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Abstract—In this paper two approaches of general applicability for placing fragments of 

important archeological objects in their proper position are presented. Both methods are based 

on the thematic content of the drawings depicted on fragments of 1650 B.C. wall-paintings, 

excavated at the Greek island of Thera. The first method employs the statistical nature of the 

drawn figures’ dimensions and gives an estimate of the probability that two fragments belong to 

the same decorative element and are properly placed in it. During the second method, the 

authors first prove that there are certain contour lines of the drawn objects that correspond to 

specific geometric archetypes. Subsequently, an exhaustive Least Squares novel approach is 

applied in order to correctly place fragments containing broken contour lines of the same 

decorative element onto their proper geometric archetype. Both methods have been quite 

successfully applied to the reconstruction of various fragmented wall-paintings.    

 

Index Terms— Image line pattern analysis, archaeological image edge analysis, 

archaeological object reconstruction, curve fitting, statistical pattern matching.  
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I. INTRODUCTION – PROBLEM DESCRIPTION 

 

HE discovery of wall paintings at Akrotiri of the Greek island Thera (Santorini), is of 

outstanding importance for human knowledge of the early Aegean world and not only. 

According to prominent archaeologists, these wall-paintings rank alongside the greatest 

archaeological discoveries. Extensive archaeological research over the past 35 years has shown that 

before the catastrophic eruption of the Thera volcano, in c. 1650 B.C., Akrotiri suffered a major 

disaster due to earthquakes [1]. The tremendous earthquake caused the collapse of the underlying 

walls and wall-paintings, but the succeeding eruption was the major factor for their excellent 

preservation. The good condition of the fragments allows archaeologists to reconstruct wall paintings, 

which are usually scattered into many hundreds, or even thousands, of fragments mixed with the 

fragments of other wall paintings. The restoration of the wall paintings from the fragments is a very 

painstaking and time consuming process, frequently demanding many months or even years of 

dedicated, experienced personnel work for a single wall painting restoration.  

In this paper, we present two methodologies for reconstructing wall-paintings on the basis of the 

thematic content of their constituent fragments. Apart from aiding the reconstruction process, the 

approaches introduced here may accomplish fragment matching, even in cases where human experts 

are intrinsically unable to do so, as it will become evident in the subsequent analysis. Both approaches 

take advantage of the fact that the artist(s) had, most probably, the intention of drawing repeated 

geometric patterns. We stress that such drawing techniques seem to be essentially novel for the 

considered era of Late Bronze Age, c. 1650. In each of the two approaches presented here, the 

properties of the appropriate geometric shape of the depicted figure are quantified and used in order to 

statistically verify a potential match between two fragments, or in order to properly position two 

pieces that contain part of the same prototype but do not necessarily come in direct contact with each 

other. For the first approach, we use statistical methods, whereas for the second approach we have 

developed a method of exhaustive Least Squares curve fitting.  

The contribution of the present paper to this problem of automatic reconstruction of wall-paintings 

is in the fields of pattern identification and matching, as well as curve fitting. This is a field where 

quite extensive research has been done the last decades (e.g. [2] - [9]).  

II. USE OF STATISTICAL METHODS FOR MATCHING A LARGE CLASS OF FRAGMENTS 

In this section, a method for matching a large class of fragments with a specific type of content 

will be presented. We would like to point out that this approach has very little to do, if at all, with 2D 

or 3D puzzle solving and/or broken object reconstruction based on contour matching (e.g. [10]-[14]). 

This is so, because for applying the introduced method no need for contact between matching 

T 
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fragments is required; in effect, the power of this approach lies mainly in the fact that it can be applied 

in cases where intermediate material between the fragments to be matched is missing. In this case, the 

dedicated reconstruction personnel has great difficulty in reconstructing the wall painting, since they 

rely on verification of adjacent fragments’ “dovetail” contact.   

 

A. A first stage processing 

 

It seems that a major decorative element in most wall-paintings of the third floor of the house 

called ‘Xeste 3’, consists of alternating black and blue stripes, like the ones shown in Fig. 1. As a 

consequence, hundreds of fragments depicting parts of these decorative elements have been found so 

far. We frequently refer to these fragments with the name Black-Blue-Stripe (BBS) fragments. The 

restoration of the wall-painting parts consisting of these fragments is a serious problem, which, 

frequently, the human experts have substantial difficulty to solve, especially when no contact between 

neighboring fragments exists. In this section, we give a mathematical solution to this problem by 

exploiting the facts that: 

a) It seems the artist(s) had the intention to draw parallel BBS.  

b) The BBS’ width varies erratically, probably due to inaccuracies and imperfections in the drawing 

process.  

 

1) Parallel line grid extraction 

 

For the subsequent analysis, it is essential to obtain an as accurate as possible representation of the 

black stripes’ edges. To achieve this, various image segmentation methods have been examined and 

applied (e.g. [15] – [17]). We would like to point out that the authors have developed a segmentation 

method, which is specifically tailored to this problem’s needs and offers really satisfactory results 

[18]. After the applied image segmentation, we enumerate the black stripes and their boundaries 

starting from one having all other boundaries in its same side. In this way, the chains of pixels 1B  and 

2B  constitute the first and the second boundary of the first black stripe, 3B  and 4B  constitute the 

first and the second boundary of the second black stripe, etc. Next, in each such fragment, we 

determine the parallel line grid that best fits the whole ensemble of black stripe boundaries. In other 

words, we determine the class of parallel lines ibaxy += , where 1baxy +=  best fits the first 

boundary while simultaneously 2baxy +=  best fits the second boundary 2B , etc, all in the Least 

Squares sense. Analytically, if ( )ijij yx ,, ,  are the coordinates of the jth pixel centre of the ith 

boundary iB , then we minimize the quantity 
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For easy reference, we will also use the name “fragment LS grid” for this class of parallel lines. 

Therefore, we define the width iW  of the ith black stripe to be the distance of two parallel lines best 

fitting the boundaries of the stripe in hand.  

 

2) Distribution of the widths of the black and blue stripes 

 

First, we test the hypothesis that the width values iW  of the black stripes follow a normal 

distribution. In Fig. 2(a) the iW  histogram is shown, together with the best fitting normal distribution. 

Now, according to Kolmogorov, we sort iW  in ascending order and for each sorted value s
iW , we 

compute the empirical cumulative distribution function ( )s
iWF ={Proportion of black stripe widths 

such that s
i

s
j WW ≤ }

BSN
i

= . Moreover, we consider the theoretical cumulative distribution function 

of the normal distribution )( s
iWΦ with mean value 345.0=µ cm and standard deviation 

21006.6 −⋅=σ cm, of the best fitting normal distribution. Loosely speaking, the Kolmogorov test 

states that if ( )s
iWF  and )( s

iWΦ are adequately close for all the available samples s
iW , then the 

hypothesis that the widths of the black stripes come from this normal distribution is acceptable. In a 

strict form, we test the hypothesis: 

H0: iW  come from ( )σµ,N , against the alternative  

H1: iW  come from another distribution,  

using the Kolmogorov-Smirnov criterion: 

Let ( ) ( ){ }BS
s

i
s

i NiWFWD ,...1,max0 =−Φ=  and let 
caN BS

D ,  be a constant depending on the 

number of samples BSN  and the level of significance ca . Then, if 
caN BS

DD ,0 <  holds, one can 
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accept hypothesis H0. Otherwise, hypothesis H1 holds with significance level ca . We would like to 

point out that for the relatively large number of available black stripe samples and for level of 

significance 01.0=ca , 
caN BS

D ,  is approximately given by 
BSN

63.1
. 

Application of this criterion to all 782=BSN  available black stripes, led to the 

result 0274.00 =D  , while clearly 
cBS aNDD ,0 <  is satisfied. In an analogous manner, we have 

demonstrated that the widths of the blue stripes (see Fig. 2(b)) follow a normal distribution with 

55.0=γµ cm, 110022.1 −⋅=γσ cm. In the case of the blue stripes, 769=GSN , 0353.00 =D  and 

cGS aNDD ,0 <  holds. 

B. Deciding if two BBS fragments match 

 

At this point, we adopt the logical assumption that two BBS fragments belong to the same blue-

black striped decorative element if two proper subsets of their parallel line grids match, as shown, for 

example, in Fig. 3. In order to verify this assumption, we take the following steps: 

 

1) STEP 1 

We rotate the two considered BBS fragments so that their LS grids are parallel. Notice that there are 

two rotation angles, differing by π , that align the two fragments’ parallel line grids. In the case that 

the limits of the blue-black striped element are present in both fragments, the rotation angle 

compatible with these limits is chosen. Otherwise, in the subsequent analysis, the relative positions of 

the two fragments corresponding to both rotation angles are considered.     

  

2) STEP 2  

Suppose that the first fragment considered to be in the left position includes N1 black and blue belts, 

while the second fragment includes N2 stripes. Without any loss of generality, we may assume that the 

first line of the LS grid of each fragment is the one on the top of each fragment, as well as that the 

sequences of stripes in both fragments start from a belt of the same colour. Let the sequence of widths 

of the left fragment be 1,...2,1, NiUi =  and that of the right fragment be 2,...2,1, NjV j = . We 

stress that sequences ji VU ,  refer to both black and blue stripes, thus, for example, 1U  may be black, 

2U  blue, 3U  black, 4U  blue, etc. 

 

Subsequently, we perform continuous virtual translations of the right fragment downwards, each 

time comparing the widths of the corresponding black and blue stripes. In fact we define the 
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sequences: 
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We would like to point out that sequence iV~  is chosen so as to ensure that at least three stripes in 

each of the two considered fragments are compared in the first step of the subsequent process.  

We also define two “mask-like” sequences: 
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Next, we start by comparing the first three stripes of the left fragment with the last three stripes of 

the right fragment, namely we compare the sequences ii MU ⋅~
 and ii LV ⋅~

. Subsequently, we shift iV~  

and iM by two, i.e. we define the sequence 2
1 ~~

+= ii VV  and 2
1

+= ii MM , and we compare the two 

sequences 1~
ii MU ⋅  and ii LV ⋅1~

. In other words, we compare the widths of the first five stripes of the 

left fragment with the five last of the right fragment. We proceed in this way shifting iV~  and iM  by 

l2 , and generating the shifted sequences l
iV~  and l

iM , each time comparing the sequences l
ii MU ⋅~

 

and ii LV ⋅l~
 (see Figs. 4(a) and 4(b)). The procedure stops when )6(2 21 −+> NNl , namely when 

the widths of the first three stripes of the right fragment have been compared with those of the last 

three stripes of corresponding colour of the left fragment. 

 

3) STEP 3 

According to the procedure described in STEP 2, we must compare the widths of k stripes each 

time, which is equivalent to comparing sequences l
ii MU ⋅~

 and ii LV ⋅l~
. We stress that k1 of these 

stripes are black and k2 are blue, k1+k2=k. Now, let iλ and iν , 1,...,1 ki = be the widths of the black 

stripes to-be-compared, in the left and the right fragment respectively. Similarly, let jγ and jδ , 

2,...,1 kj = be the corresponding widths of blue stripes to be compared. We will momentarily assume 

that the two fragments are unrelated, which means that random variables iλ , iν on one hand and 

jγ , jδ  on the other, are stochastically independent. Then, we choose as a first measure of comparison 

the sum of squared differences: 

( ) ( )∑∑
==

−+−=
21

1

2

1

2
k

j
jj

k

i
ii δγνλη l  
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4) STEP 4 

We associate with each value of the measure of comparison lη  a probability that the corresponding 

sets of k stripes actually match. This probability will be estimated in the following step. 

Next, we will determine the type of distribution the terms ( ) ( )∑∑
==
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follow, for each l . In fact, since ii νλ , , 1,...,1 ki = , come from the same population ( )σµ,N , then 

the variables 
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= i
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= i
i  follow the normal distribution 
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)~~( ii νλ −  comes from a normal distribution with mean value 0 and variance 1. But, since )~~( ii νλ −  

follows ( )1,0N , then quantity ( )∑
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i
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freedom. Therefore, the statistical distribution of quantity l
1η  is also known, since 
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Similarly, since the blue stripe widths jγ , jδ  of the two fragments come from the ( )γγ σµ ,N  

distribution, we define quantities 
γ
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and eventually the distribution of quantity ( ) ( )∑∑
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defined.  

Next, in order to estimate the distribution of quantity lη we will employ the following Lemma. 

 

LEMMA  

 

Let x and y be two independent random variables following chi-square distributions with k1 and k2 

degrees of freedom respectively, whose probability density functions are, say, ( )xg1  and ( )yg2 . 

Next, if a  and β  are positive real constants, we define the random variable yxaz ⋅+⋅= β . Then, 

the cumulative distribution function ( )tGz  of z is given by: 
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Proof.  In a rather straightforward manner, we proceed by stating the definition of ( )tGz , namely 

)()()()( tyxaPtGtzPtG zz ≤⋅+⋅=⇔≤= β . Therefore, in the x-y plane we want to 

estimate the probability that z is found in the domain 
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Now, since x and y are independent random variables, their joint probability density function is 
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       Q.E.D. 

An immediate consequence of the above Lemma and the previous analysis is that quantity 
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where ( )ll
21 21

),( ηχηχ kk  are the probability density functions of the chi-square distributions with k1 

and k2 degrees of freedom respectively.  

 

5) STEP 5: 

 

Now, it is logical to assume that the smaller the value of η , the greater the probability that the two 

fragments match at the specific position. Clearly, ideal matching occurs when 0=lη , meaning that 

in this case all corresponding black and blue stripes have exactly the same width, i.e. 

1,...,2,1, kiii ==νλ , and 2,...,2,1, kjjj == δγ . On the other hand, given a small value of lη , say 

t0 , then the cumulative distribution function ( )0tG lη
 gives the probability that two independent, not 

matching fragments furnish 0t=lη  without actually matching at this point, in other words, 

accidentally. Therefore, it is quite logical to assume that ( ) ( )01 tGPM ll
η

η −=  gives the probability that 

these two fragments indeed match in this position and have generated this small value of lη  due to 

statistical fluctuations of the blue-black stripe width. 
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Hence, we define the following criteria to decide if two fragments match in a certain position: First, 

for each value of l  that gives rise to a corresponding virtual shift of the right fragment, we compute 

quantities ll
21 , ηη  and lη , as described above. Suppose that their values are ll

21 ,ττ  and lτ  

respectively. Subsequently, we compute the cumulative distribution function of lη  at lτ , i.e. 

( )ll τ
η

G  via (II.B.1) and quantity ( ) ( )lll τ
η

η GPM −= 1 . We consider ( )lη
MP  a measure of matching 

of the two fragments in hand for the relative position determined by l . Therefore, if for a certain 

value of l , one obtains an essential maximum of ( )lη
MP  (see Fig 5(a)) and if ( )lη

MP  is greater than a 

reasonable confidence level, say Mα , then we accept that the two fragments match, when a shift of 

l  is performed in the right fragment.  

Next, we define a second criterion, which, in a sense, balances out the contribution of the black and 

blue stripes’ squared differences of widths. More specifically, we define 
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Once more, we compute the cumulative distribution function of lζ  at lρ , i.e. ( )ll ρ
ζ

H  via the 

Lemma in step 4, as well as the alternative matching probability ( ) ( )lll ρ
ζ

ζ HPM −= 1 . The peak at 

the proper matching position is sharper, in this case, and its value is certain orders of magnitude 

greater than the one obtained via criterion 1 (Fig 5(b)). If we also take into consideration that this 

second criterion is much less sensitive to the BBS width’s variation, we feel that this second criterion 

is considerably superior. 

Application of both criteria led to the correct matching – placement of more than 25 pairs of BBS 

fragments, all verified by specialized personnel. We would like to point out, that the aforementioned 

statistical method could be applied to achieve correct placement of fragments depicting other repeated 

patterns of drawing.   

 

III. MATCHING OF FRAGMENTS BASED ON EXHAUSTIVE CURVE FITTING ANALYSIS  

 

Next, we have considered another class of wall-painting fragments, like the one shown in Figs. 6,7. 

As a consequence of the results presented in [19], the idea emerged among the authors that 

handcrafted stencils may have been used by the artist(s) to draw these complicated figures in order to 

ensure steady line. Moreover, we have examined the possibility that at least some of these stencils 

may have been constructed with the use of geometrical methods. Although such a method of 

construction required considerable novelty for the era, we have decided to test this conjecture by 
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means of the procedure that will be described below. 

 

A. Determining a number of potential stencils 

 

First, we have determined a set of geometric shapes, whose conception and construction are not, 

from an archaeological and historical point of view, a priori prohibitive for the era. Thus, for example, 

the conics (hyperbola, ellipse, parabola) can be constructed with the use of a ruler, a pair of 

compasses and/or other simple instruments. Although such a method of construction can be 

considered to be highly novel for the era and even for the classical ages, one cannot a priori exclude 

the possibility that a person or a group of persons had conceived and constructed these geometric 

figures in 1650 B.C. 

Subsequently, we have chosen a set of wall-painting contour lines looking “suspicious” to have 

been drawn by means of a stencil. Using the methods of image segmentation referred to in Section II, 

we have obtained a sequence of pixels ( )ll
ii yx ,  , lNi ,...,2,1= , forming the contour of a specific 

line. These pixels can be described by the sequence of vectors l
lr Niri ...,,2,1  , =  starting at a 

reference center and pointing to each pixel center. 

Suppose that one wants to test if the thl  contour line l
lr Niri ...,,2,1  , = , is the successful result of 

an artist’s attempt to draw a geometrical prototype described by the parametric vector equation 

( )Π|tr Mr , where t  is the independent variable, Π  is the set of curve parameters and superscript M 

stands for model. For example, for the hyperbola polar parametric equation: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) jttbttay

ittbttaxtr M

r

rr

⋅−+−⋅+

+⋅−−−+=Π

00000

00000

cossinhsincosh

sinsinhcoscosh|

φφ

φφ
 

where R∈t  is the independent variable and { }0000 ,,,,, tbayx φ=Π  is the hyperbola set of 

parameters consisting of: the hyperbola center coordinates ( )00, yx , the hyperbola axes ba, , the 

probable rotation angle of the hyperbola 0φ  and 0t is the starting point of the hyperbola independent 

variable domain. 

Next, we compute the optimal set of parameters ΟΠ  and the corresponding sequence of values of 

the independent variable lNiti ...,,2,1, = , so that ( )ΟΠ|tr Mr  best fits lr
ir  according to a chosen 

norm L; for example, one may use either )(
1

1 Π−= ∑
=

i
M

N

i
i trrL rrl
l  or ( )( )∑

=

Π−=
l rrl

N

i
i

M
i trrL

1

2
2 . 

The algorithms applied to achieve this are the well-known conjugate gradient and/or the easier to 

implement Nelder – Mead method, starting from a tentative set of values of Π  and letting Π  
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converge to ΟΠ  so that L is minimized. We would like to point out that the employed in both 

methods values it of the model curve’s independent variable are each time computed by spotting the 

intersection of the line passing from ( )00 , yx  and the corresponding pixel ( )ll
ii yx ,  of the drawn 

contour line, on one hand, and the model curve on the other.  

In order to verify that the specific contour line is best approximated by, say, a hyperbola, and not an 

ellipse or some other conic or spiral, we have applied the above procedure using the parametric 

equations corresponding to the ellipse, the parabola, the involute of a circle and the exponential spiral. 

Notice that the use of the parametric form of the conic equations manifested essentially better 

convergence properties than the employment of the general conic equation in Cartesian coordinates. 

For each contour line, the corresponding shape of the stencil that was chosen was the one which gave 

a minimum value of L resulting to a maximum distance of the theoretical curve from the contour line 

of less than 10-3 m.  

Using the aforementioned methodology, we have found that a class of contour lines, like the one 

shown in Fig. 6, is optimally approximated by a hyperbola with 14.4=a cm and 12.20=b cm, with a 

corresponding mean and maximum distance of this hyperbola from the specific contour line of 0.4 

mm and 0.9 mm, respectively. Notice that we have found more that 10 realizations of this prototype 

curve of length of between 12cm and 22.5cm, in six figures belonging to three different wall 

paintings.  
 

B. Placement of two parts of a contour line in their proper position 

 

In this section, we will employ the results of Section III(a) for correcting misplacement or deciding 

proper placement of neighbouring fragments, which, however, are separated by a considerable gap.  

Indeed, consider the hyperbola introduced immediately above, which optimally fits the contour line 

representing the hunch in Fig 6. Consider, moreover, the two parts of a fragmented contour line 

representing the outline of the lady’s right hand in Fig 7(a) and Fig 7(b); notice that part of the drawn 

right hand is missing. A method we have applied for properly placing the two fragmented sections of 

the right hand in question in the overall painting is described by the following steps: 

a) We choose the hand section already attached to the main body of the painting, and check if it 

optimally fits one of the verified stencils.  

b) If so, we place the verified stencil, e.g. the hyperbola, in the proper position.  

c) We check if the other hand section fits the same hyperbola.  

d) If so, we place this second part at the proper point in the already placed hyperbola.  

In order to achieve the aforementioned steps, we employ the Method stated below: 
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Method:  

1) Frequently, the n pixels of an arbitrary contour line, and in particular of each considered part of 

the hand that resulted from the segmentation method, are very dense and misplaced. As a 

consequence, it is very difficult to achieve one to one correspondence between these pixels and points 

of the potential stencil. To circumvent this difficulty, we choose lN  pixels out of the n pixels of the 

considered contour line such that two successive selected pixels are separated by a small number of 

contour line pixels, say three or four. In the following, when we refer to the lN -pixel contour line of 

each part, we mean the aforementioned subset of the initial set of contour line pixels, consisting, say, 

of the set of points 
lNaaa ,...,, 21 . 

We let P
jd  be the Euclidean distance between the jth and the j+1th pixels of the contour line and 

( )ΛΜ,D  be the Euclidean distance between any two points M and Λ. 

2) Consider an arbitrary potential stencil with independent variable t. Then, one creates a set of 

points belonging to the potential stencil, starting at t0 and ending at te, that are as dense as possible. In 

other words, one first generates a sequence of points of the potential stencil ( )i
s tP , [ ]ei ttt ,0∈ , 

such that two successive points have a very small distance, much smaller than the pixel dimensions. 

3) For each point k of the sequence ( )i
s tP , one creates a lN -vertex polygonal line, starting at the 

point ( )k
s tP in hand. The first vertex of this polygonal line is called kM1 , and the subsequent 

vertices are computed as follows: The second vertex kM2  is the point ( )2,k
s tP , such that the 

distance of kM1 and kM2 , ),( 21
kk MMD is as close to the distance Pd1  as possible; similarly, we 

choose kM3  so that Pkk dMMD 232 ),( ≅ and so on, until the last point k
NM
l

has been defined, so as 

P
N

k
N

k
N dMMD 11 ),( −− ≅

lll
.  

4) Consider the two coplanar sets of points, 
lNaaa ,...,, 21 with coordinates lNiyx ii ...,1),,( =  on 

one hand, and k
N

kk MMM
l

,...,, 21  with coordinates lNiqp ii ,...,1),,( =  , on the other. Suppose that 

one wants to estimate the optimum rotation and parallel translation, so as to fit polygon ),( ii yx  to 

polygon ),( ii qp  in the Least Squares sense. In other words, one wants to estimate the proper angle of 

rotation θ  and ),( 00 yx  so that, if  

( ) ( )
( ) ( ) 








+








⋅








θθ
θ−θ

=








0

0
cossin
sincos

y
x

y
x

Y
X

i

i

i

i  
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then quantity 

( ) ( ){ }∑
=

−+−=
lN

i
iiii qYpXE

1

22
2  

is minimized. Clearly, this requirement implies that  

0,0,0 2

0

2

0

2 =
∂
∂

=
∂
∂

=
∂
∂

θ
E

y
E

x
E

 

After some straightforward calculus one obtains: 

( )∑
=

−=
l

l

N

i
ii xp

N
x

1
0

1 δ , ( )∑
=

−=
l

l

N

i
ii yq

N
y

1
0

1 δ , 

( )

( )∑

∑

=

=

+

−

=
l

l

N

i
iiii

N

i
iiii

qypx

pyqx

1

1)tan(

δδ

δδ
θ  

where  

)cos()sin( θθδ iii xyx +−= , )sin()cos( θθδ iii xyy +=  

∑
=

−=
l

l

N

j
iji pp

N
p

1

1δ  ∑
=

−=
l

l

N

j
iji qq

N
q

1

1δ   

Clearly, if we substitute these values of θ,00, yx  in 2E , we obtain the corresponding minimum error 

)(min
2 kE . 

5) For all k, we apply the aforementioned step 4 and, therefore, for each point ( )k
s tP  of the 

specific potential stencil we obtain a minimum error )(min
2 kE describing the way the contour line of 

the considered part best fits the specific model poly-line at that point. Clearly, the minimization of 

)(min
2 kE , for all points ( )k

s tP , for which the model poly-line can be constructed, offers the position, 

i.e. the value of k, at which the contour line in hand best fits the specific potential stencil. The 

corresponding minimum value of )(min
2 kE  is a measure of the goodness of fit of these two sets of 

points.  

6) In order to successfully position two candidate parts, say 1Π and 2Π , of a broken contour line in 

a figure, we first apply the five aforementioned steps on these two parts and in connection with the 

same stencil, and, in particular, the hyperbola determined in Section III(a). Suppose that this process 

confirms that both parts correspond to two different segments of the same considered stencil, which is 

placed at a reference position, as shown in Fig. 8. In other words, the first part fits the segment of the 

stencil, say 1SG , starting at point 1k  and ending at point 11 l+k  with a minimum error )( 1
min
2 kE  

smaller than a properly selected threshold, in particular 4105 −⋅=α m. This threshold value was 
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selected so as to obtain a closeness of fit between the contour line and the stencil similar to the one 

given by the hyperbola shown in Fig. 6. Similarly, the second part fits the segment of the same stencil, 

say 2SG , starting at point 2k and ending at point 22 l+k with a corresponding error α≤)( 2
min
2 kE . 

We stress that the two model segments, 1SG and 2SG , must be disjoint. Let, moreover, ),( 11 yx  be 

the displacement and 1θ  the rotation angle computed with the application of step 4, so that part 

1Π optimally matches segment 1SG  of the stencil in its reference position, while ),( 22 yx  and 2θ are 

the corresponding parameters for which 2Π  optimally fits 2SG . Then, by rotating the model stencil 

by 1θ−  and translating it by ),( 11 yx −−  from its reference position, we optimally place the model 

stencil in hand on the wall-painting image, as shown in Fig. 9. In an analogous manner, by rotating 

part 2Π by 12 θθ −  and translating it by ),( 1212 yyxx −−  from its initial position, we place 

2Π optimally on the wall painting image, as shown in Fig 10.  

We would like to emphasize that the aforementioned method is applicable independently of the 

shape of the stencil in hand. In fact, the authors have determined stencils corresponding to linear 

spirals [19]. Overall, they have applied the approach introduced here in matching at least 14 pairs of 

neighbouring fragments that were not in contact.  
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Fig. 1.  A typical set of fragments depicting alternating black and blue stripes.  
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Fig. 2(a).  The black stripe width iW  histogram, together with the best fitting normal distribution. For the black 

stripe width population, 345.0=µ cm, 21006.6 −⋅=σ cm, 782=BSN  
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Fig. 2(b).  The blue stripe width histogram, together with the best fitting normal distribution. For the blue stripe 

width population, 55.0=γµ cm, 110022.1 −⋅=γσ cm, 769=GSN  
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Fig. 3.  Two fragments that have been found to statistically match.  
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Fig 4(a).  Two stages of the stripe widths’ comparison process. 
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Fig.  4(b).  Two stages of the stripe widths’ comparison process. 
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Fig 5(a).  The values of ( )lη
MP  obtained with the use of the first criterion. At the optimal position, 

( ) 993109.05 =η
MP  
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Fig.1 5(b).  The values of ( )lζ
MP  obtained with the use of the second criterion. At the optimal matching 

position, ( ) 999626.05 =ζ
MP  
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Fig.  6.  Example of the hyperbola that optimally approximates the contour line that represents the hunch of the 

female figure.  
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Fig 7(a).  The unplaced fragment of the wall painting, which contains part of the wrist of the lady’s hand. (Not 

to scale) 
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Fig 7(b).  The wall painting section that contains the body and part of the arm of the lady. 
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Fig.  8.  The hyperbola in its reference position, with the two contour lines optimally placed on it. 
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Fig.   9.  The outstretched arm with the optimally fitting hyperbola superimposed on it.  
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Fig.  10.  Final placement of the wrist fragment with the use of the hyperbola. 

 

 


