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COS 424: Interacting with Data

Lecturer: David Blei Lecture # 3
Scribe: Anthony Soroka, Ilya Tsinis 2/12/08

I. Monty Hall Problem
1/3 chance - picked correctly intitially (don’t switch), 2/3 chance - picked incorrectly initially
(switch)

C; = indicator that the car is behind door i H;; = indicator that the host chooses door
j when the player chooses door i

P(H;;|Cy, = 1) = 0ifi = j,= 0ifj = k,= 1/2ifi = k,= lifi # k,j # k(technically,
alsoi # 7)

Monty opens door 3

P(C1|Hi3)ap(Ch) * P(H13|C1 =1)=1/3%1/2=1/6

P(Cq|Hi3)ap(Cq) x P(Hy3|/Co =1)=1/3%x1=1/3
Alternate Method
X= indicator that the correct door is picked initially
P(X = 1|host opens a door) = P(X = 1,host opens a door)?(host opens a door)
P(X = 1,host opens a door) = P(host opens a door| X =1)* P(X =1)=1/3
P(host opens a door) =1
Therefore, P(X = 1]host opens a door) = $ = 1/3 So the contestant should switch
I1. Probability
Continuous R.V.s
Density p(z) [0, p(z)dz =1

Probability is an integral over a smaller interval
P(Xe(—2.4,6.5)) = [°0 p(z)dx
Gaussian Distribution

Plaljs, 0?) = —gb— x e~ (e=n?/20°

Are ;i ,0? parameters or random variables? This is a great debate between Bayesian and
Frequentists -In this class, we’ll be both!

peR, o?eRt
Expectaion

Consider a function of an r.v. f(X) Expectation is weighted average of f(X)

E[f(X)] = X, p(x) f(z)
continuous case:
E[f(X)] = [p(z)f(x)dz
n = E[X]
0? = E[X? — (E[X])?Conditional Expectation
E[f(X) — Y =y]=2,p(y)f(z)
Units: E[f(X)|Y = y]| - scaler, E[f(X)|Y] - random variable



Iterated Expectation (Tower Property)

EE[(X) —Y =y ]| = X, p(y) E[f (XY =]

Z Zp (ly)f (2)

Probability Models

- Use probability as a model of observed data - Pretend that data is drawn from an
unknown distribution - INFER properties of that distribution - Use our inferences for some-
thing

IID Assumption - Independent and indetically distributed - Parameter index a distribution

e.g. coin flip has Bernouli
plalr) = BX=ID(1 — ) (X=T)
Suppose we flip the coin N times and record the outcomes
X1, X,
Likelihood Function
p(X1, ceey Xngivemr) = anl)Nﬂl(Xn:H)(1_7T)I(Xn:T)
log-likelihood
L(m, X4, .y Xn) = SN 1(X,, = H)logr + 1(X,, = T)log(1 — )

L(m, X, ..., X5) = nulogm + nrlog(l — )
(MLE) Maximum Likelihood Estimate (i.e. Why do we care about log-likelihood?)

The value of the parameter that maximizes the log likelihood (equivalently the likeli-
hood) of the observed data
MLE 7 = Z 1[Xn =H] =3

Why do we like MLE?
- Consistent - If we see more and more coin flips we will get closer and closer to the true
probabilities



