1.6 Case Study: Random Surfer

World Wide Web

World wide web. [Tim Berners-Lee, CERN 1980] Project based on hypertext for sharing and updating information among researchers.

first Web server

Sir Tim Berners-Lee

Memex. [Vannevar Bush, 1936] Theoretical hypertext computer system; pioneering concept for world wide web.

- Follow links from book or film to another.
- Tool for establishing links.

Life magazine, November 1945

Vannevar Bush

Web Browser

Web browser. Killer application of the 1990s.

La biblioteca de Babel. [Jorge Luis Borge, 1941]

When it was proclaimed that the Library contained all books, the first impression was one of extravagant happiness... There was no personal or world problem whose eloquent solution did not exist in some hexagon.
this inordinate hope was followed by an excessive depression. The certitude that some shelf in some hexagon held precious books and that these precious books were inaccessible seemed almost intolerable.

Web search. Killer application of the 2000s.

Google

Web Imaees Grouss Nevs Erooge Local moren, \qquad

Web Search

Relevance. Is the document similar to the query term? Importance. Is the document useful to a variety of users?

Search engine approaches.

- Paid advertisers.
- Manually created classification.
- Feature detection, based on title, text, anchors, ...
. "Popularity."

Google's PageRank ${ }^{\text {TM }}$ algorithm. [Sergey Brin and Larry Page, 1998]

- Measure popularity of pages based on hyperlink structure of Web. Revolutionized access to world's information.

Web Graph Input Format

Input format.

- N pages numbered 0 through $\mathrm{N}-1$.
- Represent each hyperlink with a pair of integers.

\% more tiny.txt

12
13
$\begin{array}{lll}1 & 3 & 1\end{array}$

Graph representatio
42

Model. Web surfer chooses next page:

- 90% of the time surfer clicks random hyperlink.
- 10% of the time surfer types a random page.

Caveat. Crude, but useful, web surfing model.

- No one chooses links with equal probability.
- No real potential to surf directly to each page on the web.
- The 90-10 breakdown is just a guess.
- It does not take the back button or bookmarks into account.
. We can only afford to work with a small sample of the web.
- ...

Transition Matrix

Transition matrix. p[i][j]= prob. that surfer moves from page ito j.


```
public class Transition
    public static void main(String[] args) {
        int N = StdIn.readInt(); || # number of pages
        nt[][] counts = new int[N][N]; // # links from page i to j
        M, (l) #ounts = new int[N][N]; links from page
    /l accumulate link counts
    while (!StdIn.isEmpty()) (
        int i = StdIn.readInt();
            int j = StdIn.readInt();
            int j= StdIn.readInt();
            counts[i][j]++;
        }
        // print transition matrix
        StdOut.println(N + " " + N);
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
            double p = .90*counts[i][j]/outDegree[i] + .10/N
            StdOut.printf("%7.5f ", p);
        }
        StdOut.println()
    }
}
java Transition < tiny.txt
55
0.020000 .920000 .020000 .020000 .02000 0.020000 .020000 .380000 .380000 .20000
0.020000 .020000 .020000 .920000 .02000
0.920000 .020000 .020000 .020000 .02000
0.470000 .020000 .470000 .020000 .02000

Random move. Surfer is on page page. How to choose next page \(j\) ?
- Row page of transition matrix gives probabilities.
- Compute cumulative probabilities for row page.
- Generate random number \(x\) between 0.0 and 1.0 .
- Choose page j corresponding to interval where \(r\) lies.


Random Surfer: Monte Carlo Simulation
```

public class RandomSurfer {
public static void main(String[] args) {
int T = Integer.parseInt(args[0]); // number of moves
int N = StdIn.readInt(); /| number of pages
int page = 0; // current page
double[][] p = new int[N][N]; // transition matrix
// read in transition matrix
// simulate random surfer and count page frequencies
int[] freq = new int[N];
for (int t = 0; t < T; t++) {
// make one random move see previous slide
freq[page]++;
}
// print page ranks
for (int i=0;i<N;i++) {
StdOut.printf("%8.5f", (double) freq[i] / T)
}
StdOut.println();
}
page rank

```

Random move. Surfer is on page page. How to choose next page \(j\) ?
- Row page of transition matrix gives probabilities.
- Compute cumulative probabilities for row page.
- Generate random number r between 0.0 and 1.0 .
- Choose page j corresponding to interval where r lies.
```

// make one random move
double r = Math.random();
double sum = 0.0;
for (int j = 0; j < N; j++) {
// find interval containing r
sum += p[page][j];
if (r < sum) { page = j; break; }
}

```

\section*{Mathematical Context}

Convergence. For the random surfer model, the fraction of time the surfer spends on each page converges to a unique distribution, independent of the starting page.

\footnotetext{
"page rank"
"stationary distribution" of Markov chain
"principal eigenvector" of transition matrix
}

\(\left[\frac{428,671}{1570,055}, \frac{417,205}{1570,055}, \frac{229,519}{1570,055}, \frac{388,162}{1570,055}, \frac{106,498}{1570,055}\right]\)
\(1,570,055,1 \frac{1,570,055}{}, \frac{1,570,055}{}, \frac{1,570,055}{}, \frac{1,570,055}{}\)

\section*{Mixing a Markov Chain}

\section*{The Power Method}
Q. If the surfer starts on page 0 , what is the probability that surfer ends up on page \(i\) after two steps?
A. Matrix-vector multiplication.


Power method. Repeat until page ranks converge.

Q. If the surfer starts on page 0 , what is the probability that surfer ends up on page i after one step?
A. First row of transition matrix.
\begin{tabular}{|c|c|c|}
\hline rank [] & p[][] & newRank[] \\
\hline first move & \(\left[\begin{array}{llll}.02 \\ .92 & .02 .02 .02\end{array}\right]\) & \\
\hline [ 1.00 .00 .00 .00 .0 ] * & \(\left[\begin{array}{ccccc}.02 & .02 & .38 & 38 & .20 \\ .02 & 02 & .02 & .92 & .02 \\ .92 & 02 & .02 & .02 & .02 \\ .47 & 02 & .47 & 02 & .02\end{array}\right]\) &  \\
\hline
\end{tabular}

\section*{The Power Method}

Convergence. For the random surfer model, the power method iterates converge to a unique distribution, independent of the starting page.

> "page rank" "stationary distribution" of Markov chain "principal eigenvector" of transition matrix

20th move


Random Surfer: Scientific Challenges

Google's PageRank \({ }^{\text {TM }}\) algorithm. [Sergey Brin and Larry Page, 1998]
- Rank importance of pages based on hyperlink structure of web, using 90-10 rule.
- Revolutionized access to world's information.


Page ranks

Scientific challenges. Cope with 4 billion-by-4 billion matrix!
. Need data structures to enable computation.
- Need linear algebra to fully understand computation.```

