
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · April 19, 2008 3:00:13 PM

Geometric Algorithms

References:

 Algorithms in C (2nd edition), Chapters 24-25

 http://www.cs.princeton.edu/algs4/71primitives

 http://www.cs.princeton.edu/algs4/72hull

! primitive operations

! convex hull

! closest pair

! voronoi diagram

2

Geometric algorithms

Applications.

• Data mining.

• VLSI design.

• Computer vision.

• Mathematical models.

• Astronomical simulation.

• Geographic information systems.

• Computer graphics (movies, games, virtual reality).

• Models of physical world (maps, architecture, medical imaging).

History.

• Ancient mathematical foundations.

• Most geometric algorithms less than 25 years old.

http://www.ics.uci.edu/~eppstein/geom.html

airflow around an aircraft wing

3

! primitive operations

! convex hull

! closest pair

! voronoi diagram

4

Geometric primitives

Point: two numbers (x, y).

Line: two numbers a and b [ax + by = 1]

Line segment: two points.

Polygon: sequence of points.

Primitive operations.

• Is a point inside a polygon?

• Compare slopes of two lines.

• Distance between two points.

• Do two line segments intersect?

• Given three points p1, p2, p3, is p1-p2-p3 a counterclockwise turn?

Other geometric shapes.

• Triangle, rectangle, circle, sphere, cone, …

• 3D and higher dimensions sometimes more complicated.

any line not through origin

5

Intuition

Warning: intuition may be misleading.

• Humans have spatial intuition in 2D and 3D.

• Computers do not.

• Neither has good intuition in higher dimensions!

Q. Is a given polygon simple?

we think of this algorithm sees this

no crossings

x

y

1 6 5 8 7 2

7 8 6 4 2 1

x

y

1 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 2 18 4 18 4 19 4 19 4 20 3 20 2 20

x

y

1 10 3 7 2 8 8 3 4

6 5 15 1 11 3 14 2 16

6

Polygon inside, outside

Jordan curve theorem. [Veblen 1905] Any continuous simple closed curve

cuts the plane in exactly two pieces: the inside and the outside.

Q. Is a point inside a simple polygon?

Application. Draw a filled polygon on the screen.

http://www.ics.uci.edu/~eppstein/geom.html

7

Polygon inside, outside

Jordan curve theorem. [Veblen 1905] Any continuous simple closed curve

cuts the plane in exactly two pieces: the inside and the outside.

Q. Is a point inside a simple polygon?

Application. Draw a filled polygon on the screen.

Q. Does line segment intersect ray?

8

public boolean contains(double x0, double y0)

{

 int crossings = 0;

 for (int i = 0; i < N; i++)

 {

 double slope = (y[i+1] - y[i]) / (x[i+1] - x[i]);

 boolean cond1 = (x[i] <= x0) && (x0 < x[i+1]);

 boolean cond2 = (x[i+1] <= x0) && (x0 < x[i]);

 boolean above = (y0 < slope * (x0 - x[i]) + y[i]);

 if ((cond1 || cond2) && above) crossings++;

 }

 return (crossings % 2 != 0);

 }

Polygon inside, outside: crossing number

y0 =
 yi+1 - yi

 xi+1 - xi
 (x0 - xi) + yi

xi ! x0 ! xi+1

(xi, yi)

(xi+1, yi+1)

(x0, y0)

9

CCW. Given three point a, b, and c, is a-b-c a counterclockwise turn?

• Analog of comparisons in sorting.

• Idea: compare slopes.

Lesson. Geometric primitives are tricky to implement.

• Dealing with degenerate cases.

• Coping with floating point precision.

Implementing ccw

c

a

b

yes

b

a

c

no

a

b

Yes

(!-slope)

c

a

b

???

(collinear)

c

b

a

???

(collinear)

b

a

c

???

(collinear)

c

CCW. Given three point a, b, and c, is a-b-c a counterclockwise turn?

• Determinant gives twice area of triangle.

• If area > 0 then a-b-c is counterclockwise.

• If area < 0, then a-b-c is clockwise.

• If area = 0, then a-b-c are collinear.

< 0> 0

10

Implementing ccw

!

2 " Area(a, b, c) =

ax ay 1

bx by 1

cx cy 1

= (bx # ax)(cy # ay) # (by # ay)(cx # ax)

(ax, ay)

(bx, by)

(cx, cy) (ax, ay)

(bx, by)

(cx, cy)

11

Immutable point data type

public class Point

{

 private final int x;

 private final int y;

 public Point(int x, int y)

 { this.x = x; this.y = y; }

 public double distanceTo(Point that)

 {

 double dx = this.x - that.x;

 double dy = this.y - that.y;

 return Math.sqrt(dx*dx + dy*dy);

 }

 public static int ccw(Point a, Point b, Point c)

 {

 double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);

 if (area2 < 0) return -1;

 else if (area2 > 0) return +1;

 else return 0;

 }

 public static boolean collinear(Point a, Point b, Point c)

 { return ccw(a, b, c) == 0; }

}

cast to long to avoid

overflowing an int

l1.p1l2.p1

12

Intersect. Given two line segments, do they intersect?

• Idea 1: find intersection point using algebra and check.

• Idea 2: check if the endpoints of one line segment are on

different "sides" of the other line segment (4 calls to ccw).

Sample ccw client: Line intersection

not handled

p2
p2

public static boolean intersect(Line l1, Line l2)

{

 int test1 = Point.ccw(l1.p1, l1.p2, l2.p1) * Point.ccw(l1.p1, l1.p2, l2.p2);

 int test2 = Point.ccw(l2.p1, l2.p2, l1.p1) * Point.ccw(l2.p1, l2.p2, l1.p2);

 return (test1 <= 0) && (test2 <= 0);

}

13

! primitive operations

! convex hull

! closest pair

! voronoi diagram

14

Convex hull

A set of points is convex if for any two points p and q in the set,

the line segment pq is completely in the set.

Convex hull. Smallest convex set containing all the points.

Properties.

• "Simplest" shape that approximates set of points.

• Shortest perimeter fence surrounding the points.

• Smallest area convex polygon enclosing the points.

convex not convex

convex hull

p

q

p

q

15

Mechanical solution

Mechanical algorithm. Hammer nails perpendicular to plane;

stretch elastic rubber band around points.

http://www.dfanning.com/math_tips/convexhull_1.gif

16

Brute-force algorithm

Observation 1.

Edges of convex hull of P connect pairs of points in P.

Observation 2.

p-q is on convex hull if all other points are counterclockwise of pq.

O(N3) algorithm. For all pairs of points p and q in P:

• Compute ccw(p, q, x) for all other x in P.

• p-q is on hull if all values are positive.

p

q

17

Package wrap (Jarvis march)

Package wrap.

• Start with point with smallest y-coordinate.

• Rotate sweep line around current point in ccw direction.

• First point hit is on the hull.

• Repeat.

18

Package wrap (Jarvis march)

Implementation.

• Compute angle between current point and all remaining points.

• Pick smallest angle larger than current angle.

• !(N) per iteration.

19

How many points on the hull?

Parameters.

• N = number of points.

• h = number of points on the hull.

Package wrap running time. !(N h).

How many points on hull?

• Worst case: h = N.

• Average case: difficult problems in stochastic geometry.

- in a disc: h = N1/3

- in a convex polygon with O(1) edges: h = log N

20

Graham scan: example

Graham scan.

• Choose point p with smallest y-coordinate.

• Sort points by polar angle with p to get simple polygon.

• Consider points in order, and discard those that

would create a clockwise turn.

p

21

Graham scan: implementation

Implementation.

• Input: p[1], p[2], …, p[N] are points.

• Output: M and rearrangement so that p[1], p[2], …, p[M] is convex hull.

Running time. O(N log N) for sort and O(N) for rest.

// preprocess so that p[1] has smallest y-coordinate

// sort by angle with p[1]

points[0] = points[N]; // sentinel

int M = 2;

for (int i = 3; i <= N; i++)

{

 while (Point.ccw(p[M-1], p[M], p[i]) <= 0) M--;

 M++;

 swap(points, M, i);

}

why?

discard points that would

create clockwise turnadd i to putative hull

22

Quick elimination

Quick elimination.

• Choose a quadrilateral Q or rectangle R with 4 points as corners.

• Any point inside cannot be on hull.

- 4 ccw tests for quadrilateral

- 4 compares for rectangle

Three-phase algorithm.

• Pass through all points to compute R.

• Eliminate points inside R.

• Find convex hull of remaining points.

In practice: eliminates almost all points in linear time.

Q

these
points
eliminated

R

Asymptotic cost to find h-point hull in N-point set.

23

Convex hull algorithms costs summary

t assumes "reasonable" point distribution

output sensitive

algorithm running time

package wrap N h

Graham scan N log N

quickhull N log N

mergehull N log N

sweep line N log N

quick elimination N t

marriage-before-conquest N log h

24

Convex hull: lower bound

Models of computation.

• Compare-based: compare coordinates.

(impossible to compute convex hull in this model of computation)

• Quadratic decision tree model: compute any quadratic function

of the coordinates and compare against 0.

Proposition. [Andy Yao, 1981] In quadratic decision tree model,

any convex hull algorithm requires "(N log N) ops.

higher degree polynomial tests

don't help either [Ben-Or, 1983]

even if hull points are not required to be

output in counterclockwise order

(a.x < b.x) || ((a.x == b.x) && (a.y < b.y)))

(a.x*b.y - a.y*b.x + a.y*c.x - a.x*c.y + b.x*c.y - c.x*b.y) < 0

25

! primitive operations

! convex hull

! closest pair

! voronoi diagram

26

Closest pair problem

Input. N points in the plane.

Output. Pair of points with smallest Euclidean distance between them.

Fundamental geometric primitive.

• Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

• Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

27

Closest pair problem

Input. N points in the plane

Output. Pair of points with smallest Euclidean distance between them.

Brute force. Check all pairs with N2 distance calculations.

1-D version. Easy N log N algorithm if points are on a line.

Degeneracies complicate solutions.

[assumption for lecture: no two points have same x-coordinate]

• Divide: draw vertical line L so that roughly "N points on each side.

28

Divide-and-conquer algorithm

L

29

Divide-and-conquer algorithm

• Divide: draw vertical line L so that roughly "N points on each side.

• Conquer: find closest pair in each side recursively.

12

21

L

30

Divide-and-conquer algorithm

• Divide: draw vertical line L so that roughly "N points on each side.

• Conquer: find closest pair in each side recursively.

• Combine: find closest pair with one point in each side.

• Return best of 3 solutions.

12

21
8

L

seems like !(N2)

31

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < #.

12

21

= min(12, 21)

L

Find closest pair with one point in each side, assuming that distance < #.

• Observation: only need to consider points within # of line L.

32

How to find closest pair with one point in each side?

12

21

#

L

= min(12, 21)

33

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < #.

• Observation: only need to consider points within # of line L.

• Sort points in 2#-strip by their y coordinate.

12

21

1

2

3

4
5

6

7

L

= min(12, 21)

34

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < #.

• Observation: only need to consider points within # of line L.

• Sort points in 2#-strip by their y coordinate.

• Only check distances of those within 11 positions in sorted list!

12

21

1

2

3

4
5

6

7

L

= min(12, 21)

#

35

How to find closest pair with one point in each side?

Def. Let si be the point in the 2#-strip, with

the ith smallest y-coordinate.

Claim. If |i – j| $ 12, then the

distance between si and sj is at least #.

Pf.

• No two points lie in same "#-by-"# box.

• Two points at least 2 rows apart

have distance $ 2("#). !

Fact. Claim remains true if we replace 12 with 7.

#

27

29
30

31

28

26

25

#

"#

 2 rows
"#

"#

39

i

j

36

Divide-and-conquer algorithm

O(N log N)

2T(N / 2)

O(N)

O(N log N)

O(N)

Closest-Pair(p1, …, pn)

{

 Compute separation line L such that half the points

 are on one side and half on the other side.

 #1 = Closest-Pair(left half)

 #2 = Closest-Pair(right half)

 # = min(#1, #2)

 Delete all points further than # from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between

 each point and next 11 neighbors. If any of these

 distances is less than #, update #.

 return #.

}

37

Divide-and-conquer algorithm: analysis

Running time recurrence. T(N) % 2T(N/2) + O(N log N).

Solution. T(N) = O(N (log N)2).

Remark. Can be improved to O(N log N).

Lower bound. In quadratic decision tree model, any algorithm

for closest pair requires "(N log N) steps.

avoid sorting by y-coordinate from scratch

(x1 - x2) 2 + (y1 - y2) 2

Ingenious algorithms enable solution of large instances for numerous

fundamental geometric problems.

Note. 3D and higher dimensions test limits of our ingenuity.

50

asymptotic time to solve a 2D problem with N points

Summary

problem brute clever

convex hull N2 N log N

closest pair N2 N log N

Voronoi ? N log N

Delauney triangulation N4 N log N

Euclidean MST N2 N log N

