More on the EM Algorithm

The Expectation Maximization algorithm is a general purpose method for find-
ing the MLE in a model with hidden variables. It does not require committing
to any particular model. It consists of two steps:

e E-step: “fill in” the latent variables using the posterior (“expectation”)

e M-step: maximize the expected Complete Log Likelihood with respect to
the parameters

The variables used are

D = {x1,...,zn} are the observed data
7 are the hidden random variables
] are the model parameters

The goal is to find parameters that maximize the Complete Log Likelihood:

0 = arg max log p(X, Z|0) = arg max [log p(Z]0) + log p(X, Z|0)]
Complete Log Likelihood

In the latent variable setting,

= argmaxlog Z:p(ZW)p(Xlz, 0)

Jensen’s Inequality

If A € (0,1) and we have a convex function f,

M@)+ A =Nf(y) = fAz+ (1= Ny)
We can generalize this to expectation with the formula

E[f(X)] = f(E[X])

This applies for a convex f, if f is concave we simply flip the inequality.

EM Objective Function

From before, we have

logp(X]0) = logy_ p(z|0)p(X|2,0)

= lo z z M
= lg;p( 10)p(X| ﬁ)q(z)



for some distribution ¢(z) over the latent variables. Using the definition

E[f(X)] = EI p(z) f(x), we have

log p(X|6) = log E, [MZIGZ(ZX)IZH) }

Now we apply Jensen’s Inequality, noting that the log function is concave:

sl > 5, [PEOPIZ0)]

i = E, [log p(Z|0)]+E, [log p(X|Z,0)]— E, [log ¢(Z)]

which is the EM objective function.

Coordinate Ascent

EM proceeds by coordinate ascent. For instance, at iteration ¢, we start with
¢ and 9®):

e E-step: ¢("tY) = argmax, £(q,0")) = p(Z|X), which is the posterior
o M-step: 00+1) = argmaxy L(q!"H), 0)

Why is ¢ optimal? Are we maximizing L7

From before,

L(g,0) = Eq [logp(X, Z|0)] — Eq [log ¢(Z)]
Because the second term is constant with respect to 6, it will not affect our
optimization. Thus, we are only concerned with the first part of £, which is the
expected complete log likelihood.

Claim: when ¢ = p(Z| X, 0) is the posterior, £(q, 8) is optimized with respect
to q.

ﬁ(q,9>=§q<2>1 ;‘ZP 21X, 0)lo (i f;f
p(X, z|0
L(p(Z|X,0),0) = Zp 21X, 6)lo EX|9;
p(X, 2|0)p(X) p(Z, X19)

ZP (2[X,0) logw —=p(Z|X,0) = p(X]0)
= Zp 2|X) log p(X16)

= p(X]0)

Because L is a bound on the likelihood of the data, and because log p(X|6)
actually s the likelihood, this ¢ cannot bound the likelihood any more tightly.

= L(0;q)



