
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · February 13, 2008 1:25:32 PM

Elementary Sorts

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

Reference: Algorithms in Java, Chapter 6

Ex. Student record in a University.

Sort. Rearrange array of N objects into ascending order.

2

Sorting problem

Goal. Sort any type of data.
Ex 1. Sort random numbers in ascending order.

3

Sample sort client

% java Experiment 10
0.08614716385210452
0.09054270895414829
0.10708746304898642
0.21166190071646818
0.363292849257276
0.460954145685913
0.5340026311350087
0.7216129793703496
0.9003500354411443
0.9293994908845686

public class Experiment
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Double[] a = new Double[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
 Insertion.sort(a);
 for (int i = 0; i < N; i++)
 StdOut.println(a[i]);
 }
}

Goal. Sort any type of data.
Ex 2. Sort strings from standard input in alphabetical order.

4

Sample sort client

% more words3.txt
bed bug dad dot zoo ... all bad bin

% java StringSort < words.txt
all bad bed bug dad ... yes yet zoo

public class StringSort
{
 public static void main(String[] args)
 {
 String[] a = StdIn.readAll().split("\\s+");
 Insertion.sort(a);
 for (int i = 0; i < N; i++)
 StdOut.println(a[i]);
 }
}

Goal. Sort any type of data.
Ex 3. Sort the files in a given directory by filename.

5

% java Files .
Insertion.class
Insertion.java
InsertionX.class
InsertionX.java
Selection.class
Selection.java
Shell.class
Shell.java
ShellX.class
ShellX.java

Sample sort client

import java.io.File;
public class Files
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i]);
 }
}

6

Callbacks

Goal. Sort any type of data.

Q. How can sort know to compare data of type String, Double, and File
without any information about the type of an item?

Callbacks.

• Client passes array of objects to sorting routine.

• Sorting routine calls back object's compare function as needed.

Implementing callbacks.

• Java: interfaces.

• C: function pointers.

• C++: class-type functors.

• ML: first-class functions and functors.

Callbacks: roadmap

7

sort implementation

client object implementation

import java.io.File;
public class SortFiles
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i]);
 }
}

Key point: no reference to File

public static void sort(Comparable[] a)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (a[j].compareTo(a[j-1]))
 exch(a, j, j-1);
 else break;
}

public class File
implements Comparable<File>
{
 ...
 public int compareTo(File b)
 {
 ...
 return -1;
 ...
 return +1;
 ...
 return 0;
 }
}

interface

public interface Comparable<Item>
{
 public int compareTo(Item);
}

built in to Java

8

Comparable interface API

Comparable interface. Implement compareTo() so that v.compareTo(w):

• Returns a negative integer if v is less than w.

• Returns a positive integer if v is greater than w.

• Returns zero if v is equal to w.

Consistency. Implementation must ensure a total order.

• Transitivity: if (a < b) and (b < c), then (a < c).

• Trichotomy: either (a < b) or (b < a) or (a = b).

Built-in comparable types. String, Double, Integer, Date, File, ...
User-defined comparable types. Implement the Comparable interface.

public interface Comparable<Item>
{
 public int compareTo(Item that);
}

Date data type. Simplified version of java.util.Date.

public class Date implements Comparable<Date>
{
 private final int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }

 public int compareTo(Date that)
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

9

Implementing the Comparable interface: example 1

only compare dates
to other dates

10

Implementing the Comparable interface: example 2

Domain names.

• Subdomain: bolle.cs.princeton.edu.

• Reverse subdomain: edu.princeton.cs.bolle.

• Sort by reverse subdomain to group by category.
subdomains

reverse-sorted subdomains

public class Domain implements Comparable<Domain>
{
 private final String[] fields;
 private final int N;

 public Domain(String name)
 {
 fields = name.split("\\.");
 N = fields.length;
 }

 public int compareTo(Domain that)
 {
 for (int i = 0; i < Math.min(this.N, that.N); i++)
 {
 String s = fields[this.N - i - 1];
 String t = fields[that.N - i - 1];
 int cmp = s.compareTo(t);
 if (cmp < 0) return -1;
 else if (cmp > 0) return +1;
 }
 return this.N - that.N;
 }
}

ee.princeton.edu
cs.princeton.edu
princeton.edu
cnn.com
google.com
apple.com
www.cs.princeton.edu
bolle.cs.princeton.edu

com.apple
com.cnn
com.google
edu.princeton
edu.princeton.cs
edu.princeton.cs.bolle
edu.princeton.cs.www
edu.princeton.ee

Helper functions. Refer to data through compares and exchanges.

Less. Is object v less than w ?

Exchange. Swap object in array a[] at index i with the one at index j.

11

Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)
{
 return v.compareTo(w) < 0;
}

private static void exch(Comparable[] a, int i, int j)
{
 Comparable t = a[i];
 a[i] = a[j];
 a[j] = t;
}

Q. How to test if an array is sorted?

Q. If the sorting algorithm passes the test, did it correctly sort its input?
A1. Not necessarily!
A2. Yes, if data accessed only through exch() and less().

12

Testing

private static boolean isSorted(Comparable[] a)
{
 for (int i = 1; i < a.length; i++)
 if (less(a[i], a[i-1])) return false;
 return true;
}

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

13 14

Selection sort

Algorithm. ↑ scans from left to right.

Invariants.

• Elements to the left of ↑ (including ↑) fixed and in ascending order.

• No element to right of ↑ is smaller than any element to its left.

in final order
↑

15

Selection sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right.

• Identify index of minimum item on right.

• Exchange into position.

i++;

↑

int min = i;
for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;

↑↑

exch(a, i, min);
↑↑

in final order

in final order

in final order

16

Selection sort: Java implementation

public class Selection {

 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }

 private boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private boolean exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Selection sort: mathematical analysis

Proposition A. Selection sort uses (N-1) + (N-2) + ... + 1 + 0 ~ N2/2
compares and N exchanges.

Running time insensitive to input. Quadratic time, even if array is presorted.
Data movement is minimal. Linear number of exchanges.

17

Trace of selection sort (array contents just after each exchange)

 a[]
 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E
 1 4 A O R T E X S M P L E
 2 10 A E R T O X S M P L E
 3 9 A E E T O X S M P L R
 4 7 A E E L O X S M P T R
 5 7 A E E L M X S O P T R
 6 8 A E E L M O S X P T R
 7 10 A E E L M O P X S T R
 8 8 A E E L M O P R S T X
 9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

18

19

Insertion sort

Algorithm. ↑ scans from left to right.

Invariants.

• Elements to the left of ↑ (including ↑) are in ascending order.

• Elements to the right of ↑ have not yet been seen.

in order ↑ not yet seen

20

Insertion sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right.

• Moving from right to left, exchange
a[i] with each larger element to its left.

for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;

i++;

in order not yet seen

↑

in order not yet seen

↑↑↑↑

Insertion sort: Java implementation

21

public class Insertion {

 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
 }

 private boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private boolean exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Proposition B. For randomly-ordered data with distinct keys, insertion sort
uses ~ N2/4 compares and N2/4 exchanges on the average.

Pf. For randomly data, we expect each element to move halfway back.

Insertion sort: mathematical analysis

22

Trace of insertion sort (array contents just after each insertion)

 a[]
 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E
 2 1 O R S T E X A M P L E
 3 3 O R S T E X A M P L E
 4 0 E O R S T X A M P L E
 5 5 E O R S T X A M P L E
 6 0 A E O R S T X M P L E
 7 2 A E M O R S T X P L E
 8 4 A E M O P R S T X L E
 9 2 A E L M O P R S T X E
10 2 A E E L M O P R S T X

 A E E L M O P R S T X

entries in black
moved one position
right for insertion

entries in gray
do not move

entry in red
is a[j]

Best case. If the input is in ascending order, insertion sort makes
N-1 compares and 0 exchanges.

Worst case. If the input is in descending order (and no duplicates),
insertion sort makes ~ N2/2 compares and ~ N2/2 exchanges.

Insertion sort: best and worst case

23

 X T S R P O M L E E A

 A E E L M O P R S T X

Def. An inversion is a pair of keys that are out of order.

Def. An array is partially sorted if the number of inversions is O(N).

• Ex 1. A small array appended to a large sorted array.

• Ex 2. An array with only a few elements out of place.

Proposition C. For partially-sorted arrays, insertion sort runs in linear time.
Pf. Number of compares equals the number of inversions.

Insertion sort: partially sorted inputs

24

 A E E L M O T R X P S

T-R T-P T-S X-P X-S

(5 inversions)

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ sorting challenges
‣ shellsort

25 26

Sorting challenge 0

Input. Array of doubles.
Plot. Data proportional to length.

Name the sorting method.

• Insertion sort.

• Selection sort.

213S O R T I N G

Elementary Sorts

Visualizing sorting algorithms Throughout this chapter, we will be using a
simple visual representation to help describe the properties of sorting algorithms.
Rather than tracing the progress of a sort with key values such as letters, numbers or
words, we use vertical bars, to be sorted by their heights. As you will see, the advantage
of such a representation is that it can give insights into
the behavior of a sorting method.

For example, you can see at a glance on the vi-
sual traces at right that insertion sort does not touch
entries to the right of the scan pointer and selection
sort does not touch entries to the left of the scan point-
er. Moreover, it is clear from the visual traces that, since
insertion sort also does not touch entries smaller than
the inserted element, it uses about half the number of
compares as selection sort, on the average.

With our StdDraw library, developing a visual
trace is not much more difficult than doing a standard
trace. We sort Double values, instrument the algorithm
to call show() as appropriate (just as we do for a stan-
dard trace) and develop a version of show() that uses
StdDraw to draw the bars instead of printing the results.
The most complicated task is setting the scale for the y
axis so that the lines of the trace appear in the expected
order. You are encouraged to work EXERCISE 3.1.19 in
order to gain a better appreciation of the value of visual
traces and the ease of creating them.

An even simpler task is to animate the trace
so that you can see the array dynamically evolve to the
sorted result. Developing an animated trace involves
essentially the same process described in the previous
paragraph, but without having to worry about the y
axis (just clear the window and redraw the bars each
time). Though we cannot make the case on the printed
page, such animated representations are also effective
in gaining insight into how an algorithm works. You are also encouraged to work EXER-
CISE 3.1.18 to see for yourself.

black entries
are involved
in compares

gray entries
are untouched

Visual traces of elementary sorting algorithms

insertion sort selection sort

27

Sorting challenge 1

Problem. Sort a file of huge records with tiny keys.
Ex. Reorganize your MP3 files.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

28

Sorting challenge 1

Problem. Sort a file of huge records with tiny keys.
Ex. Reorganize your MP3 files.

Which sorting method to use?

• System sort. probably no, selection sort simpler and faster

• Insertion sort. no, too many exchanges

• Selection sort. yes, linear time under reasonable assumptions

Ex: 5,000 records, each 2 million bytes with 100-byte keys.
 Cost of comparisons: 100 × 50002 / 2 = 1.25 billion.
 Cost of exchanges: 2,000,000 × 5,000 = 10 trillion.
 System sort might be a factor of log (5000) slower.

29

Sorting challenge 2

Problem. Sort a huge randomly-ordered file of small records.
Ex. Process transaction records for a phone company.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

30

Sorting challenge 2

Problem. Sort a huge randomly-ordered file of small records.
Ex. Process transaction records for a phone company.

Which sorting method to use?

• System sort. yes, it's designed for this problem

• Insertion sort. no, quadratic time for randomly ordered files

• Selection sort. no, always quadratic time

31

Sorting challenge 3

Problem. Sort a huge number of tiny files (each file is independent)
Ex. Daily customer transaction records.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

32

Sorting challenge 3

Problem. Sort a huge number of tiny files (each file is independent)
Ex. Daily customer transaction records.

Which sorting method to use?

• System sort. no, too much overhead

• Insertion sort. yes, less overhead than system sort

• Selection sort. yes, less overhead than system sort

Ex: 4 record file.
 4 N log N + 35 = 70
 2N2 = 32

33

Sorting challenge 4

Problem. Sort a huge file that is already almost in order.
Ex. Resort a huge database after a few changes.

Which sorting method to use?

• System sort.

• Insertion sort.

• Selection sort.

34

Sorting challenge 4

Problem. Sort a huge file that is already almost in order.
Ex. Resort a huge database after a few changes.

Which sorting method to use?

• System sort. no, insertion sort simpler and faster

• Insertion sort. yes, linear time for most definitions of "in order"

• Selection sort. no, always takes quadratic time

Ex.
• A B C D E F H I J G P K L M N O Q R S T U V W X Y Z

• Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ animations
‣ shellsort

35

Insertion sort animation

36

i

a[i]

left of pointer is in sorted order right of pointer is untouched

Reason it is slow: excessive data movement.

Insertion sort animation

37

Idea. Move elements more than one position at a time by h-sorting the file.

Shellsort. h-sort the file for a decreasing sequence of values of h.

Shellsort overview

38

a 3-sorted file is 3 interleaved sorted files

218 C H A P T E R T H R E E

Section 3.1

Shellsort To exhibit the value of knowing properties of elementary sorts, we next
consider a fast algorithm based on insertion sort. Insertion sort is slow for large un-
ordered arrays because the only exchanges it does involve adjacent items, so items can
move through the array only one place at a time. For example, if the item with the
smallest key happens to be at the end of the array, N steps are needed to get that one ele-
ment where it belongs. Shellsort is a simple extension of insertion sort that gains speed
by allowing exchanges of elements that are far apart, to produce partially sorted arrays
that can be efficiently sorted, eventually by insertion sort.

The idea is to rearrange the array to give it the property that taking every hth
element (starting anywhere) yields a sorted sequence.
Such an array is said to be h-sorted. Put another way, an
h-sorted array is h independent sorted subsequences, in-
terleaved together. By h-sorting for some large values of h,
we can move elements in the array long distances and thus
make it easier to h-sort for smaller values of h. Using such
a procedure for any increment sequence of values of h that
ends in 1 will produce a sorted array: that is shellsort.

One way to implement shellsort would be, for
each h, to use insertion sort independently on each of
the h subsequences. Despite the apparent simplicity of
this process, we can use an even simpler approach, pre-
cisely because the subsequences are independent. When
h-sorting the array, we simply insert each element among
the previous elements in its h-subsequence by moving
larger elements to the right. We accomplish this task by
using the insertion-sort code, but modified to increment
or decrement by h instead of 1 when moving through the

array. This observation reduces the shellsort implementation to nothing more than an
insertion-sort–like pass through the array for each increment,.

Shellsort gains efficiency by making a tradeoff between size and partial order
in the subsequences. At the beginning, the subsequences are short; later in the sort, the
subsequences are partially sorted. In both cases, insertion sort is the method of choice.
The extent to which the subsequences are partially sorted is a variable factor that de-
pends strongly on the increment sequence. Understanding shellsort's performance has
turned out to be a challenge. Indeed, ALGORITHM 3.3 is the only sorting method we con-
sider whose performance on random input has not been precisely characterized.

An h-sorted file is h interleaved sorted files

A E L E O P M S X R T

A E M R
 E O S T
 L P X

h = 3

M O L E E X A S P R T

M S
 E P
 L R
 E T
 E
 L
 A

h = 7

Shellsort trace (array contents after each pass)

M O L E E X A S P R T

A E E L M O P R S T X

A E L E O P M S X R T

7-sort

input

3-sort

1-sort

S O R T E X A M P L E

How to h-sort a file? Insertion sort, with stride length h.

Why insertion sort?

• Big increments ⇒ small subfiles.

• Small increments ⇒ nearly in order. [stay tuned]

h-sorting

39

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sorting a file

Shellsort example

40

S O R T E X A M P L E

input

S O R T E X A M P L E
M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T

7-sort

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sort

A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P R S X T
A E E L M O P R S T X

1-sort

A E E L M O P R S T X

result

public class Shell
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 int[] incs = { 1391376, 463792, 198768, 86961,
 33936, 13776, 4592, 1968, 861,
 336, 112, 48, 21, 7, 3, 1
 };
 for (int k = 0; k < incs.length; k++)
 {
 int h = incs[k];
 for (int i = h; i < N; i++)
 for (int j = i; j >= h; j-= h)
 if (less(a[j], a[j-h]))
 exch(a, j, j-h);
 else break;
 }
 }

 private boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private boolean exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Shellsort: Java implementation

41

insertion sort

magic increment
sequence

Visual trace of shellsort

42

221S O R T I N G

Elementary Sorts

input

112-sorted

48-sorted

21-sorted

7-sorted

3-sorted

result

Visual trace of shellsort

Shellsort animation

43

big increment

small increment

Shellsort animation

Bottom line: substantially faster than insertion sort!
44

Property. The number of compares used by shellsort with the increments 1, 4,
13, 40, ... is at most by a small multiple of N times the # of increments used.

Remark. Accurate model has not yet been discovered (!)
45

Empirical analysis of shellsort

measured in thousands

N comparisons N1.289 2.5 N lg N

5,000 93 58 106

10,000 209 143 230

20,000 467 349 495

40,000 1022 855 1059

80,000 2266 2089 2257

46

Shellsort: mathematical analysis

Proposition. A g-sorted array remains g-sorted after h-sorting it.
Pf. Harder than you'd think!

Proposition. The worst-case number of compares for shellsort using
the 3x+1 increment sequence 1, 4, 13, 40, 121, 364, … is O(N3/2).

M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T
M O L E E X A S P R T

7-sort

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sort

still 7-sorted

Why are we interested in shellsort?

Example of simple idea leading to substantial performance gains.

Useful in practice.

• Fast unless file size is huge.

• Tiny, fixed footprint for code (used in embedded systems).

• Hardware sort prototype.

Simple algorithm, nontrivial performance, interesting questions

• Asymptotic growth rate?

• Best sequence of increments?

• Average case performance?

Lesson. Some good algorithms are still waiting discovery.

47

open problem: find a better increment sequence

