
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · March 9, 2008 12:34:01 PM

Hashing

References:
 Algorithms in Java, Chapter 14
 http://www.cs.princeton.edu/algs4/44hash

‣ hash functions
‣ collision resolution
‣ applications

2

Optimize judiciously

Reference: Effective Java by Joshua Bloch

“ More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason—
including blind stupidity. ” — William A. Wulf

“ We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. ” — Donald E. Knuth

“ We follow two rules in the matter of optimization:
 Rule 1: Don't do it.
 Rule 2 (for experts only). Don't do it yet - that is, not until
 you have a perfectly clear and unoptimized solution. ”
 — M. A. Jackson

ST implementations: summary

Q. Can we do better?

3

implementation
guarantee average case

ordered
iteration?

operations
on keys

search insert delete search hit insert delete

unordered list N N N N/2 N N/2 no equals()

ordered array lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

randomized BST 3 lg N 3 lg N 3 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes compareTo()

red-black tree 3 lg N 3 lg N 3 lg N lg N lg N lg N yes compareTo()

4

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing table index from key.

hash("it") = 3

0

1

2

3 "it"

4

5

5

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing table index from key.

Issues

• Computing the hash function.

• Equality test: Method for checking whether two keys are equal.

• Collision resolution: Algorithm and data structure
to handle two keys that hash to the same table index.

Classic space-time tradeoff.

• No space limitation: trivial hash function with key as address.

• No time limitation: trivial collision resolution with sequential search.

• Limitations on both time and space: hashing (the real world).

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

6

‣ hash functions
‣ collision resolution
‣ applications

7

Computing the hash function

Idealistic goal: scramble the keys uniformly.

• Efficiently computable.

• Each table index equally likely for each key.

Practical challenge. Need different approach for each Key type.

Ex: Social Security numbers.

• Bad: first three digits.

• Better: last three digits.

Ex: phone numbers.

• Bad: first three digits.

• Better: last three digits.

573 = California, 574 = Alaska
(assigned in chronological order within a given geographic region)

thoroughly researched problem,
still problematic in practical applications

Hash code. All Java classes have a method hashCode(), which returns an int.

Hash function. An int between 0 and M-1 (for use as an array index).

First attempt.

Bug. Don't use (code % M) as array index.
1-in-a billion bug. Don't use (Math.abs(code) % M) as array index.
OK. Safe to use ((code & 0x7fffffff) % M) as array index.

8

Hash codes and hash functions

hex literal 31-bit mask

String s = "call";
int code = s.hashCode();
int hash = code % M;

between -232 and 231 - 1

7121 8191

3045982

9

Java’s hash code conventions

The method hashCode() is inherited from Object.

• Ensures hashing can be used for every object type.

• Enables expert implementations for each type.

Available implementations.

• Default implementation: memory address of x.

• Customized implementations: String, URL, Integer, Date, ….

• User-defined types: users are on their own.

10

Implementing hash code: phone numbers

Ex. Phone numbers: (609) 867-5309.

public final class PhoneNumber
{
 private final int area, exch, ext;

 public PhoneNumber(int area, int exch, int ext)
 {
 this.area = area;
 this.exch = exch;
 this.ext = ext;
 }

 ...

 public boolean equals(Object y)
 { /* as before */ }

 public int hashCode()
 { return 10007 * (area + 1009 * exch) + ext; }
}

sufficiently random?

Ex. Strings (in Java 1.5).

• Equivalent to h = 31L-1 · s0 + … + 312 · sL-3 + 311 · sL-2 + 310 · sL-1.

• Horner's method to hash string of length L: L multiplies/adds.

Ex.

Provably random? Well, no.

public int hashCode()
{
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
}

11

Implementing hash code: strings

3045982 = 99·313 + 97·312 + 108·311 + 108·310

 = 108 + 31· (108 + 31 · (97 + 31 · (99)))

ith character of s

String s = "call";
int code = s.hashCode();

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

Ex. Strings (in Java 1.1).

• For long strings: only examine 8-9 evenly spaced characters.

• Benefit: saves time in performing arithmetic.

• Downside: great potential for bad collision patterns.

12

A poor hash code design

public int hashCode()
{
 int hash = 0;
 int skip = Math.max(1, length() / 8);
 for (int i = 0; i < length(); i += skip)
 hash = (37 * hash) + s[i];
 return hash;
}

http://www.cs.princeton.edu/introcs/13loop/Hello.java
http://www.cs.princeton.edu/introcs/13loop/Hello.class
http://www.cs.princeton.edu/introcs/13loop/Hello.html
http://www.cs.princeton.edu/introcs/13loop/index.html
http://www.cs.princeton.edu/introcs/12type/index.html

13

Designing a good hash function

Requirements.

• If x.equals(y), then we must also have (x.hashCode() == y.hashCode()).

• Repeated calls to x.hashCode() must return the same value
(provided no info used in equals() is changed).

Highly desirable. If !x.equals(y), then we want
(x.hashCode() != y.hashCode()).

Basic rule. Need to use the whole key to compute hash code.

Fundamental problem. Need a theorem for each type to ensure reliability.

x.hashCode()

x

y.hashCode()

y

Digression: using a hash function for data mining

Use content to characterize documents.

Applications.

• Search documents on the web for documents similar to a given one.

• Determine whether a new document belongs in one set or another.

Context. Effective for literature, genomes, Java code, art, music, data, video.
14

import javax.imageio.ImageIO;

import java.io.*;

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

public class Picture {

 private BufferedImage image;

 private JFrame frame;

 ...

Digression: using a hash function for data mining

Approach.

• Fix order k and dimension d.

• Compute (hashCode() % d) for all k-grams in the document.

• Result is d-dimensional vector profile of each document.

To compare documents: Consider angle θ separating vectors

• cos θ close to 0: not similar.

• cos θ close to 1: similar.

15

cos θ = a ⋅ b / ｜a｜｜b｜

a
b

θ

Digression: using a hash function for data mining

16

tale.txt genome.txt

i 10-grams with
hash code i freq

10-grams with
hash code i freq

0 0 0

1 0 0

...

435 "best of ti"
"foolishnes" 2 "TTTCGGTTTG"

"TGTCTGCTGC" 2

...

8999 "it was the" 8 0

...

12122 0 "CTTTCGGTTT" 3

...

34543 "t was the b" 5 "ATGCGGTCGA" 4

...

65535

k = 10
d = 65536 profile

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of
foolishness
...

% more genome.txt
CTTTCGGTTTGGAACC
GAAGCCGCGCGTCT
TGTCTGCTGCAGC
ATCGTTC
...

Digression: using a hash function for data mining

17

public class Document
{
 private String name;
 private double[] profile;

 public Document(String name, int k, int d)
 {
 this.name = name;
 String doc = (new In(name)).readAll();
 int N = doc.length();
 profile = new double[d];
 for (int i = 0; i < N-k; i++)
 {
 int h = doc.substring(i, i+k).hashCode();
 profile[Math.abs(h % d)] += 1;
 }
 }

 public double simTo(Document that)
 { /* compute dot product and divide by magnitudes */ }

}

Digression: using a hash function for data mining

18

file description

Cons US Constitution

TomS Tom Sawyer

Huck Huckleberry Finn

Prej Pride and Prejudice

Pict a photograph

DJIA financial data

Amaz amazon.com website .html source

ACTG genome

% java CompareAll 5 1000 < docs.txt
 Cons TomS Huck Prej Pict DJIA Amaz ACTG
Cons 1.00 0.89 0.87 0.88 0.35 0.70 0.63 0.58
TomS 0.89 1.00 0.98 0.96 0.34 0.75 0.66 0.62
Huck 0.87 0.98 1.00 0.94 0.32 0.74 0.65 0.61
Prej 0.88 0.96 0.94 1.00 0.34 0.76 0.67 0.63
Pict 0.35 0.34 0.32 0.34 1.00 0.29 0.48 0.24
DJIA 0.70 0.75 0.74 0.76 0.29 1.00 0.62 0.58
Amaz 0.63 0.66 0.65 0.67 0.48 0.62 1.00 0.45
ACTG 0.58 0.62 0.61 0.63 0.24 0.58 0.45 1.00

19

‣ hash functions
‣ collision resolution
‣ applications

20

Helpful results from probability theory

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after ~ π M / 2 tosses.

Coupon collector. Expect every bin has ≥ 1 ball after ~ M ln M tosses.

Load balancing. After M tosses, expect most loaded bin has
Θ(log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21

Collisions

Collision. Two distinct keys hashing to same index.

• Birthday problem ⇒ can't avoid collisions unless you have a ridiculous
amount (quadratic) of memory.

• Coupon collector + load balancing ⇒ collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

approach 1: accept multiple collisions approach 2: minimize collisions

Separate chaining. [H. P. Luhn, IBM 1953]
Put keys that collide in a list associated with index.

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

22

Collision resolution: two approaches

st[0]

st[1]

st[2]

st[8190]

untravelledst[3] considerating

null

separate chaining (M = 8191, N = 15000)

null

null

linear probing (M = 30001, N = 15000)

seriouslyjocularly

listen

suburban

browsing

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30001]

st[3]

23

Collision resolution approach 1: separate chaining

Use an array of M < N linked lists.

• Hash: map key to integer i between 0 and M-1.

• Insert: put at front of ith chain (if not already there).

• Search: only need to search ith chain.

good choice: M ~ N/10

key hash

"call" 7121

"me" 3480

"ishmael" 5017

"seriously" 0

"untravelled" 3

"suburban" 3

... ...

st[0]

st[1]

st[2]

st[8190]

untravelledst[3] considerating

null

separate chaining (M = 8191, N = 15000)

seriouslyjocularly

listen

suburban

browsing

public class ListHashST<Key, Value>
{
 private int M = 8191;
 private Node[] st = new Node[M];

 private class Node
 {
 private Object key;
 private Object val;
 private Node next;
 public Node(Key key, Value val, Node next)
 {
 this.key = key;
 this.val = val;
 this.next = next;
 }
 }

 private int hash(Key key)
 { return (key.hashcode() & 0x7ffffffff) % M; }

 public void put(Key key, Value val)
 { /* see next slide */ }

 public Val get(Key key)
 { /* see next slide */ }
}

Separate chaining ST: Java implementation (skeleton)

24

no generics in
arrays in Java

array doubling
code omitted

Separate chaining ST: Java implementation (put and get)

25

identical to linked-list code,
except hash to pick a list

 public void put(Key key, Value val)
 {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next)
 if (key.equals(x.key))
 { x.val = val; return; }
 st[i] = new Node(key, value, first);
 }

 public Value get(Key key)
 {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next)
 if (key.equals(x.key))
 return (Value) x.val;
 return null;
 }

26

Analysis of separate chaining

Separate chaining performance.

• Cost is proportional to length of chain.

• Average length of chain α = N / M.

• Worst case: all keys hash to same chain.

Proposition. Let α > 1. For any t > 1, probability that chain length > t α is
exponentially small in t.

Parameters.

• M too large ⇒ too many empty chains.

• M too small ⇒ chains too long.

• Typical choice: M ~ N/10 ⇒ constant-time ops.

depends on hash map being random map

27

Collision resolution approach 2: linear probing

Use an array of size M >> N.

• Hash: map key to integer i between 0 and M-1.

• Insert: put in slot i if free; if not try i+1, i+2, etc.

• Search: search slot i; if occupied but no match, try i+1, i+2, etc.

good choice: M ~ 2N

- - - S H - - A C E R - -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert I
hash(I) = 11

- - - S H - - A C E R I -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert N
hash(N) = 8

- - - S H - - A C E R I N

0 1 2 3 4 5 6 7 8 9 10 11 12

public class ArrayHashST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[maxN];
 private Key[] keys = (Key[]) new Object[maxN];

 privat int hash(Key key) { /* as before */ }

 public void put(Key key, Value val)
 {
 int i;
 for (i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 break;
 vals[i] = val;
 keys[i] = key;
 }

 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
 }
}

Linear probing ST implementation

28

standard ugly casts

array doubling
code omitted

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

29

Clustering

Model. Cars arrive at one-way street with M parking spaces. Each desires a
random space i: if space i is taken, try i+1, i+2, …

Q. What is mean displacement of a car?

Empty. With M/2 cars, mean displacement is ~ 3/2.
Full. With M cars, mean displacement is ~ π M / 8

30

Knuth's parking problem

displacement =3

Linear probing performance.

• Insert and search cost depend on length of cluster.

• Average length of cluster α = N / M.

• Worst case: all keys hash to same cluster.

Proposition. [Knuth 1962] Let α < 1 be the load factor.

Parameters.

• Load factor too small ⇒ too many empty array entries.

• Load factor too large ⇒ clusters coalesce.

• Typical choice: M ~ 2N ⇒ constant-time ops.

31

Analysis of linear probing

but keys more likely to
hash to big clusters

() 1

(1 − α)2
1
—
2 1 + = (1 + α + 2α2 + 3α3 + 4α4 + . . .) /2

() 1

(1 − α)
1
—
2

1 + = 1 + (α + α2 + α3 + α4 + . . .) /2

average probes for insert/search miss

average probes for search hit

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. (separate chaining variant)

• Hash to two positions, put key in shorter of the two chains.

• Reduces average length of the longest chain to log log N.

Double hashing. (linear probing variant)

• Use linear probing, but skip a variable amount, not just 1 each time.

• Effectively eliminates clustering.

• Can allow table to become nearly full.

32

33

Double hashing

Idea. Avoid clustering by using second hash to compute skip for search.

Hash function. Map key to integer i between 0 and M-1.
Second hash function. Map key to nonzero skip value k.

Ex: k = 1 + (v mod 97).

Effect. Skip values give different search paths for keys that collide.

Best practices. Make k and M relatively prime.

hashCode()

34

Theorem. [Guibas-Szemerédi] Let α = N / M < 1 be average length of cluster.

Parameters. Typical choice: α ~ 1.2 ⇒ constant-time ops.

Disadvantage. Deletion is cumbersome to implement.

Double hashing performance

1

(1 − α)
1
—
α

ln = 1 + α/2 + α2 /3 + α3 /4 + α4 /5 + . . .

Average probes for insert/search miss

Average probes for search hit

 1

(1 − α)
= 1 + α + α2 + α3 + α4 + . . .

35

Separate chaining vs. linear probing/double hashing.

• Space for links vs. empty table slots.

• Small table + linked allocation vs. big coherent array.

Linear probing vs. double hashing.

number of probes

load factor

50% 66% 75% 90%

linear
probing

get 1.5 2.0 3.0 5.5

put 2.5 5.0 8.5 55.5

double
hashing

get 1.4 1.6 1.8 2.6

put 1.5 2.0 3.0 5.5

Hashing Tradeoffs

implementation
guarantee average case

ordered
iteration?

operations
on keys

search insert delete search hit insert delete

unordered list N N N N/2 N N/2 no equals()

ordered array lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

randomized BST 3 lg N 3 lg N 3 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes compareTo()

red-black tree 3 lg N 3 lg N 3 lg N lg N lg N lg N yes compareTo()

hashing 1 * 1 * 1 * 1 * 1 * 1 * no
equals()

hashCode()

Summary of symbol-table implementations

36

* assumes random hash function

Hashing versus balanced trees

Hashing

• Simpler to code.

• No effective alternative for unordered keys.

• Faster for simple keys (a few arithmetic ops versus log N compares).

• Better system support in Java for strings (e.g., cached hash code).

• Does your hash function produce random values for your key type??

Balanced trees.

• Stronger performance guarantee.

• Can support many more ST operations for ordered keys.

• Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.

• Red-black trees: java.util.TreeMap, java.util.TreeSet.

• Hashing: java.util.HashMap, java.util.IdentityHashMap.

37

Typical "full" symbol table API

Hashing is not suitable for implementing such an API (no order).
BSTs are easy to extend to support such an API (basic tree ops).

38

public class *ST<Key extends Comparable<Key>, Value> implements Iterable<Key>

*ST() create an empty symbol table

void put(Key key, Value val) put key-value pair into the table

Value get(Key key) return value paired with key; null if no such value

boolean contains(Key key) is there a value paired with key?

Key min() return smallest key

Key max() return largest key

Key ceil(Key key) return smallest key in table ≥ query key

Key floor(Key key) return largest key in table ≤ query key

void remove(Key key) remove key-value pair from table

Iterator<Key> iterator() iterator through keys in table

39

‣ hash functions
‣ collision resolution
‣ applications

Searching challenge

Problem. Index for a PC or the web.
Assumptions. 1 billion++ words to index.

Which searching method to use?

• Hashing implementation of ST.

• Hashing implementation of SET.

• Red-black-tree implementation of ST.

• Red-black-tree implementation of SET.

• Doesn’t matter much.

40

 ST<String, SET<File>> st = new ST<String, SET<File>>();
 for (File f : filesystem)
 {
 In in = new In(f);
 String[] words = in.readAll().split("\\s+");
 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<File>());
 SET<File> files = st.get(s);
 files.add(f);
 }
 }

 SET<File> files = st.get(s);
 for (File f : files) ...

Index for search in a PC

41

build index

process lookup
request

Searching challenge

Problem. Index for an e-book.
Assumptions. Book has 100,000+ words.

Which searching method to use?

• Hashing implementation of ST.

• Hashing implementation of SET.

• Red-black-tree implementation of ST.

• Red-black-tree implementation of SET.

• Doesn’t matter much.

42

public class Index
{
 public static void main(String[] args)
 {
 String[] words = StdIn.readAll().split("\\s+");
 ST<String, SET<Integer>> st;
 st = new ST<String, SET<Integer>>();

 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<Integer>());
 SET<Integer> pages = st.get(s);
 pages.add(page(i));
 }

 for (String s : st)
 StdOut.println(s + ": " + st.get(s));

 }
}

Index for a book

43

process all words

read book and
create ST

print index

Problem. Sparse matrix-vector multiplication.
Assumptions. Matrix dimension is 10,000; average nonzeros per row ~ 10.

Which searching method to use?
1) Unordered array.
2) Ordered linked list.
3) Ordered array with binary search.
4) Need better method, all too slow.
5) Doesn’t matter much, all fast enough.

Searching challenge 5

44

 A * x = b

Vector. Ordered sequence of N real numbers.
Matrix. N-by-N table of real numbers.

€

0 1 1
2 4 −2
0 3 15

















 ×
−1
2
2

















=

4
2

36

















€

a = 0 3 15 [] , b = −1 2 2 []
a + b = −1 5 17 []
a o b = (0 ⋅ −1) + (3 ⋅ 2) + (15 ⋅ 2) = 36

a = a o a = 02 + 32 + 152 = 3 26

45

Sparse vectors and matrices

vector operations

matrix-vector multiplication

46

Sparse vectors and matrices

An N-by-N matrix is sparse if it contains O(N) nonzeros.

Property. Large matrices that arise in practice are sparse.

2D array matrix representation.

• Constant time access to elements.

• Space proportional to N2.

Goal.

• Efficient access to elements.

• Space proportional to number of nonzeros.

47

Sparse vector data type

public class SparseVector
{
 private int N; // length
 private ST<Integer, Double> st; // the elements

 public SparseVector(int N)
 {
 this.N = N;
 this.st = new ST<Integer, Double>();
 }

 public void put(int i, double value)
 {
 if (value == 0.0) st.remove(i);
 else st.put(i, value);
 }

 public double get(int i)
 {
 if (st.contains(i)) return st.get(i);
 else return 0.0;
 }

 ...

all 0s vector

a[i] = value

return a[i]

48

Sparse vector data type (cont)

 public double dot(SparseVector that)
 {
 double sum = 0.0;
 for (int i : this.st)
 if (that.st.contains(i))
 sum += this.get(i) * that.get(i);
 return sum;
 }

 public double norm()
 { return Math.sqrt(this.dot(this)); }

 public SparseVector plus(SparseVector that)
 {
 SparseVector c = new SparseVector(N);
 for (int i : this.st)
 c.put(i, this.get(i));
 for (int i : that.st)
 c.put(i, that.get(i) + c.get(i));
 return c;
 }

}

dot product

2-norm

vector sum

49

Sparse matrix data type

public class SparseMatrix
{
 private final int N; // length
 private SparseVector[] rows; // the elements

 public SparseMatrix(int N)
 {
 this.N = N;
 this.rows = new SparseVector[N];
 for (int i = 0; i < N; i++)
 this.rows[i] = new SparseVector(N);
 }

 public void put(int i, int j, double value)
 { rows[i].put(j, value); }

 public double get(int i, int j)
 { return rows[i].get(j); }

 public SparseVector times(SparseVector x)
 {
 SparseVector b = new SparseVector(N);
 for (int i = 0; i < N; i++)
 b.put(i, rows[i].dot(x));
 return b;
 }
}

all 0s matrix

a[i][j] = value

return a[i][j]

matrix-vector
multiplication

50

Hashing in the wild: algorithmic complexity attacks

Is the random hash map assumption important in practice?

• Obvious situations: aircraft control, nuclear reactor, pacemaker.

• Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

• Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

• Perl 5.8.0: insert carefully chosen strings into associative array.

• Linux 2.4.20 kernel: save files with carefully chosen names.

malicious adversary learns your hash function
(e.g., by reading Java API) and causes a big pile-up
in single slot that grinds performance to a halt

Goal. Find strings with the same hash code.
Solution. The base-31 hash code is part of Java's string API.

Q. Does your hash function produce random values for your key type?
51

Algorithmic complexity attack on Java

2N strings of length 2N that hash to same value!

key hashCode()

"AaAaAaAa" -540425984

"AaAaAaBB" -540425984

"AaAaBBAa" -540425984

"AaAaBBBB" -540425984

"AaBBAaAa" -540425984

"AaBBAaBB" -540425984

"AaBBBBAa" -540425984

"AaBBBBBB" -540425984

key hashCode()

"BBAaAaAa" -540425984

"BBAaAaBB" -540425984

"BBAaBBAa" -540425984

"BBAaBBBB" -540425984

"BBBBAaAa" -540425984

"BBBBAaBB" -540425984

"BBBBBBAa" -540425984

"BBBBBBBB" -540425984

key hashCode()

"Aa" 2112

"BB" 2112

52

One-way hash functions

One-way hash function. Hard to find a key that will hash to a desired value,
or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

known to be insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */

