Geomeftric algorithms

Applications.
" . ¢ Data mining.
Geometric Algorithms - VLST design.

e Computer vision.

* Mathematical models.

* Astronomical simulation.

airflow around an aircraft wing

* Geographic information systems.

» primitive operations » Computer graphics (movies, games, virtual reality).
» convex hull * Models of physical world (maps, architecture, medical imaging).

http://www.ics.uci.edu/~eppstein/geom.html

» closest pair
» voronoi diagram

History.
References: . . .
Algorithms in C (2nd edition), Chapters 24-25 ¢ Ancient mathemahcal foundaﬂons.
http://www.cs.princeton.edu/algs4/71lprimitives . .
il S Ay o * Most geometric algorithms less than 25 years old.
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Geometric primitives

Point: two numbers (x, y). iy e s e et
Line: two numbers aand b [ax + by = 1]

Line segment: two points.

Polygon: sequence of points.

Primitive operations.

¢ Isa point inside a polygon?

* Distance between two points.

* Do two line segments intersect?

« Given three points py, p,, ps3, is p;-p2-p3 a counterclockwise turn?

Other geometric shapes.
* Triangle, rectangle, circle, sphere, cone, ...
* 3D and higher dimensions sometimes more complicated.



Intuition Polygon inside, outside

Warning: intuition may be misleading. Jordan curve theorem. [Veblen 1905] Any continuous simple closed curve

* Humans have spatial intuition in 2D and 3D. cuts the plane in exactly two pieces: the inside and the outside.
» Computers do not.

* Neither has good intuition in higher dimensions! Q. Is a point inside a simple polygon?

Q. Isagiven pO|ng|’l simple? <— no crossings
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_ Application. Draw a filled polygon on the screen.
we think of this algorithm sees this

Polygon inside, outside Polygon inside, outside: crossing number

Jordan curve theorem. [Veblen 1905] Any continuous simple closed curve Q. Does line segment intersect ray?
cuts the plane in exactly two pieces: the inside and the outside.

i+1 = Yi
yo = % (X0 - X) + i (Xie1, yie1)
. . . . ,) s
Q. Isa point inside a simple polygon? Xi € X0 £ Xerd

(xi, yi)
(o, yo)

public boolean contains(double x0, double yO0)
{
int crossings = 0;
for (int i = 0; i < N; i++)
{
double slope = (y[i+l] - y[i]) / (x[i+1] - x[i]);
boolean condl (x[1] <= x0) && (x0 < x[i+1]);
boolean cond2 (x[i+1l] <= x0) && (x0 < x[i]);
boolean above = (y0 < slope * (x0 - x[i]) + y[i]);
if ((condl || cond2) && above ) crossings++;

}
Application. Draw a filled polygon on the screen. return ( crossings % 2 !=0);




Implementing ccw

CCW. Given three point a, b, and ¢, is a-b-c a counterclockwise turn?
* Analog of comparisons in sorting.
o Idea: compare slopes.
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(oo-slope) (collinear) (collinear)

Lesson. Geometric primitives are tricky to implement.
 Dealing with degenerate cases.
* Coping with floating point precision.

Immutable point data type

public class Point

{
private final int x;
private final int y;

public Point(int x, int y)
{ this.x = x; this.y = y; }

public double distanceTo (Point that)
{
double dx = this.x - that.x;
double dy = this.y - that.y;

cast to long to avoid
return Math.sqrt(dx*dx + dy*dy) ;

overflowing an int

}

public static int ccw(Point a, Point b, Point c)
{
double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);

if (area2 < 0) return -1;
else if (area2 > 0) return +1;
else return O0;

}

public static boolean collinear (Point a, Point b, Point c¢)
{ return ccw(a, b, c) == 0; }

222

(collinear)

Implementing ccw

CCW. Given three point a, b, and ¢, is a-b-c a counterclockwise turn?
* Determinant gives twice area of triangle.

a, 1

. b.v 1| = (hx—ax)(cy —ay) - (by —ay)(cx -a,)
1

SR

2 x Area(a,b,c) =

o
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o
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» If area > 0 then a-b-c is counterclockwise.
e If area< 0, then a-b-c is clockwise.
e If area =0, then a-b-c are collinear.

(bx. by) (by. by)
f— —
/ >0 \ / <0 \
(cx c)) (@) (CON) (cx ¢y

Sample ccw client: Line intersection

Intersect. Given two line segments, do they intersect?

* Idea l: find intersection point using algebra and check.

* Idea 2: check if the endpoints of one line segment are on
different "sides" of the other line segment (4 calls to ccw).

X W LSLT %

not handled

public static boolean intersect(Line 11, Line 12)

{
int testl = Point.ccw(ll.pl, 11.p2, 12.pl) * Point.ccw(ll.pl, 11.p2, 12.p2);
int test2 = Point.ccw(12.pl, 12.p2, 11.pl) * Point.ccw(l2.pl, 12.p2, 11.p2);
return (testl <= 0) && (test2 <= 0);




» convex hull

Mechanical solution

Mechanical algorithm. Hammer nails perpendicular to plane;
stretch elastic rubber band around points.

http://waw.dfanning.com/math_tips/convexhull 1.gif

Convex hull

A set of points is convex if for any two points p and q in the seft,
the line segment pq is completely in the set.

Convex hull. Smallest convex set containing all the points.
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convex hull
Properties.

* "Simplest" shape that approximates set of points.
+ Shortest perimeter fence surrounding the points.
+ Smallest area convex polygon enclosing the points.

Brute-force algorithm

Observation 1.
Edges of convex hull of P connect pairs of points in P.

Observation 2.
p-q is on convex hull if all other points are counterclockwise of pq.

O(N3) algorithm. For all pairs of points p and q in P:
» Compute cew(p, q, x) for all other xinP.
* p-q is on hull if all values are positive.



Package wrap (Jarvis march)

Package wrap.

o Start with point with smallest y-coordinate.

* Rotate sweep line around current point in ccw direction.
* First point hit is on the hull.

* Repeat.

How many points on the hull?

Parameters.
* N = number of points.
* h = number of points on the hull.

Package wrap running time. ©(N h).

How many points on hull?

* Worst case: h=N.

* Average case: difficult problems in stochastic geometry.
-inadisc: h=NY3

- in a convex polygon with O(1) edges: h = log N

Package wrap (Jarvis march)

Implementation.
* Compute angle between current point and all remaining points.

* Pick smallest angle larger than current angle.
* O(N) per iteration.

Graham scan: example

Graham scan.

* Choose point p with smallest y-coordinate.

* Sort points by polar angle with p to get simple polygon.
* Consider points in order, and discard those that

would create a clockwise turn. ﬁ




Graham scan: implementation

Implementation.

e Input: p[11,pl2], .., pIN] are points.

e Output: Mand rearrangement so that p[11, pi21, .., pIM] is convex hull.

// preprocess so that p[l] has smallest y-coordinate
// sort by angle with p[1]

points[0] = points[N]; // sentinel
int M = 2;
for (int i = 3; i <= N; i++)
{
while (Point.ccw(p[M-1], p[M], p[i]) <= 0) M--;
M++;
swap (points, M, i); discard points that would
} N add i to putative hull create clockwise turn

Running time. O(N log N) for sort and O(N) for rest.

-
why?

Convex hull algorithms costs summary

Asymptotic cost to find h-point hull in N-point set.

package wrap Nh
Graham scan N log N
quickhull Nlog N
mergehull Nlog N
sweep line N log N
quick elimination N
marriage-before-conquest N log h <«<—— output sensitive

t assumes “reasonable” point distribution
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Quick elimination

Quick elimination.

* Choose a quadrilateral Q or rectangle R with 4 points as corners.

* Any point inside cannot be on hull.
- 4 ccw tests for quadrilateral

- 4 compares for rectangle

Three-phase algorithm.
* Pass through all points to compute R. Q

* Eliminate points inside R. °
* Find convex hull of remaining points.

In practice: eliminates almost all points in linear time.

these
points
eliminated

Convex hull: lower bound

Models of computation.
» Compare-based: compare coordinates.
(impossible to compute convex hull in this model of computation)

(a.x < b.x) || ((a.x == b.x) && (a.y < b.y))) l

* Quadratic decision tree model: compute any quadratic function
of the coordinates and compare against O.

(a.x*b.y - a.y*b.x + a.y*c.x - a.x*c.y + b.x*c.y - c.x*b.y) < 0 '

higher degree polynomial tests
— don't help either [Ben-Or, 1983]

Proposition. [Andy Yao, 1981] In quadratic decision tree model,
any convex hull algorithm requires Q(N log N) ops.

even if hull points are not required fo be
output in counterclockwise order

22
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Closest pair problem

Input. N points in the plane.

Output. Pair of points with smallest Euclidean distance between them.

Fundamental geometric primitive.
* Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

* Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

» closest pair
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Closest pair problem Divide-and-conquer algorithm

Input. N points in the plane

« Divide: draw vertical line L so that roughly N points on each side.
Output. Pair of points with smallest Euclidean distance between them.

Brute force. Check all pairs with N? distance calculations.

1-D version. Easy N log N algorithm if points are on a line.

. . . e o
Degeneracies complicate solutions. L - °
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Divide-and-conquer algorithm

* Divide: draw vertical line L so that roughly N points on each side.
 Conquer: find closest pair in each side recursively.

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < .

6 = min(12, 21)

Divide-and-conquer algorithm

* Divide: draw vertical line L so that roughly 3N points on each side.
 Conquer: find closest pair in each side recursively.

» Combine: find closest pair with one point in each side.

* Return best of 3 solutions.

seems like ©(N?)
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How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 8.
+ Observation: only need to consider points within 6 of line L.

& = min(12, 21)



How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < .
» Observation: only need to consider points within 8 of line L.

e Sort points in 25-strip by their y coordinate.
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How to find closest pair with one point in each side?
Def. Let s; be the point in the 23-strip, with
the it smallest y-coordinate.
Claim. If |i-j| =12, then the eee
distance between s; and s; is at least 3. © -/
Pf. ©
* No two points lie in same $3-by-30 box. S N
* Two points at least 2 rows apart i i
have distance = 2(39). = Zrows | [ESEESESSS T
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How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 5.
* Observation: only need to consider points within 8 of line L.

* Sort points in 28-strip by their y coordinate.
* Only check distances of those within 11 positions in sorted list!

o L
= o
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° e
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= 8 = min(12, 21)
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o
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Divide-and-conquer algorithm
Closest-Pair(pi, .., Pn)
{
Compute separation line L such that half the points
. : <71 — O(NlogN)
are on one side and half on the other side.
01 = Closest-Pair (left half)
d2 = Closest-Pair (right half) «—F— 2T(N/2)
d = min(d1, §2)
Delete all points further than 0 from separation line L < | — O(N)
Sort remaining points by y-coordinate. <—f+— O(N log N)
Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these «—F— OWN)
distances is less than , update J.
return J.
}
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Divide-and-conquer algorithm: analysis
Running time recurrence. T(N) = 2T(N/2) + O(N log N).
Solution. T(N) = O(N (log N)?).

Remark. Can be improved to O(N log N).

avoid sorting by y-coordinate from scratch

Lower bound. In quadratic decision tree model, any algorithm
for closest pair requires Q(N log N) steps.

f

x1-x2) 2+ @1-y2)2
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Summary

Ingenious algorithms enable solution of large instances for numerous
fundamental geometric problems.

convex hull N? N log N
closest pair N2 N log N
Voronoi ? Nlog N
Delauney triangulation N* N log N
Euclidean MST N? Nlog N

asymptotic time to solve a 2D problem with N points

Note. 3D and higher dimensions test limits of our ingenuity.
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