
1.4 Arrays

2

Arrays

This lecture. Store and manipulate huge quantities of data.

Array. Indexed sequence of values of the same type.

Examples.

! 52 playing cards in a deck.

! 5 thousand undergrads at Princeton.

! 1 million characters in a book.

! 10 million audio samples in an MP3 file.

! 4 billion nucleotides in a DNA strand.

! 73 billion Google queries per year.

! 50 trillion cells in the human body.

! 6.02 ! 1023 particles in a mole.

wayne0

doug1

rs2

maia3

mona4

cbienia5

wkj6

mkc7

index value

3

Many Variables of the Same Type

Goal. 10 variables of the same type.

// tedious and error-prone

double a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;

a0 = 0.0;

a1 = 0.0;

a2 = 0.0;

a3 = 0.0;

a4 = 0.0;

a5 = 0.0;

a6 = 0.0;

a7 = 0.0;

a9 = 0.0;

a9 = 0.0;

double x = a4 + a8;

4

Arrays in Java

Java has special language support for arrays.

! To make an array: declare, create, and initialize it.

! To access element i of array named a, use a[i].

! Array indices start at 0.

int N = 10;

double[] a; // declare the array

a = new double[N]; // create the array

for (int i = 0; i < N; i++) // initialize the array

 a[i] = 0.0; // all to 0.0

5

Arrays in Java

Java has special language support for arrays.

! To make an array: declare, create, and initialize it.

! To access element i of array named a, use a[i].

! Array indices start at 0.

Compact alternative.

! Declare, create, and initialize in one statement.

! Default initialization: all numbers automatically set to zero.

int N = 10;

double[] a; // declare the array

a = new double[N]; // create the array

for (int i = 0; i < N; i++) // initialize the array

 a[i] = 0.0; // all to 0.0

int N = 10;

double[] a = new double[N]; // declare, create, init

6

Vector Dot Product

Dot product. Given two vectors x[] and y[] of length N, their dot

product is the sum of the products of their corresponding components.

double[] x = { 0.3, 0.6, 0.1 };

double[] y = { 0.5, 0.1, 0.4 };

double sum = 0.0;

for (int i = 0; i < N; i++) {

 sum += x[i]*y[i];

}

7

Array Processing Code

Shuffling a Deck

9

Setting Array Values at Compile Time

Ex. Print a random card.

String[] rank = {

 "2", "3", "4", "5", "6", "7", "8", "9",

 "10", "Jack", "Queen", "King", "Ace"

};

String[] suit = {

 "Clubs", "Diamonds", "Hearts", "Spades"

};

int i = (int) (Math.random() * 13); // between 0 and 12

int j = (int) (Math.random() * 4); // between 0 and 3

System.out.println(rank[i] + " of " + suit[j]);

10

Setting Array Values at Run Time

Ex. Create a deck of playing cards and print them out.

Q. What does it output?

String[] deck = new String[52];

for (int i = 0; i < 13; i++)

 for (int j = 0; j < 4; j++)

 deck[4*i + j] = rank[i] + " of " + suit[j];

for (int i = 0; i < 52; i++)

 System.out.println(deck[i]);

11

Shuffling

Goal. Given an array, rearrange its elements in random order.

Shuffling algorithm.

! In iteration i, pick random card from deck[i] through deck[N-1],

with each card equally likely.

! Exchange it with deck[i].

int N = deck.length;

for (int i = 0; i < N; i++) {

 int r = i + (int) (Math.random() * (N-i));

 String t = deck[r];

 deck[r] = deck[i];

 deck[i] = t;

}

between i and N-1swap
idiom

12

Shuffling a Deck of Cards

public class Deck {

 public static void main(String[] args) {

 String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };

 String[] rank = { "2", "3", "4", "5", "6", "7", "8", "9",

 "10", "Jack", "Queen", "King", "Ace" };

 int SUITS = suit.length;

 int RANKS = rank.length;

 int N = SUITS * RANKS;

 String[] deck = new String[N];

 for (int i = 0; i < RANKS; i++)

 for (int j = 0; j < SUITS; j++)

 deck[SUITS*i + j] = rank[i] + " of " + suit[j];

 for (int i = 0; i < N; i++) {

 int r = i + (int) (Math.random() * (N-i));

 String t = deck[r];

 deck[r] = deck[i];

 deck[i] = t;

 }

 for (int i = 0; i < N; i++)

 System.out.println(deck[i]);

 }

}

avoid "hardwired" constants

build the deck

shuffle

print shuffled deck

13

Shuffling a Deck of Cards

% java Deck

5 of Clubs

Jack of Hearts

9 of Spades

10 of Spades

9 of Clubs

7 of Spades

6 of Diamonds

7 of Hearts

7 of Clubs

4 of Spades

Queen of Diamonds

10 of Hearts

5 of Diamonds

Jack of Clubs

Ace of Hearts

...

5 of Spades

% java Deck

10 of Diamonds

King of Spades

2 of Spades

3 of Clubs

4 of Spades

Queen of Clubs

2 of Hearts

7 of Diamonds

6 of Spades

Queen of Spades

3 of Spades

Jack of Diamonds

6 of Diamonds

8 of Spades

9 of Diamonds

...

10 of Spades

Coupon Collector

15

Coupon Collector Problem

Coupon collector problem. Given N different card types, how many

do you have to collect before you have (at least) one of each type?

Simulation algorithm. Repeatedly choose an integer i between 0 and N-1.

Stop when we have at least one card of every type.

Q. How to check if we've seen a card of type i?

A. Maintain a boolean array so that found[i] is true if we've already

 collected a card of type i.

assuming each possibility is equally
likely for each card that you collect

16

Coupon Collector: Java Implementation

public class CouponCollector {

 public static void main(String[] args) {

 int N = Integer.parseInt(args[0]);

 int cardcnt = 0; // number of cards collected

 int valcnt = 0; // number of distinct cards

 // do simulation

 boolean[] found = new boolean[N];

 while (valcnt < N) {

 int val = (int) (Math.random() * N);

 cardcnt++;

 if (!found[val]) {

 valcnt++;

 found[val] = true;

 }

 }

 // all N distinct cards found

 System.out.println(cardcnt);

 }

}

type of next card
(between 0 and N-1)

17

Coupon Collector: Debugging

Debugging. Add code to print contents of all variables.

Challenge. Debugging with arrays requires tracing many variables.

18

Coupon Collector: Mathematical Context

Coupon collector problem. Given N different possible cards, how many

do you have to collect before you have (at least) one of each type?

Fact. About N (1 + 1/2 + 1/3 + … + 1/N).

Ex. N = 30 baseball teams. Expect to wait " 120 years before all

teams win a World Series.
under idealized assumptions

see ORF 245 or COS 341

19

Coupon Collector: Scientific Context

Q. Given a sequence from nature, does it have same characteristics

as a random sequence?

A. No easy answer - many tests have been developed.

Coupon collector test. Compare number of elements that need to be

examined before all values are found against the corresponding answer

for a random sequence.

Multidimensional Arrays

21

Two Dimensional Arrays

Two dimensional arrays.

! Table of data for each experiment and outcome.

! Table of grades for each student and assignments.

! Table of grayscale values for each pixel in a 2D image.

Mathematical abstraction. Matrix.

Java abstraction. 2D array.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed

22

Two Dimensional Arrays in Java

Array access. Use a[i][j] to access element in row i and column j.

Zero-based indexing. Row and column indices start at 0.

int M = 10;

int N = 3;

double[][] a = new double[M][N];
for (int i = 0; i < M; i++) {

 for (int j = 0; j < N; j++) {

 a[i][j] = 0.0;

 }

}

23

Setting 2D Array Values at Compile Time

Initialize 2D array by listing values.

 double[][] p =

 {

 { .02, .92, .02, .02, .02 },

 { .02, .02, .32, .32, .32 },

 { .02, .02, .02, .92, .02 },

 { .92, .02, .02, .02, .02 },

 { .47, .02, .47, .02, .02 },

 };

24

Matrix Addition

Matrix addition. Given two N-by-N matrices a and b, define c

to be the N-by-N matrix where c[i][j] is the sum a[i][j] + b[i][j].

double[][] c = new double[N][N];

for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 c[i][j] = a[i][j] + b[i][j];

25

Matrix Multiplication

Matrix multiplication. Given two N-by-N matrices a and b, define c

to be the N-by-N matrix where c[i][j] is the dot product of

the ith row of a and the jth row of b.

double[][] c = new double[N][N];

for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)

 c[i][j] += a[i][k] * b[k][j];

all values initialized to 0

Self-Avoiding Walk

27

Self-Avoiding Walk

Model.

! N-by-N lattice.

! Start in the middle.

! Randomly move to a neighboring intersection,

avoiding all previous intersections.

Applications. Polymers, statistical mechanics, etc.

Q. What fraction of time will you escape in an 5-by-5 lattice?

Q. In an N-by-N lattice?

Q. In an N-by-N-by-N lattice?

28

Self-Avoiding Walk: Implementation

public class SelfAvoidingWalk {

 public static void main(String[] args) {

 int N = Integer.parseInt(args[0]); // lattice size

 int T = Integer.parseInt(args[1]); // number of trials

 int deadEnds = 0; // trials resulting in dead end

 for (int t = 0; t < T; t++) {

 boolean[][] a = new boolean[N][N]; // intersections visited

 int x = N/2, y = N/2; // current position

 while (x > 0 && x < N-1 && y > 0 && y < N-1) {

 if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1]) {

 deadEnds++;

 break;

 }

 a[x][y] = true; // mark as visited

 double r = Math.random();

 if (r < 0.25) { if (!a[x+1][y]) x++; }

 else if (r < 0.50) { if (!a[x-1][y]) x--; }

 else if (r < 0.75) { if (!a[x][y+1]) y++; }

 else if (r < 1.00) { if (!a[x][y-1]) y--; }

 }

 }

 System.out.println(100*deadEnds/T + "% dead ends");
 }
}

take a random unvisited step

dead end

29

Self-Avoiding Walks

30

Summary

Arrays.

! Organized way to store huge quantities of data.

! Almost as easy to use as primitive types.

! Can directly access an element given its index.

Ahead. Reading in large quantities of data from a file into an array.

1.5

