
to q.

L(q, θ) =
∑
z

q(z) log
p(z,X|θ)
q(z)

⇒
∑
z

p(z|X, θ) log
p(z,X|θ)
p(z|X)

L (p(Z|X, θ), θ) =
∑
z

p(z|X, θ) log
p(X, z|θ)
p(z|X, θ)

=
∑
z

p(z|X, θ) log
p(X, z|θ)p(X)

p(X, z)
⇐= p(Z|X, θ) =

p(Z,X|θ)
p(X|θ)

=
∑
z

p(z|X) log p(X|θ)

= p(X|θ)

Because L is a bound on the likelihood of the data, and because log p(X|θ)
actually is the likelihood, this q cannot bound the likelihood any more tightly.
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