4.1 Performance

Scientific Method

Analysis of algorithms. Framework for comparing algorithms and predicting performance.

Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles. Experiments we design must be reproducible; hypothesis must be falsifiable.
"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time?" - Charles Babbage

Algorithmic Successes

Discrete Fourier transform.

- Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N² steps.
- FFT algorithm: $N \log N$ steps, enables new technology.

N -body Simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: N^{2} steps.
- Barnes-Hut: $N \log N$ steps, enables new research.

Three-Sum

```
public class ThreeSum {
    // return number of distinct triples (i, j, k)
    // such that (a[i] + a[j] + a[k] == 0)
    public static int count(int[] a) {
        int N = a.length;
        int cnt = 0;
        for (int i = 0; i < N; i++)
        for (int i = 0; i < N; i++)
            for (int j = i+1; j < N; j++)
                if (a[i] +a[j] +a[k] == 0) cnt++;
        return cnt;
    }
    public static void main(String[] args) {
        int[] a = StdArrayIO.readInt1D();
        StdOut.println(count(a)).
    }
}
```

Three-sum problem. Given N integers, find triples that sum to 0 . Application. Deeply related to problems in computational geometry.

```
% more 8ints.txt
30-30 -20 -10 40 0 10 5
% java ThreeSum < 8ints.txt
4
30-30 0
30-20-10
-30
-10 0}1
```

Q. How would you write a program to solve the problem?

Empirical Analysis

Empirical analysis. Run the program for various input sizes.

N	time $^{\text {t }}$
512	0.03
1024	0.26
2048	2.16
4096	17.18
8192	136.76

\dagger Running Linux on Sun-Fire-X4100 with 16GB RAM
Q. How to time a program?
A. A stopwatch object.

public class Stopwatch	
Stopwatch()	create a new stopwatch and start it running
double	elapsedTime()

```
public class Stopwatch {
    private final long start;
    public Stopwatch() {
        start = System.currentTimeMillis();
    }
    public double elapsedTime() {
        return (System.currentTimeMillis() - start) / 1000.0;
    }
```

\}
Q. How to time a program?
A. A stopwatch.

Stopwatch

0

2
\% java ThreeSum < 1Kints.txt
\% java ThreeSum < 2Kints.txt
tick tick tick tick tick tick
tick tick tick ticict tick tick
tick tick tick tick tick tick
tick
Hick tick tick tick tiok tion
tick tick tick tick tick tick
$\begin{array}{lll}2 \\ 391930676 & -763182495 & 371251819 \\ -326747290 & 802431422 & -475684132\end{array}$
Q. How to time a program?

A. A stopwatch object.

public class Stopwatch		
Stopwatch()	create a new stopwatch and start it running	
double	elapsedTime()	return the elapsed time since creation, in seconds

```
public static void main(String[] args)
    int[] a = StdArrayIO.readInt1D()
    Stopwatch timer = new Stopwatch()
    StdOut.println(count(a));
    StdOut.println(timer.elapsedTime());
}
```

Data analysis. Plot running time vs. input size N.

Prediction and Verification

Hypothesis. $2.5 \times 10^{-10} \times N^{3}$ seconds for input of size N.

Prediction. 17.18 seconds for $N=4,096$.
Observations.

N	time †
4096	17.18
4096	17.15
4096	17.17

agrees

Prediction. 1100 seconds for $N=16,384$.
Observation.

N	time †
16384	1118.86

agrees

Data analysis. Plot running time vs. input size N on log-log scale.

Regression. Fit line through data points: $a N^{b}$. Hypothesis. Running time grows cubically with input size: a N^{3}.

Doubling Hypothesis

Doubling hypothesis. Quick way to formulate a power law hypothesis.
Q. What is effect on the running time of doubling the size of the input?

Mathematical Analysis

Donald Knuth Turing award ' 74

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```
int count = 0;
    for (int i = 0; i< N; i++)
        for (int j = i+1; j < N; j++)
            if (a[i] + a[j] == 0) count++;
```


Running time. Count up frequency of execution of each instruction and weight by its execution time.

```
int count = 0;
for (int i = 0; i < N; i++)
    if (a[i] == 0) count++;
```

operation	frequency
variable declaration	2
variable assignment	2
less than comparison	$N+1$
equal to comparison	N
array access	N
increment	$\leq 2 N$

Tilde Notation

Tilde notation.

- Estimate running time as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

```
Ex 1. 6 N N}+17\mp@subsup{N}{}{2}+56~ ~ 6N 
Ex2. 6N 3}+100N\mp@subsup{N}{}{4/3}+56~6N
Ex 3. 6 N 3}+17\mp@subsup{N}{}{2}\operatorname{log}N~~6N
    discard lower-order terms
    (e.g.,N N 1000: 6 trillion vs. 169 million)
```

```
Technical definition. \(f(N) \sim g(N)\) means \(\lim _{N \rightarrow \infty} \frac{f(N)}{g(N)}=1\)
```

Running time. Count up frequency of execution of each instruction and weight by its execution time.

Inner loop. Focus on instructions in "inner loop."

Analysis: Empirical vs. Mathematical

Empirical analysis.

- Measure running times, plot, and fit curve.
- Easy to perform experiments.
- Model useful for predicting, but not for explaining.

Mathematical analysis.

- Analyze algorithm to estimate \# ops as a function of input size.
- May require advanced mathematics.
- Model useful for predicting and explaining.

Critical difference. Mathematical analysis is independent of a particular machine or compiler; applies to machines not yet built.

Power law. Running time of a typical program is $\sim c N^{a}$.
Exponent a depends on: algorithm.
Constant c depends on:

- algorithm
- input data
- caching
- machine
- compiler
- garbage collection
- just-in-time compilation
- CPU use by other applications

Our approach. Use doubling hypothesis (or mathematical analysis) to estimate exponent a, run experiments to estimate c.

Observation. A small subset of mathematical functions suffice to describe running time of many fundamental algorithms.
\}
\}
$\lg N=\log _{2} N$
$\lg N=\log _{2} N$
for (int $i=0 ; i<N ; i++)$
for (int $i=0 ; i<N ; i++)$
N
N
for (int $i=0 ; i<N ; i++$)
\quad for (int $j=0 ; j<N ; j++)$
for (int $i=0 ; i<N ; i++$)
\quad for (int $j=0 ; j<N ; j++)$
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N} ; \mathrm{j}++$)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N} ; \mathrm{j}++$)
\}

```
\}
```

```
public static void \(g(\) int \(N)\{\)
```

public static void $g($ int $N)\{$

```
public static void \(g(\) int \(N)\{\)
    if ( \(\mathrm{N}==0\) ) return;
    if ( \(\mathrm{N}==0\) ) return;
    if ( \(\mathrm{N}==0\) ) return;
    g(N/2);
    g(N/2);
    g(N/2);
    (N/2)
    (N/2)
    (N/2)
    for (int \(i=0\); \(i<N\); \(i++\) )
    for (int \(i=0\); \(i<N\); \(i++\) )
    for (int \(i=0\); \(i<N\); \(i++\) )
\}
```

\}

```
\}
```

$N \lg N$

```
public static void f (int N )
```

public static void f (int N)

```
public static void f (int N )
    if ( \(\mathrm{N}=0\) ) return;
    if ( \(\mathrm{N}=0\) ) return;
    if ( \(\mathrm{N}=0\) ) return;
    \(\mathrm{f}(\mathrm{N}-1)\);
    \(\mathrm{f}(\mathrm{N}-1)\);
    \(\mathrm{f}(\mathrm{N}-1)\);
    \(£(\mathrm{~N}-1)\)
\(\mathrm{f}(\mathrm{N}-1)\)
```

 \(£(\mathrm{~N}-1)\)
 $\mathrm{f}(\mathrm{N}-1)$

```
    \(£(\mathrm{~N}-1)\)
\(\mathrm{f}(\mathrm{N}-1)\)
```

```
```

while (N > 1)

```
```

while (N > 1)

```
```

while (N > 1)

```
```

while (N > 1)
N = N / 2;

```
    N = N / 2;
```

 N = N / 2;
    ```
    N = N / 2;
```

```
    \(N^{2}\)
```

```
    \(N^{2}\)
```


| order of growth
 description | | factor for
 dunction
 doubthn
 hypothesis |
| :---: | :---: | :---: |
| constant | 1 | 1 |
| logarithmic | $\log N$ | 1 |
| linear | N | 2 |
| linearithmic | $N \log N$ | 2 |
| quadratic | N^{2} | 4 |
| cubic | N^{3} | 8 |
| exponential | 2^{N} | 2^{N} |
| | | |

25

| order of growth | predicted running time if problem size is increased by a factor of 100 | order of growth | predicted factor
 of problem size increase if computer speed is increased by
 a factor of 10 |
| :---: | :---: | :---: | :---: |
| linear | a few minutes | linear | 10 |
| linearithmic | a few minutes | linearithmic | 10 |
| quadratic | several hours | quadratic | 3-4 |
| cubic | a few weeks | cubic | 2-3 |
| exponential | forever | exponential | 1 |
| Effect of in for a program | reasing problem size at runs for a few seconds | Effect of increasing computer speed on problem size that can be solved in a fixed amount of time | |

Binomial Coefficients
Binomial coefficient. $\binom{n}{k}=$ number of ways to choose k of n elements.

$$
\text { Pascal's identity. } \quad\binom{n}{k}=\underbrace{\binom{n-1}{k-1}}_{\begin{array}{c}
\text { contains } \\
\text { first element }
\end{array}}+\underbrace{\binom{n-1}{k}}_{\begin{array}{c}
\text { excludes } \\
\text { first element }
\end{array}}
$$

Binomial coefficient. $\binom{n}{k}=$ number of ways to choose k of n elements.

Sierpinski triangle. Color black the odd integers in Pascal's triangle.

Binomial Coefficients: First Attempt

```
public class SlowBinomial {
    // natural recursive implementation
    public static long binomial(long n, long k) {
        if (k == 0) return 1;
        if (n == 0) return 0
        return binomial(n-1, k-1) + binomial(n-1, k)
    }
    public static void main(String[] args) {
            int N = Integer.parseInt(args[0])
            int K = Integer.parseInt(args[1])
            StdOut.println(binomial (N, K));
    }
}
```

Binomial coefficient. $\binom{n}{k}=$ number of ways to choose k of n elements.

Probability of "quads" in Texas hold 'em:

$$
\left.\frac{\binom{13}{1} \times\binom{ 48}{3}}{\binom{52}{7}}=\frac{224,848}{133,784,560} \text { (about } 594: 1\right)
$$

Probability of 6-4-2-1 split in bridge:

$=\frac{29,858,811,840}{635,013,559,600}$ (about $21: 1$)

| $(2 n, n)$ | time † |
| :---: | :---: |
| $(26,13)$ | 0.46 |
| $(28,14)$ | 1.27 |
| $(30,15)$ | 4.30 |
| $(32,16)$ | 15.69 |
| $(34,17)$ | 57.40 |
| $(36,18)$ | 230.42 |

increase n by 1 running time increases by about $4 x$
Q. Is running time linear, quadratic, cubic, exponential in n?

Function call tree.

Binomial Coefficients: Dynamic Programming

```
public class Binomial {
```

public class Binomial {
public static void main(String[] args) {
public static void main(String[] args) {
int N = Integer.parseInt(args[0]);
int N = Integer.parseInt(args[0]);
int K = Integer.parseInt(args[1]);
int K = Integer.parseInt(args[1]);
long[][] bin = new long[N+1][K+1];
long[][] bin = new long[N+1][K+1];
// base cases
// base cases
for (int k = 1; k <= K; k++) bin[0][K] = 0;
for (int k = 1; k <= K; k++) bin[0][K] = 0;
for (int n = 0; n <= N; n++) bin[N][0] = 1;
for (int n = 0; n <= N; n++) bin[N][0] = 1;
// bottom-up dynamic programming
// bottom-up dynamic programming
for (int n = 1; n <= N; n++)
for (int n = 1; n <= N; n++)
for (int k = 1; k <= K; k++)
for (int k = 1; k <= K; k++)
bin[n][k] = bin[n-1][k-1] + bin[n-1][k];
bin[n][k] = bin[n-1][k-1] + bin[n-1][k];
// print results
// print results
StdOut.println(bin[N][K]);
StdOut.println(bin[N][K]);
}
}
}

```

Key idea. Save solutions to subproblems to avoid recomputation.

binomial( \(n, k\) )

Tradeoff. Trade memory for time.

Timing Experiments

Timing experiments: dynamic programming.
\begin{tabular}{|l|l|}
\hline\((2 n, n)\) & time t \\
\hline\((26,13)\) & instant \\
\hline\((28,14)\) & instant \\
\hline\((30,15)\) & instant \\
\hline\((32,16)\) & instant \\
\hline\((34,17)\) & instant \\
\hline\((36,18)\) & instant \\
\hline
\end{tabular}
\(\dagger\) Running Linux on Sun-Fire-X4100 with 16GB RAM
Q. Is running time linear, quadratic, cubic, exponential in \(n\) ?

Alternative: \(\quad\binom{n}{k}=\frac{n!}{n!(n-k)!}\)
Caveat. 52! overflows a long, even though final result doesn't.

Stirling's approximation:
\[
\ln n!\approx n \ln n-n+\frac{\ln (2 \pi n)}{2}+\frac{1}{12 n}-\frac{1}{360 n^{3}}+\frac{1}{1260 n^{5}}
\]

Application. Probability of exact \(k\) heads in \(n\) flips with a biased coin.
\[
\binom{n}{k} p^{k}(1-p)^{n-k}
\]

\section*{An Example}
Q. How much memory does this program use as a function of N ?
```

public class RandomWalk {
public static void main(String[] args) {
int N = Integer.parseInt(args[0]);
int[][] count = new int[N][N];
int[][] count
int x = N/2;
for (int i = 0; i<N; i++) {
// no new variable declared in loop
count[x][y]++;
}
}

```
\}

Summary
Q. How can I evaluate the performance of my program?
A. Computational experiments, mathematical analysis.
Q. What if it's not fast enough? Not enough memory?
- Understand why.
- Buy a faster computer.
- Find a better algorithm in a textbook.
- Discover a new algorithm.
\begin{tabular}{|c|c|c|}
\hline attribute & better machine & better algorithm \\
\hline cost & \$\$\$ or more. & \$ or less. \\
\hline applicability & \begin{tabular}{c} 
makes "everything" \\
run faster
\end{tabular} & \begin{tabular}{c} 
does not apply to \\
some problems
\end{tabular} \\
\hline improvement & \begin{tabular}{c} 
quantitative \\
improvements
\end{tabular} & \begin{tabular}{c} 
dramatic qualitative \\
improvements possible
\end{tabular} \\
\hline
\end{tabular}```

