Geomeftric algorithms

Applications.
" . ¢ Data mining.
Geometric Algorithms - VLST design.

e Computer vision.

* Mathematical models.

* Astronomical simulation.

airflow around an aircraft wing

* Geographic information systems.

» primitive operations » Computer graphics (movies, games, virtual reality).
» convex hull * Models of physical world (maps, architecture, medical imaging).

http://www.ics.uci.edu/~eppstein/geom.html

» closest pair
» voronoi diagram

History.
References: . . .
Algorithms in C (2nd edition), Chapters 24-25 ¢ Ancient mathemahcal foundaﬂons.
http://www.cs.princeton.edu/algs4/71lprimitives . .
il S Ay o * Most geometric algorithms less than 25 years old.
Algorithms in Java, 4™ Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2008 - April 19, 2008 3:00:13 PM

Geometric primitives

Point: two numbers (x, y). iy e s e et
Line: two numbers aand b [ax + by = 1]

Line segment: two points.

Polygon: sequence of points.

Primitive operations.

¢ Isa point inside a polygon?

* Distance between two points.

* Do two line segments intersect?

« Given three points py, p,, ps3, is p;-p2-p3 a counterclockwise turn?

Other geometric shapes.
* Triangle, rectangle, circle, sphere, cone, ...
* 3D and higher dimensions sometimes more complicated.

Intuition Polygon inside, outside

Warning: intuition may be misleading. Jordan curve theorem. [Veblen 1905] Any continuous simple closed curve

* Humans have spatial intuition in 2D and 3D. cuts the plane in exactly two pieces: the inside and the outside.
» Computers do not.

* Neither has good intuition in higher dimensions! Q. Is a point inside a simple polygon?

Q. Isagiven pO|ng|’l simple? <— no crossings

7 8 6 4 2 1 ’

1 15 14 13 12 11 10 9 8 7 6 5} 4 5] 2

<]
[
o
(L]
©
~
N

IH!IIHI
-
N

i8 4 18 4 19 4 19 4 20 3 20 2 20

http://www.ics.uci.edu/~eppstein/geom.html

15 1 11 3 14 2 16

'HIII:I
o
0]

_ Application. Draw a filled polygon on the screen.
we think of this algorithm sees this

Polygon inside, outside Polygon inside, outside: crossing number

Jordan curve theorem. [Veblen 1905] Any continuous simple closed curve Q. Does line segment intersect ray?
cuts the plane in exactly two pieces: the inside and the outside.

i+1 = Yi
yo = % (X0 - X) + i (Xie1, yie1)
. . . . ,) s
Q. Isa point inside a simple polygon? Xi € X0 £ Xerd

(xi, yi)
(o, yo)

public boolean contains(double x0, double yO0)
{
int crossings = 0;
for (int i = 0; i < N; i++)
{
double slope = (y[i+l] - y[i]) / (x[i+1] - x[i]);
boolean condl (x[1] <= x0) && (x0 < x[i+1]);
boolean cond2 (x[i+1l] <= x0) && (x0 < x[i]);
boolean above = (y0 < slope * (x0 - x[i]) + y[i]);
if ((condl || cond2) && above) crossings++;

}
Application. Draw a filled polygon on the screen. return (crossings % 2 !=0);

Implementing ccw

CCW. Given three point a, b, and ¢, is a-b-c a counterclockwise turn?
* Analog of comparisons in sorting.
o Idea: compare slopes.

c c
@ \ b \ S \
b c b b a
a a a a b
ves no Yes ?22? 22?
(oo-slope) (collinear) (collinear)

Lesson. Geometric primitives are tricky to implement.
 Dealing with degenerate cases.
* Coping with floating point precision.

Immutable point data type

public class Point

{
private final int x;
private final int y;

public Point(int x, int y)
{ this.x = x; this.y = y; }

public double distanceTo (Point that)
{
double dx = this.x - that.x;
double dy = this.y - that.y;

cast to long to avoid
return Math.sqrt(dx*dx + dy*dy) ;

overflowing an int

}

public static int ccw(Point a, Point b, Point c)
{
double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);

if (area2 < 0) return -1;
else if (area2 > 0) return +1;
else return O0;

}

public static boolean collinear (Point a, Point b, Point c¢)
{ return ccw(a, b, c) == 0; }

222

(collinear)

Implementing ccw

CCW. Given three point a, b, and ¢, is a-b-c a counterclockwise turn?
* Determinant gives twice area of triangle.

a, 1

. b.v 1| = (hx—ax)(cy —ay) - (by —ay)(cx -a,)
1

SR

2 x Area(a,b,c) =

o
=

o
-

» If area > 0 then a-b-c is counterclockwise.
e If area< 0, then a-b-c is clockwise.
e If area =0, then a-b-c are collinear.

(bx. by) (by. by)
f— —
/ >0 \ / <0 \
(cx c)) (@) (CON) (cx ¢y

Sample ccw client: Line intersection

Intersect. Given two line segments, do they intersect?

* Idea l: find intersection point using algebra and check.

* Idea 2: check if the endpoints of one line segment are on
different "sides" of the other line segment (4 calls to ccw).

X W LSLT %

not handled

public static boolean intersect(Line 11, Line 12)

{
int testl = Point.ccw(ll.pl, 11.p2, 12.pl) * Point.ccw(ll.pl, 11.p2, 12.p2);
int test2 = Point.ccw(12.pl, 12.p2, 11.pl) * Point.ccw(l2.pl, 12.p2, 11.p2);
return (testl <= 0) && (test2 <= 0);

» convex hull

Mechanical solution

Mechanical algorithm. Hammer nails perpendicular to plane;
stretch elastic rubber band around points.

http://waw.dfanning.com/math_tips/convexhull 1.gif

Convex hull

A set of points is convex if for any two points p and q in the seft,
the line segment pq is completely in the set.

Convex hull. Smallest convex set containing all the points.

P P ’r'l .
.\. q X‘ q Q\‘ o o .
e
\ 5 ©
convex not convex -
convex hull
Properties.

* "Simplest" shape that approximates set of points.
+ Shortest perimeter fence surrounding the points.
+ Smallest area convex polygon enclosing the points.

Brute-force algorithm

Observation 1.
Edges of convex hull of P connect pairs of points in P.

Observation 2.
p-q is on convex hull if all other points are counterclockwise of pq.

O(N3) algorithm. For all pairs of points p and q in P:
» Compute cew(p, q, x) for all other xinP.
* p-q is on hull if all values are positive.

Package wrap (Jarvis march)

Package wrap.

o Start with point with smallest y-coordinate.

* Rotate sweep line around current point in ccw direction.
* First point hit is on the hull.

* Repeat.

How many points on the hull?

Parameters.
* N = number of points.
* h = number of points on the hull.

Package wrap running time. ©(N h).

How many points on hull?

* Worst case: h=N.

* Average case: difficult problems in stochastic geometry.
-inadisc: h=NY3

- in a convex polygon with O(1) edges: h = log N

Package wrap (Jarvis march)

Implementation.
* Compute angle between current point and all remaining points.

* Pick smallest angle larger than current angle.
* O(N) per iteration.

Graham scan: example

Graham scan.

* Choose point p with smallest y-coordinate.

* Sort points by polar angle with p to get simple polygon.
* Consider points in order, and discard those that

would create a clockwise turn. ﬁ

Graham scan: implementation

Implementation.

e Input: p[11,pl2], .., pIN] are points.

e Output: Mand rearrangement so that p[11, pi21, .., pIM] is convex hull.

// preprocess so that p[l] has smallest y-coordinate
// sort by angle with p[1]

points[0] = points[N]; // sentinel
int M = 2;
for (int i = 3; i <= N; i++)
{
while (Point.ccw(p[M-1], p[M], p[i]) <= 0) M--;
M++;
swap (points, M, i); discard points that would
} N add i to putative hull create clockwise turn

Running time. O(N log N) for sort and O(N) for rest.

-
why?

Convex hull algorithms costs summary

Asymptotic cost to find h-point hull in N-point set.

package wrap Nh
Graham scan N log N
quickhull Nlog N
mergehull Nlog N
sweep line N log N
quick elimination N
marriage-before-conquest N log h <«<—— output sensitive

t assumes “reasonable” point distribution

23

Quick elimination

Quick elimination.

* Choose a quadrilateral Q or rectangle R with 4 points as corners.

* Any point inside cannot be on hull.
- 4 ccw tests for quadrilateral

- 4 compares for rectangle

Three-phase algorithm.
* Pass through all points to compute R. Q

* Eliminate points inside R. °
* Find convex hull of remaining points.

In practice: eliminates almost all points in linear time.

these
points
eliminated

Convex hull: lower bound

Models of computation.
» Compare-based: compare coordinates.
(impossible to compute convex hull in this model of computation)

(a.x < b.x) || ((a.x == b.x) && (a.y < b.y))) l

* Quadratic decision tree model: compute any quadratic function
of the coordinates and compare against O.

(a.x*b.y - a.y*b.x + a.y*c.x - a.x*c.y + b.x*c.y - c.x*b.y) < 0 '

higher degree polynomial tests
— don't help either [Ben-Or, 1983]

Proposition. [Andy Yao, 1981] In quadratic decision tree model,
any convex hull algorithm requires Q(N log N) ops.

even if hull points are not required fo be
output in counterclockwise order

22

24

Closest pair problem

Input. N points in the plane.

Output. Pair of points with smallest Euclidean distance between them.

Fundamental geometric primitive.
* Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

* Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

» closest pair

25

Closest pair problem Divide-and-conquer algorithm

Input. N points in the plane

« Divide: draw vertical line L so that roughly N points on each side.
Output. Pair of points with smallest Euclidean distance between them.

Brute force. Check all pairs with N? distance calculations.

1-D version. Easy N log N algorithm if points are on a line.

. . . e o
Degeneracies complicate solutions. L - °
[assumption for lecture: no two points have same x-coordinate] e e . e
o
o
e a °
.
. .
. * o - o
. L
.. . a
. e
.] @) a® e e o
. . .
. . e e °
. o

27

Divide-and-conquer algorithm

* Divide: draw vertical line L so that roughly N points on each side.
 Conquer: find closest pair in each side recursively.

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < .

6 = min(12, 21)

Divide-and-conquer algorithm

* Divide: draw vertical line L so that roughly 3N points on each side.
 Conquer: find closest pair in each side recursively.

» Combine: find closest pair with one point in each side.

* Return best of 3 solutions.

seems like ©(N?)

30

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 8.
+ Observation: only need to consider points within 6 of line L.

& = min(12, 21)

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < .
» Observation: only need to consider points within 8 of line L.

e Sort points in 25-strip by their y coordinate.

o a « °
° °
° L
°
L3
e
o = o
. 8 = min(12, 21)
12 a
bt o
° o .
o
How to find closest pair with one point in each side?
Def. Let s; be the point in the 23-strip, with
the it smallest y-coordinate.
Claim. If |i-j| =12, then the eee
distance between s; and s; is at least 3. © -/
Pf. ©
* No two points lie in same $3-by-30 box. S N
* Two points at least 2 rows apart i i
have distance = 2(39). = Zrows | [ESEESESSS T
i ©
@ |~ L
— @ | ©
Fact. Claim remains true if we replace 12 with7. =~ | 7
©
&
o000
0 0

33

[N [N
o> >

[N
>

B35

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 5.
* Observation: only need to consider points within 8 of line L.

* Sort points in 28-strip by their y coordinate.
* Only check distances of those within 11 positions in sorted list!

o L
= o
o °
° e
°
L]
L
o . o
= 8 = min(12, 21)
12 .
bt o
L3 L] o
o
34
Divide-and-conquer algorithm
Closest-Pair(pi, .., Pn)
{
Compute separation line L such that half the points
. : <71 — O(NlogN)
are on one side and half on the other side.
01 = Closest-Pair (left half)
d2 = Closest-Pair (right half) «—F— 2T(N/2)
d = min(d1, §2)
Delete all points further than 0 from separation line L < | — O(N)
Sort remaining points by y-coordinate. <—f+— O(N log N)
Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these «—F— OWN)
distances is less than , update J.
return J.
}

36

Divide-and-conquer algorithm: analysis
Running time recurrence. T(N) = 2T(N/2) + O(N log N).
Solution. T(N) = O(N (log N)?).

Remark. Can be improved to O(N log N).

avoid sorting by y-coordinate from scratch

Lower bound. In quadratic decision tree model, any algorithm
for closest pair requires Q(N log N) steps.

f

x1-x2) 2+ @1-y2)2

37

Summary

Ingenious algorithms enable solution of large instances for numerous
fundamental geometric problems.

convex hull N? N log N
closest pair N2 N log N
Voronoi ? Nlog N
Delauney triangulation N* N log N
Euclidean MST N? Nlog N

asymptotic time to solve a 2D problem with N points

Note. 3D and higher dimensions test limits of our ingenuity.

50

