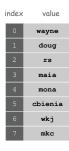

Arrays

1.4 Arrays



This lecture. Store and manipulate huge quantities of data.

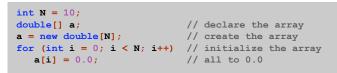
Array. Indexed sequence of values of the same type.

Examples.

- 52 playing cards in a deck.
- 5 thousand undergrads at Princeton.
- 1 million characters in a book.
- 10 million audio samples in an MP3 file.
- 4 billion nucleotides in a DNA strand.
- 73 billion Google queries per year.
- 50 trillion cells in the human body.
- 6.02 × 10²³ particles in a mole.

4

Many Variables of the Same Type


Goal. 10 variables of the same type.

<pre>// tedious and error-prone</pre>
double a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
a0 = 0.0;
a1 = 0.0;
a2 = 0.0;
a3 = 0.0;
a4 = 0.0;
a5 = 0.0;
a6 = 0.0;
a7 = 0.0;
a9 = 0.0;
a9 = 0.0;
double $x = a4 + a8;$

Arrays in Java

Java has special language support for arrays.

- To make an array: declare, create, and initialize it.
- To access element i of array named a, use a[i].
- Array indices start at 0.

Arrays in Java

Java has special language support for arrays.

- To make an array: declare, create, and initialize it.
- To access element i of array named a, use a[i].
- Array indices start at 0.

```
int N = 10;
double[] a; // declare the array
a = new double[N]; // create the array
for (int i = 0; i < N; i++) // initialize the array
a[i] = 0.0; // all to 0.0
```

Compact alternative.

- Declare, create, and initialize in one statement.
- Default initialization: all numbers automatically set to zero.

```
int N = 10;
double[] a = new double[N]; // declare, create, init
```

5

7

Vector Dot Product

Dot product. Given two vectors x[] and y[] of length \mathbb{N} , their dot product is the sum of the products of their corresponding components.

<pre>double[] x = { 0.3, 0.6, 0.1 }; double[] y = { 0.5, 0.1, 0.4 };</pre>	
<pre>double sum = 0.0; for (int i = 0; i < N; i++) {</pre>	
<pre>sum += x[i]*y[i]; }</pre>	

i	x[i]	y[i]	x[i]*y[i]	sum
				0
0	.30	.50	.15	.15
1	.60	.10	.06	.21
2	.10	.40	.04	.25
				.25

6

Array Processing Code

create an array with random values	<pre>double[] a = new double[N]; for (int i = 0; i < N; i++) a[i] = Math.random();</pre>
print the array values, one per line	<pre>for (int i = 0; i < N; i++) System.out.println(a[i]);</pre>
find the maximum of the array values	<pre>double max = Double.NEGATIVE_INFINITY; for (int i = 0; i < N; i++) if (a[i] > max) max = a[i];</pre>
compute the average of the array values	<pre>double sum = 0.0; for (int i = 0; i < N; i++) sum += a[i]; double average = sum / N;</pre>
copy to another array	<pre>double[] b = new double[N]; for (int i = 0; i < N; i++) b[i] = a[i];</pre>
reverse the elements within an arrayy	<pre>for (int i = 0; i < N/2; i++) { double temp = b[i]; b[i] = b[N-1-1]; b[N-i-1] = temp; }</pre>

Shuffling a Deck

Setting Array Values at Compile Time

Ex. Print a random card.

```
String[] rank = {
    "2", "3", "4", "5", "6", "7", "8", "9",
    "10", "Jack", "Queen", "King", "Ace"
};
String[] suit = {
    "Clubs", "Diamonds", "Hearts", "Spades"
};
int i = (int) (Math.random() * 13); // between 0 and 12
int j = (int) (Math.random() * 4); // between 0 and 3
System.out.println(rank[i] + " of " + suit[j]);
```

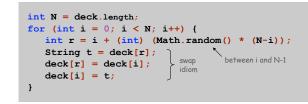
Setting Array Values at Run Time

Ex. Create a deck of playing cards and print them out.

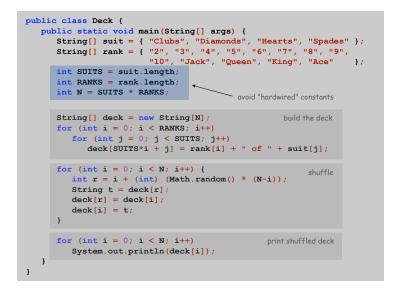
```
String[] deck = new String[52];
for (int i = 0; i < 13; i++)
   for (int j = 0; j < 4; j++)
        deck[4*i + j] = rank[i] + " of " + suit[j];
for (int i = 0; i < 52; i++)
        System.out.println(deck[i]);</pre>
```

Q. What does it output?

9


11

Shuffling


Goal. Given an array, rearrange its elements in random order.

Shuffling algorithm.

- In iteration i, pick random card from deck[i] through deck[N-1], with each card equally likely.
- Exchange it with deck[i].

Shuffling a Deck of Cards

Shuffling a Deck of Cards

<pre>% java Deck</pre>	<pre>% java Deck</pre>
5 of Clubs	10 of Diamonds
Jack of Hearts	King of Spades
9 of Spades	2 of Spades
10 of Spades	3 of Clubs
9 of Clubs	4 of Spades
7 of Spades	Queen of Clubs
6 of Diamonds	2 of Hearts
7 of Hearts	7 of Diamonds
7 of Clubs	6 of Spades
4 of Spades	Queen of Spades
Queen of Diamonds	3 of Spades
10 of Hearts	Jack of Diamonds
5 of Diamonds	6 of Diamonds
Jack of Clubs	8 of Spades
Ace of Hearts	9 of Diamonds
5 of Spades	10 of Spades

Coupon Collector

Coupon Collector Problem

Coupon collector problem. Given N different card types, how many do you have to collect before you have (at least) one of each type?

assuming each possibility is equally likely for each card that you collect

Simulation algorithm. Repeatedly choose an integer \pm between 0 and ${\tt N-1}.$ Stop when we have at least one card of every type.

- Q. How to check if we've seen a card of type i?
- A. Maintain a boolean array so that found[i] is true if we've already collected a card of type i.

Coupon Collector: Java Implementation

```
public class CouponCollector {
   public static void main(String[] args) {
      int N = Integer.parseInt(args[0]);
      int cardcnt = 0; // number of cards collected
      int valcnt = 0; // number of distinct cards
      // do simulation
      boolean[] found = new boolean[N];
      while (valcnt < N) {</pre>
         int val = (int) (Math.random() * N);
         cardcnt++;
         if (!found[val]) {
                                            type of next card
(between 0 and N-1)
            valcnt++;
             found[val] = true;
         }
      }
      // all N distinct cards found
      System.out.println(cardcnt);
  }
}
```

16

Coupon Collector: Debugging

Debugging. Add code to print contents of all variables.

val -	found	valent	cardcnt	
Val	0 1 2 3 4 5	varchi	caruciic	
	FFFFFF	0	0	
2	FFTFFF	1	1	
0	TFTFFF	2	2	
4	TETE T E	3	3	
0	TFTFTF	3	4	
1	TTTFTF	4	5	
2	TTTFTF	4	6	
5	т т т ғ т т	5	7	
0	TTTFTT	5	8	
1	TTTFTT	5	9	
3	$\top \top \top \top \top \top \top$	6	10	

Challenge. Debugging with arrays requires tracing many variables.

Coupon Collector: Scientific Context

17

19

Q. Given a sequence from nature, does it have same characteristics as a random sequence?

A. No easy answer - many tests have been developed.

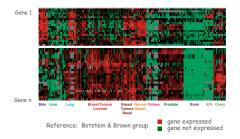
Coupon collector test. Compare number of elements that need to be examined before all values are found against the corresponding answer for a random sequence.

Coupon Collector: Mathematical Context

Coupon collector problem. Given N different possible cards, how many do you have to collect before you have (at least) one of each type?

Fact. About N (1 + 1/2 + 1/3 + ... + 1/N).

Ex. N = 30 baseball teams. Expect to wait ≈ 120 years before all teams win a World Series.

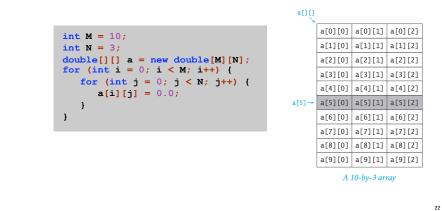

Multidimensional Arrays

Two Dimensional Arrays

Two dimensional arrays.

- Table of data for each experiment and outcome.
- Table of grades for each student and assignments.
- Table of grayscale values for each pixel in a 2D image.

Mathematical abstraction. Matrix. Java abstraction. 2D array.


21

23

dou for Two Dimensional Arrays in Java

Array access. Use ${\tt a[i][j]}$ to access element in row ${\tt i}$ and column ${\tt j}.$

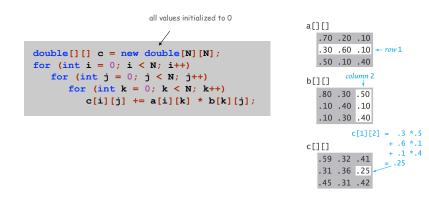
Zero-based indexing. Row and column indices start at 0.

Setting 2D Array Values at Compile Time

Initialize 2D array by listing values.

doub	Le[][]	p =				
{						
{	.02,	.92,	.02,	.02,	.02	},
{	.02,	.02,	.32,	.32,	.32	},
{	.02,	.02,	.02,	.92,	.02	},
{	.92,	.02,	.02,	.02,	.02	},
{	.47,	.02,	.47,	.02,	.02	},
};						

	a[1][3]				
			\.		
			.02		
$row 1 \rightarrow .0$	2	.02	.32	. 32	.32
.0	2	.02	.02	.92	.02
			.02		
. 4	7	.02	.47	.02	.02
				t	
			СС	olumn	3


Matrix Addition

Matrix addition. Given two N-by-N matrices a and b, define c to be the N-by-N matrix where c[i][j] is the sum a[i][j] + b[i][j].

<pre>uble[][] c = new double[N][N]; r (int i = 0; i < N; i++)</pre>	a[][] .70 .20 .10 .30 .60 .10 .50 .10 .40
<pre>for (int j = 0; j < N; j++) c[i][j] = a[i][j] + b[i][j];</pre>	b[][] .80 .30 .50 .10 .40 .10 .10 .30 .40
	c[][] 1.5 .50 .60 c[1][2] .40 1.0 .20 .60 .40 .80

Matrix Multiplication

Matrix multiplication. Given two N-by-N matrices a and b, define c to be the N-by-N matrix where c[i][j] is the dot product of the ith row of a and the jth row of b.

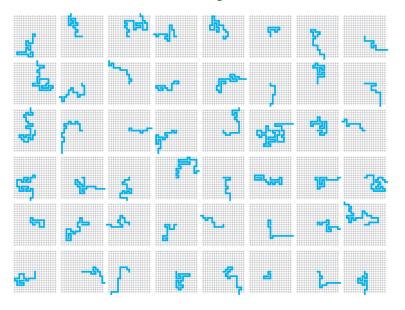
Self-Avoiding Walk

Model.

- N-by-N lattice.
- Start in the middle.
- Randomly move to a neighboring intersection, avoiding all previous intersections.

Applications. Polymers, statistical mechanics, etc.

- Q. What fraction of time will you escape in an 5-by-5 lattice?
- Q. In an N-by-N lattice?
- Q. In an N-by-N-by-N lattice?


escape

Self-Avoiding Walk

Self-Avoiding Walk: Implementation

Self-Avoiding Walks

Summary

Arrays.

29

- Organized way to store huge quantities of data.
- Almost as easy to use as primitive types.
- Can directly access an element given its index.

Ahead. Reading in large quantities of data from a file into an array.

1.5