Universality and Computability

Introduction to Computer Science • Sedgewick and Wayne • Copyright © 2007 • http://www.cs.Princeton.EDU/Introcs - Copyright © $2007 \cdot h t p p: / / w w w . c s . P r i n c e t o n . E D U / I n t r o c s ~$

7.4 Turing Machines

Challenge: Design simplest machine that is "as powerful" as conventional computers.

Alan Turing
Q. What is a general-purpose computer?
Q. Are there limits on the power of digital computers?
Q. Are there limits on the power of machines we can build?

Pioneering work in the 1930s.

- Princeton $==$ center of universe.
- Hilbert, Gödel, Turing, Church, von Neumann.
- Automata, languages, computability, universality, complexity, logic.

Turing Machine

Desiderata. Simple model of computation that is "as powerful" as conventional computers.

Intuition. Simulate how humans calculate.
Ex. Addition.

Tape.

- Stores input, output, and intermediate results.
- One arbitrarily long strip, divided into cells.
- Finite alphabet of symbols.

Tape head.

- Points to one cell of tape.
- Reads a symbol from active cell.

Writes a symbol to active cell.

- Moves left or right one cell at a time.

tape head
tape
 $0+$

States.

- Finite number of possible machine configurations.
- Determines what machine does and which way tape head moves.

State transition diagram.

- Ex. if in state 2 and input symbol is 1 then: overwrite the 1 with x , move to state 0 , move tape head to left.

Turing Machine: Initialization and Termination

Initialization.

- Set input on some portion of tape
- Set tape head.
- Set initial state.\# $\begin{array}{llll}0 & 1 & 1\end{array}$

10 \#

Termination.

- Stop if enter yes, no, or halt state.
- Infinite loop possible.
- (definitely stay tuned !)

| ... | $\#$ | $\#$ | 0 | 0 | 1 | 1 | 1 | 0 | $\#$ | $\#$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

7.5 Universality

Java: As Powerful As Turing Machine

Turing machines are equivalent in power to TOY and Java.

- Can use Java to solve any problem that can be solved with a TM.
- Can use TM to solve any problem that can be solved with a TOY.
- Can use TOY to solve any problem that can be solved with Java.

Java simulator for Turing machines.

```
State state = start
while (true) {
    char c = tape.readSymbol()
    tape.write(state.symbolToWrite(c));
    state = state.next(c);
    if (state.isLeft()) tape.moveLeft();
    else if (state.isRight()) tape.moveRight();
    else if (state.isHalt()) break;
}
```

Q. Which one of the following does not belong?

Turing Machine: As Powerful As TOY Machine

Turing machines are equivalent in power to TOY and Java.

- Can use Java to solve any problem that can be solved with a TM.
- Can use TM to solve any problem that can be solved with a TOY.
- Can use TOY to solve any problem that can be solved with Java.

Turing machine simulator for TOY programs.

- Encode state of memory, registers, pc, onto Turing tape.
- Design TM states for each instruction.
- Can do because all instructions:
- examine current state
- make well-defined changes depending on current state

Java, Turing Machines, and TOY

Turing machines are equivalent in power to TOY and Java.

- Can use Java to solve any problem that can be solved with a TM.
- Can use TM to solve any problem that can be solved with a TOY.
- Can use TOY to solve any problem that can be solved with Java.

Also works for:

- C, C++, Python, Perl, Excel, Outlook,
- Mac, PC, Cray, Palm pilot,
- TiVo, Xbox, Java cell phone,

Does not work:

- DFA or regular expressions.
- Gaggia espresso maker.

TOY: As Powerful As Java

Turing machines are equivalent in power to TOY and Java.

- Can use Java to solve any problem that can be solved with a TM.
- Can use TM to solve any problem that can be solved with a TOY.
- Can use TOY to solve any problem that can be solved with Java.

TOY simulator for Java programs.

- Variables, loops, arrays, functions, linked lists,
- In principle, can write a Java-to-TOY compiler!

Universal Turing Machine

Java program: solves one specific problem.
TOY program: solves one specific problem.
TM: solves one specific problem.

Java simulator in Java: Java program to simulate any Java program. TOY simulator in TOY: TOY program to simulate any TOY program. UTM: Turing machine that can simulate any Turing machine.

General purpose machine.

- UTM can implement any algorithm.
- Your laptop can do any computational task: word-processing, pictures, music, movies, games, finance, science, email, Web, ...

Graphical:

Continuous Binary Incrementer

Tabular:

Current state	Symbol read	Symbol to write	Next State	Direction
A	0	0	A	R
A	1	1	A	R
A	$\#$	$\#$	B	L
B	0	1	A	R
B	1	0	B	L
B	$\#$	1	A	R

Linear: * $A 00 A R$ * $A 11 A R$ * $A \# \# B L * B 01 A R * B 10 B L \ldots$

Universal Turing Machine (a more abstract view)

Turing machine M. Given input x, Turing machine M outputs $M(x)$.

TM intuition. Software program that solves one particular problem.

Turing machine M. Given input x, Turing machine M outputs $M(x)$.

Universal Turing machine U. Given input M and x, universal Turing machine U outputs $M(x)$.

Church Turing thesis (1936). Turing machines can do anything that can be described by any physically harnessable process of this universe.

Remark. "Thesis" and not a mathematical theorem because it's a statement about the physical world and not subject to proof.
but can be falsified
Implications.

- No need to seek more powerful machines or languages.
- Enables rigorous study of computation (in this universe).

Bottom line. Turing machine is a simple and universal model of computation.

7.6 Computability

> Take any definite unsolved problem, such as the question as to the irrationality of the Euler-Mascheroni constant γ, or the existence of an infinite number of prime numbers of the form 2^{n-1}. However unapproachable these problems may seem to us and however helpless we stand before them, we have, nevertheless, the firm conviction that their solution must follow by a finite number of purely logical processes. - David Hilbert, in his 1900 address to the International Congress of Mathematics

Evidence.

. 7 decades without a counterexample.

- Many, many models of computation that turned out to be equivalent.

model of computation	description
enhanced Turing machines	multiple heads, multiple tapes, 2D tape, nondeterminism
untyped lambda calculus	method to define and manipulate functions
recursive functions	functions dealing with computation on integers
unrestricted grammars	iterative string replacement rules used by linguists
extended L-systems	parallel string replacement rules that model plant growth
programming languages	Java, $C, C++$, Perl, Python, PHP, Lisp, PostScript, Excel
random access machines	registers plus main memory, e.g., TOY, Pentium
cellular automata	cells which change state based on local interactions
quantum computer	compute using superposition of quantum states
DNA computer	compute using biological operations on DNA

Halting Problem

Halting problem. Write a Java function that reads in a Java function f and its input x , and decides whether $\mathrm{f}(\mathrm{x})$ results in an infinite loop.

```
relates to famous open math conjecture
```

Ex. Does $\mathrm{f}(\mathrm{x})$ terminate?

```
public void f(int x) {
    while (x != 1) {
        if (x % 2 == 0) x = x/2;
        else }\quad\mathbf{x}=3*\mathbf{x}+1
    }
}
```

- $f(6): \quad 63105168421$
- f(27): 2782411246231944714271214107322 ... 421
. $f(-17): ~-17-50-25-74-37-110-55-164-82-41-122 \ldots-17 \ldots$

A yes-no problem is undecidable if no Turing machine exists to solve it
and (by universality) no Java program either

Theorem. [Turing 1937] The halting problem is undecidable.

Proof intuition: lying paradox.

- Divide all statements into two categories: truths and lies.
- How do we classify the statement: I am lying.

Key element of lying paradox and halting proof: self-reference.

Halting Problem Proof

Assume the existence of halt (f, x) :

- Input: a function f and its input x .
- Output: true if $\mathrm{f}(\mathrm{x})$ halts, and false otherwise.
- Note: halt (f,x) does not go into infinite loop.

We prove by contradiction that halt (f, x) does not exist.

- Reductio ad absurdum : if any logical argument based on an assumption leads to an absurd statement, then assumption is false.
encode f and x as strings
$\downarrow>$
public boolean halt(String f, String x) if (something terribly clever) return true;
(se
, else
return false;
\}

Some programs take other programs as input

- Java compiler, e.g.

Can a program take itself as input ??

Why not?

- EditDistance could take EditDistance.java as input, and compute edit distance between "DNA sequences" public and class
- GuitarHero could "play" the characters in GuitarHero.java

Assume the existence of halt (f, x) :

- Input: a function f and its input x.
- Output: true if $\mathrm{f}(\mathrm{x})$ halts, and false otherwise.

Construct function strange (f) as follows:

- If halt (f, f) returns true, then strange (f) goes into an infinite loop.
- If halt (f,f) returns false, then strange (f) halts.

```
f is a string so legal (if perverse)
```

 to use for second input
    ```
public void strange(String f) {
    if (halt(f, f)) {
        / an infinite loop
        while (true) { }
    }
```


Halting Problem Proof

Assume the existence of halt (f, x):

- Input: a function f and its input x.
- Output: true if $f(x)$ halts, and false otherwise.

Construct function strange (f) as follows:

- If halt (f, f) returns true, then strange (f) goes into an infinite loop.
- If halt (f, f) returns false, then strange (f) halts.

In other words:

- If $f(f)$ halts, then strange (f) goes into an infinite loop.
- If $f(f)$ does not halt, then strange (f) halts.

Halting Problem Proof

Assume the existence of halt (f, x) :

- Input: a function f and its input x .
- Output: true if $\mathrm{f}(\mathrm{x})$ halts, and false otherwise.

Construct function strange (f) as follows:

- If halt ($£, \mathrm{f}$) returns true, then strange (f) goes into an infinite loop.
- If halt (f, f) returns false, then strange (f) halts.

In other words:

- If $f(f)$ halts, then strange (f) goes into an infinite loop.
- If $f(f)$ does not halt, then strange (f) halts.

Call strange () with ITSELF as input.

- If strange (strange) halts then strange (strange) does not halt.
- If strange (strange) does not halt then strange (strange) halts.

Consequences

Halting problem is not "artificial."

- Undecidable problem reduced to simplest form to simplify proof.
- Self-reference not essential.
- Closely related to practical problems.

No input halting problem. Give a function with no input, does it halt?

Program equivalence. Do two programs always produce the same output?

Uninitialized variables. Is variable \times initialized?
Dead code elimination. Does control flow ever reach this point in a program?

Hilbert's 10th problem.

- "Devise a process according to which it can be determined by a finite number of operations whether a given multivariate polynomial has an integral root."

Examples.

- $f(x, y, z)=6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10$.
\Leftrightarrow yes: $f(5,3,0)=0$
- $f(x, y)=x^{2}+y^{2}-3$.
- $f(x, y, z)=x^{n}+y^{n}-z^{n}$

Hhcbent

๒ no
\Leftrightarrow yes if $n=2, x=3, y=4, z=5$
\Leftarrow no if $n \geq 3$ and $x, y, z>0$ (Fermat's Last Theorem)

Andrew Wiles, 1995

More Undecidable Problems

Virus identification. Is this program a virus?

```
    Private Sub AutoOpen()
    On Error Resume Next (If)
    "Level") <> "" Then
    CommandBars ("Macro") .Controls("Security...") .Enabled = False
    For oo = 1 To AddyBook.AddressEntries. Count Can write programs in MS Word
```



```
        BreakUmoffASLice.Recipients.Add Peep
    M= x+1
    Next oo
BreakUmoffASIice.Subject = "Important Message From " & Application.UserName
Breakणmoffaslice.Body = "Here is that document you asked for ... don't show anyone else ;-)"
```

Melissa virus
March 28, 1999

Optimal data compression. Find the shortest program to produce a given string or picture.

Mandelbrot set (40 lines of code)

Context: Mathematics and Logic

Mathematics. Formal system powerful enough to express arithmetic.
Principio Mathematics
Peanoa arithmetic
Zermelo-Fraenkel set th
Zermelo-Fraenkel set theory

Complete. Can prove truth or falsity of any arithmetic statement.
Consistent. Can't prove contradictions like 2+2=5.
Decidable. Algorithm exists to determine truth of every statement.
Q. [Hilbert] Is mathematics complete and consistent?
A. [Gödel's Incompleteness Theorem, 1931] No!!!
Q. [Hilbert's Entscheidungsproblem] Is mathematics decidable?
A. [Church 1936, Turing 1936] No!

Turing machine.
formal model of computation
Program and data.
encode program and data as sequence of symbols
Universality.
concept of general-purpose, programmable computers
Church-Turing thesis.
computable at all $==$ computable with a Turing machine
Computability.
inherent limits to computation

Alan Turing (1912-1954).

- Father of computer science.
- Computer Science's "Nobel Prize" is called the Turing Award.

Alan's report card at 14.

Alan Turing and his elder brother.

