4.2 Sorting and Searching

INTRODUCTION TO

Programming

in Java

Robert Sedgewick Kevin Wayne

Twenty Questions

Intuition. Find a hidden integer.

interval size Q A
f | 128 <647 false
0 128
T [rm— 64 <967 true
0 64 128
T rm—r 32 <807 true
0 64 96
I = 16 <722 false
0 64 80
I (— 8 <76% false
0 72 80
T ™= 4 <782 true
0 76 80
I nl 2 <77 false
0 7678
T T 1 =77
0 77

Binary Search

Searching a Sorted Array

Searching a sorted array. Given a sorted array, determine the index
associated with a given key.

Ex. Dictionary, phone book, book index, credit card numbers, ...

Binary search.
« Examine the middle key. To| faback
. If it matches, return its index.

. Otherwise, search either the left or right half.

the key mid [macabre
(known value)
is between
a[mid] and afhi-1]

s

the index _— 7 |query
(unknown value)
is between mid and hi-1

-1

Binary search in an array (one step)

Binary Search: Java Implementation

Invariant. Algorithm maintains a[1lo] < key = a[hi-1].

public static int search(String key, String[] a) {
return search(key, a, 0, a.length);

}

public static int search(String key, String[] a, int lo, int hi) {
if (hi <= lo) return -1;
int mid = 1lo + (hi - 1lo) / 2;
int cmp = a[mid] .compareTo (key) ;

if (cmp > 0) return search(key, a, lo, mid);
else if (cmp < 0) return search(key, a, mid+l, hi);
else return mid;

Java library implementation: Arrays.binarySearch()

Binary Search: Mathematical Analysis

Analysis. To binary search in an array of size N: do one comparison,
then binary search in an array of size N /2.

N -N/2—->N/4 -N/8 — ... > 1

Q. How many times can you divide a humber by 2 until you reach 1?
A. log, N.

1
2—1
4—2 =1
§—=>4—-2 —1
16 >8—>4—-2 —1
32—-16—-8—=4—->2 —1
64—>32 - 16>8—>4—>2 —1
128—>64—>32 - 16 >8—4—>2 — 1
256 > 128> 64 —>32 - 16 >8 >4 =2 — |
512256 > 128> 64—>32 - 16 >8 =>4 —>2 — 1
1024 — 512 - 256 - 128 =64 - 32 - 16 > 8 =4 =2 — |

Exception Filter

Exception filter. Read a sorted list of strings from a whitelist file,
then print out all strings from standard input not in the whitelist.

public static void main(String[] args) {

In in = new In(args[0]);
String s = in.readAll();
String[] words = s.split("\\s+");
while (!StdIn.isEmpty()) {
String key = StdIn.readString() ;
if (search(key, words) == -1)
StdOut.println (key) ;
}

}

more test.txt % more whitelist.txt
bob@office alice@home
carl@beach bob@office
marvin@spam carl@beach
bob@office dave@boat

bob@office

mallory@spam % java BinarySearch whitelist.txt < test.txt
dave@boat marvin@spam
eve@airport mallory@spam
alice@home eve@airport

Sorting

Case Study: Sorting

Sorting problem. Rearrange N items in ascending order.

Applications. Statistics, databases, data compression, bioinformatics,
computer graphics, scientific computing, ...

Hauser Hanley
Hong Haskell
Hsu Hauser
Hayes ‘ Hayes
Haskell Hong
Hanley Hornet
Hornet Hsu

Insertion Sort

Insertion sort.
« Brute-force sorting solution.
« Move left-to-right through array.
« Exchange next element with larger elements to its left, one-by-one.

a

0 1 2 3 4 5 6 7
6 6 and had him his was you the
5 the you
4 the was
his the

Inserting a[6] into position by exchanging with larger entries to its left

Insertion Sort

Insertion Sort

Insertion sort.
« Brute-force sorting solution.
« Move left-to-right through array.
« Exchange next element with larger elements to its left, one-by-one.

0 1 2 3 4 5 6 7
was had him and you his the but
had was

him was

and had him was
you
his was you
the was you

N OO A W N
R A W s O KR O

but had him his the was you
and but had him his the was you

Inserting a[1] through a[N-1] into position (insertion sort)

Insertion Sort: Java Implementation

Insertion Sort: Empirical Analysis

Observation. Number of comparisons depends on input family.

« Descending: ~ N2/2.
= Random: ~ N2/4.
= Ascending: ~ N.

Insertion Sort: Empirical Analysis

Data analysis. Plot # comparisons vs. input size on log-log scale.

e
Hypothesis. # comparisons grows quadratically with input size ~ N2/ 4.

Insertion Sort: Mathematical Analysis

Worst case. [descending]
« Iteration i requires i comparisons.
« Total=(0+1+2+..+N-1) ~ N2/2 compares.

BEOOEEE - - ~
i

Average case. [random]
= Iteration i requires i/2 comparisons on average.
« Total=(0+1+2+...+N-1)/2 ~ N2?/4 compares

EBEOEBEEEIES - - -
i

slope

Insertion Sort: Lesson

Lesson. Supercomputer can't rescue a bad algorithm.

Comparisons 1R
m
107

laptop instant 1 day 3 centuries

super 1012 instant 1 second 2 weeks

Moore's Law and Algorithms

Quadratic algorithms do not scale with technology.
= New computer may be 10x as fast.
=« But, has 10x as much memory so problem may be 10x bigger.
= With quadratic algorithm, takes 10x as long!

“Software inefficiency can always outpace Moore's Law.
Moore's Law isn't a match for our bad coding.” — Jaron Lanier

Lesson. Need linear (or linearithmic) algorithm to keep pace with
Moore's law.

Moore's Law

Moore's law. Transistor density on a chip doubles every 2 years.

Variants. Memory, disk space, bandwidth, computing power per $.

Moore’s Law

The Fifth Paradigm Logaritamic Plot

S
S
=
>
3
a
8
3
@
g
a
et
5

Calc

ca Relay o Integrated Circait
0 1920 1930 1940 19 9 0 1980 1990 2000
Year

Mergesort

First Draft
ofa

Report on the
EDVAC

John von Neumann

Mergesort.

Mergesort

« Divide array into two halves.
« Recursively sort each half.
» Merge two halves to make sorted whole.

input
was had him and you his the but

sort left
and had him was

sort right
but his the you

merge
and but had him his the was you

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array. E

T3 ko andk]l 75 1 2 3 4 5 6 7
and had him was but his the you

0 4 0 and and but

1 4 1 but had but

1 5 2 had had his

2 5 3 him him his

3 5 4 his was his

3 6 5 the was the

3 6 6 was was you

4 7 7 you you

Mergesort: Example

M ERGESORTEZXAMPLE
[Em|
[e/R]
[Elc M R|
[E]s]
[o/R]
|[Elo R S|
E E G MORR S|
[ET|
[a[x]
|aE T x|
[x[]
[E[L]
|[E'L M P|
AEELMPTZX|

AEEEEGLMMOPRRSTX

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array. E

String[] aux = new String[N];
// merge into auxiliary array
int i = lo, j = mid;

for (int k = 0; k < N; k++) {

if (i == mid) aux[k] = a[j++];
else if (j == hi) aux[k] = a[i++];
else if (a[j].compareTo(a[i]) < 0) aux[k] = a[j++];
else aux[k] = a[i++];

}

// copy back

for (int k = 0; k < N; k++) {
af[lo + k] = aux[k];

}

Mergesort: Java Implementation Mergesort: Mathematical Analysis

public class Merge { Ana!ys:s. To mergesort array of size N, n'\er‘gesor"r two subar‘r‘ays
of size N/2, and merge them together using < N comparisons.

public static void sort(String[] a) { .
sort(a, 0, a.length); we assume N is a power of 2
}

// Sort a[lo, hi). T(N) N

public static void sort(String[] a, int lo, int hi) {
int N = hi - lo; /\

if (N <= 1) return;
T(N /2) T(N /2) 2(N/2)
// recursively sort left and right halves
int mid = lo + N/2;
sort(a, lo, mid);
it e, T T/ 4) T /4) T/ 4) T/ 4) 4/ 4)
// merge (see previous slide) log, N
}
}
lo mid hi 7(2) 7(2) T(2) T(2) 72) T2 7(2) T(2) N/2(2)
Nlog, N

10 11 12 13 14 15 16 17 18 19

Mergesort: Mathematical Analysis Mergesort: Lesson

Mathematical analysis. Lesson. Great algorithms can be more powerful than supercomputers.

analysis comparisons

worst Nlog, N
average Nlog, N @ isons
Computer omparison Insertion Mergesort
best 12 Nlog, N Per Second
laptop 107 3 centuries 3 hours
super 1012 2 weeks instant
Validation. Theory agrees with observations.
N = 1 billion

10,000 120 thousand 133 thousand
20 million 460 million 485 million
50 million 1,216 million 1,279 million

Longest Repeated Substring

Redundancy Detector

Longest repeated substring. Given a string, find the longest substring
that appears at least twice.

Longest Repeated Substring: A Sorting Solution

input string
01234567 891011121314

aacaagtttacaagc
form suffixes /

sort suffixes to bring repeated substrings together

suffixes sorted suffixes

0 aacaagtttacaagc 0 aacaagtttacaagc
1 acaagtttacaagc 11 aagcC

2 caagtttacaagc 3 aagtttacaagc

3 aagtttacaagc 9 acaagc

4 agtttacaagc 1 acaagtttacaagc
5 gtttacaagc 12 agcC

6 tttacaagc 4 agtttacaagc

7 ttacaagc 14 C

8 tacaagc 10 Caagc

9 acaagc 2 caagtttacaagc
10 caagc 13 gcC

1 aagc s gtttacaagc

12 agc compute longest prefix / 8 tacaagc

13 gc between adjacent suffixes 7 ttacaagc

14 cC 6 tttacaagc

longest repeated substring
1 9
aacaagtttacaagc

a a c a a gt t t acaagc

Brute force.
« Tryall indices i and j for start of possible match.
« Compute longest common prefix for each pair (quadratic).

a a c a a g t t t ac a a g c

i J

Applications. Bioinformatics, Burrows-Wheeler transform, ...

Longest Repeated Substring: Java Implementation

Suffix sorting implementation.

int N = s.length() ;

String[] suffixes = new String[N];

for (int i = 0; i < N; i++)
suffixes[i] = s.substring(i, N);

Arrays.sort (suffixes) ;

Longest repeated substring. Search only adjacent suffixes.

String lrs = "";

for (int i = 0; i < N-1; i++) {
String x = lcp(suffixes[i], suffixes[i+l]);
if (x.length() > lrs.length()) lrs = x;

LCP. Find the longest string that is a prefix of both s and t.

Ex. lcp("acaagtttac", "acaagc") = "acaag".

Longest Repeated Substring: Empirical Analysis OOP Context for Strings

Possible memory representation of a string.
« s = "aacaagtttacaagc";

OOOOOoooDnDOoas | O

Amendments 18,369 37 sec 0.25 sec 216 a g t t t a B | &9
. tot
Aesop's Fables 191,945 3958 sec 1.0 sec 58 address length
Moby Dick 1.2 million 43 hours * 7.6 sec 79
Bl
Bible 4.0 million 20 days t 34 sec 1 « t = s.substring(5, 15); t m-
D5 10
Chromosome 11 7.1 million 2 months * 61 sec 12,567
Pi 10 million 4 months t 84 sec 14) .
No characters are copied when you invoke substring () method!
1 estimated
Consequences.
« Calling substring () takes constant time (instead of linear).
Lesson. Sorting o the rescue; enables new research. « Creating suffixes takes linear space (instead of quadratic).
33
Summary

Binary search. Efficient algorithm to search a sorted array.
Mergesort. Efficient algorithm to sort an array.

Applications. Many many applications involve sorting and searching.

