6. Combinational Circuits

George Boole (1815-1864)

Claude Shannon (1916-2001)

TOY lectures. von Neumann machine.

Wires

Wires.

- On (1): connected to power.
- Off (0): not connected to power.
- If a wire is connected to a wire that is on, that wire is also on.
- Typical drawing convention: "flow" from top, left to bottom, right.

This lecture. Boolean circuits.
Ahead. Putting it all together and building a TOY machine.

- On, off.
- Wire: propagates on/off value.
- Switch: controls propagation of on/off values through wires.

Digital circuits and you.

- Computer microprocessors.
- Antilock brakes, cell phones, iPods, etc.
\qquad

Controlled switch. [relay implementation]

- 3 connections: input, output, control.
- Magnetic force pulls on a contact that cuts electrical flow.
- Control wire affects output wire, but output does not affect control; establishes forward flow of information over time.

Layers of Abstraction

Layers of Abstraction

Layers of abstraction.

- Build a circuit from wires and switches.
[implementation]
- Define a circuit by its inputs and outputs. [interface]
- To control complexity, encapsulate circuits. [ADT]

NOT $=x$


```
\({ }^{\mathrm{I}}{ }^{\text {NOT }}-x^{\prime}\)
```

$O R=x+y$

$x y$	OR
00	0
0	1
10	1
1	1
1	1

AND $=x y$

Multiway Gates

Multiway gates.

- OR: 1 if any input is $1 ; 0$ otherwise.
- AND: 1 if all inputs are 1; 0 otherwise.

Generalized: negate some inputs.

NOT = x^{\prime}

$O R=x+y$

$x y$	$O R$
0	0
0	1
	0
1	0
1	1
1	1

AND $=x y$

implementations with switches

Multiway gates.

- OR: 1 if any input is $1 ; 0$ otherwise.
- AND: 1 if all inputs are 1; 0 otherwise.
- Generalized: negate some inputs.

History.

- Developed by Boole to solve mathematical logic problems (1847).
- Shannon master's thesis applied it to digital circuits (1937).

$$
\begin{aligned}
& \text { "possibly the most important, and also the most famous, } \\
& \text { master's thesis of the [20th] century" --Howard Gardner }
\end{aligned}
$$

Basics.

- Boolean variable: value is 0 or 1 .
- Boolean function: function whose inputs and outputs are 0,1.

Relationship to circuits.

- Boolean variables: signals.
- Boolean functions: circuits.

Truth Table

Truth table.

- Systematic method to describe Boolean function.
- One row for each possible input combination.
- Ninputs $\Rightarrow 2^{N}$ rows.

Copyright 2004, Sidney Harris, http://www.sciencecartoonsplus.com

Truth table.

- 16 Boolean functions of 2 variables.
\leftarrow every 4-bit value represents one

x	y	ZERO	AND		x		y	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1
Truth table for all Boolean functions of 2 variables									

Truth table for all Boolean functions of 2 variables

x	y	NOR	EQ	y^{\prime}		x^{\prime}		NAND	ONE
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Truth table for all Boolean functions of 2 variables

Truth table

- 16 Boolean functions of 2 variables.
\leftarrow every 4-bit value represents one
- 256 Boolean functions of 3 variables. \leftarrow every 8 -bit value represents one
- $2^{\wedge}\left(2^{\wedge} n\right)$ Boolean functions of n variables!

$$
\leftarrow \text { every 2n-bit value represents one }
$$

x	y	z	AND	OR	MAJ	ODD
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	1	0
1	0	0	0	1	0	1
1	0	1	0	1	1	0
1	1	0	0	1	1	0
1	1	1	1	1	1	1

Some Functions of 3 Variables

Sum-of-Products

Sum-of-products. Systematic procedure for representing a Boolean function using AND, OR, NOT.
proves that \{ AND, OR, NOT \} are universal
OR terms together.

x	y	z	MAJ	$x^{\prime} y z$	$x y^{\prime} z$	$x y z^{\prime}$	$x y z$	$x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z$
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0	1
1	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	1
1	1	0	1	0	0	1	0	1
1	1	1	1	0	0	0	1	1

expressing MAJ using sum-of-products

Fact. Any Boolean function can be expressed using AND, OR, NOT.

- \{ AND, OR, NOT\} are universal.
- Ex: $\operatorname{XOR}(x, y)=x y^{\prime}+x^{\prime} y$.

Notation	Meaning
x^{\prime}	NOT x
$x y$	x AND y
$x+y$	x ORy

Expressing XOR Using AND, OR, NOT

x	y	x^{\prime}	y^{\prime}	$x^{\prime} y$	$x y^{\prime}$	$x^{\prime} y+x y^{\prime}$	x XOR y
0	0	1	1	0	0	0	0
0	1	1	0	1	0	1	1
1	0	0	1	0	1	1	1
1	1	0	0	0	0	0	0

Exercise. Show \{AND, NOT\}, \{OR, NOT\}, \{NAND\}, \{NOR\} are universal. Hint. DeMorgan's law: $\left(x^{\prime} y^{\prime}\right)^{\prime}=x+y$.

Translate Boolean Formula to Boolean Circuit

Sum-of-products. XOR.
$X O R=x ' y+x y^{\prime}$

$$
\begin{array}{cc|c}
x & y & X O R \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}
$$

Truth table

Sum-of-products. XOR.

$X O R=x^{\prime} y+x y^{\prime}$

Translate Boolean Formula to Boolean Circuit

Sum-of-products. Majority.

MAJ $=x x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z$

x	y	z	MAJ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Truth table

Circuit

Sum-of-products. XOR.
$X O R=x^{\prime} y+x y^{\prime}$

Circuit

Sum-of-products. Majority.

$$
\text { MAJ }=x ' y z+x y^{\prime} z+x y z^{\prime}+x y z
$$

Truth table

Circuit

Sum-of-products. Majority.

Expressing a Boolean Function Using AND, OR, NOT

Ingredients.

- AND gates.
- OR gates.

NOT gates.

- Wire.

Instructions.

- Step 1: represent input and output signals with Boolean variables.
- Step 2: construct truth table to carry out computation.
- Step 3: derive (simplified) Boolean expression using sum-of products
- Step 4: transform Boolean expression into circuit.

Many possible circuits for each Boolean function.

- Sum-of-products not necessarily optimal in:
- number of switches (space)
- depth of circuit (time)

Ex. $\operatorname{MAJ}(x, y, z)=x^{\prime} y z+x y^{\prime} z+x y z '+x y z=x y+y z+x z$.

size $=10$, depth $=2$

size $=7$, depth $=2$

- 1 if odd number of inputs are 1 .
- O otherwise.

x	y	z	$O D D$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z^{\prime}$	$x y^{\prime} z^{\prime}$	$x y z$
0	0	0	0	0	$x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z$		
0	0	1	1	1	0	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	1

Expressing ODD using sum-of-products
$O D D(x, y, z)$.

- 1 if odd number of inputs are 1
- 0 otherwise.

Goal. $x+y=z$ for 4-bit integers

- We build 4-bit adder: 9 inputs, 4 outputs.
- Same idea scales to 128-bit adder.
- Key computer component.

	1	1	1	0
	2	4	8	7
+	3	5	7	9
	6	0	6	6

Step 1. Represent input and output in binary.

$\operatorname{ODD}(x, y, z)$.
. 1 if odd number of inputs are 1.

- 0 otherwise.

ODD = $x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z$

Let's Make an Adder Circuit

Goal. $x+y=z$ for 4-bit integers.

Step 2. [first attempt]

- Build truth table.

4-Bit Adder Truth Table

Q. Why is this a bad idea?
A. 128-bit adder: 2^{256+1} rows >> \# electrons in universe!

Goal. $x+y=z$ for 4-bit integers.
Step 2. [do one bit at a time]

- Build truth table for carry bit.
- Build truth table for summand bit.

Carry Bit				
x_{i}	y_{i}	c_{i}	c_{i+1}	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Summand Bit

x_{i}	y_{i}	c_{i}	z_{i}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Goal. $x+y=z$ for 4-bit integers.
Step 3.

- Derive (simplified) Boolean expression.

$c_{\text {out }}$	c_{3}	c_{2}	c_{1}
$c_{0}=0$			
x_{3}	x_{2}	x_{1}	x_{0}
+	y_{3}	y_{2}	y_{1}
	y_{0}		
z_{3}	z_{2}	z_{1}	z_{0}

Carry Bit				
x_{i}	y_{i}	c_{i}	c_{i+1}	MAJ
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Summand Bit

x_{i}	y_{i}	c_{i}	z_{i}	ODD
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Let's Make an Adder Circuit

Goal. $x+y=z$ for 4-bit integers.
Step 4.

- Transform Boolean expression into circuit.
- Chain together 1-bit adders.

Adder: Interface

Ex. Put in a binary amount to shift.

Right-shifter with decoder

1 Hot OR

1 hot $O R$.

- All devices compute their answer; we pick one.
- Exactly one select line is on.
- Implies exactly one output line is relevant.

Arithmetic logic unit (ALU). Computes all operations in parallel.

- Add and subtract.
- Xor.
- And.
- Shift left or right.
Q. How to select desired answer?

Arithmetic logic unit.

- Add and subtract.
- Xor.
- And.
- Shift left or right.

Arithmetic logic unit.

- Computes all operations in parallel.
- Uses 1-hot OR to pick each bit answer.

Device. Processes a word at a time. $\leftarrow 16$-bit words for Toy memory
Input bus. Wires on top.
Output bus. Wires on bottom.
Control. Individual wires on side.

Lessons for software design apply to hardware design!

- Interface describes behavior of circuit.
- Implementation gives details of how to build it.

Layers of abstraction apply with a vengeance!

- On/off.
- Controlled switch. [relay, transistor]
- Gates. [AND, OR, NOT]
- Boolean circuit. [MAJ, ODD]
- Adder.
- Shifter.
- Arithmetic logic unit.
- TOY machine.

