
Latency Tolerance
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Topics

Reducing communication cost
Multithreaded processors
Simultaneous multiple threading
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Reducing Communication Cost

Reducing effective latency
Avoiding Latency
Tolerating Latency

Communication latency 
vs. synchronization latency 

vs. instruction latency
Sender initiated 

vs receiver initiated communication
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Examples

for (i = 0; i <= N; i++) {
compute A[i];
write A[i];
compute other stuff;
send A[i];

}

for (i = 0; i <= N; i++) {
receive myA[i];
compute myA[i];
compute other stuff;

}

for (i = 0; i <= N; i++) {
compute A[i];
write A[i];
compute other stuff;

}

for (i = 0; i <= N; i++) {
read A[i];
use A[i];
compute other stuff;

}

Shared address space

Message passing
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Communication Pipeline

P1 send, 
NI buffer, NI send, SW stage, … , SW stage,NI recv, 
P2 recv
Send overhead 

vs. time between switches 
vs. receive overhead

NI

P1

SW SW SW SW NI

P2
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Approaches to Latency Tolerance

Block data transfer
Combine multiple transfers into one
Why is this helpful?

Precommunication
Generate communication before it is actually needed 
(asynchronous prefetching)

Proceeding past an outstanding communication event
Continue with independent work in same thread while 
event outstanding (more asynchronous)

Multithreading - finding independent work
Switch processor to another thread
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Another Example

for (i = 0; i <= N; i++) {
compute A[i];
write A[i];
send A[i];
compute B[i];
write B[i];
send B[i];
compute other stuff;

}

for (i = 0; i <= N; i++) {
receive myA[i];
compute myA[i];
receive myB[i];
compute myB[i];
compute other stuff;

}

Methods
Merge multiple sends into one
Asynchronous send
Asynchronous receive (provide buffer early)

8

Fundamental Requirements

Extra parallelism
Bandwidth
Storage
Sophisticated protocols 

or automatic tools
or architectural support
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Why Multiple Threads?

Power wall
Transistors are free, but power is not
Many simpler cores with lower clock rates yield better 
performance/watt

ILP wall
Diminishing return on superscalar
Multi-threaded apps get better performance/chip

Memory wall
Gap between CPU and memory access time is increasing 
exponentially
Multiple threads can hide memory latency more effectively than 
OOO single thread

All “Walls” lead us towards “multiple threads” and multicores
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Beyond Simple Multi-core Design

Latency reduction is important in processor designs
Latencies are variable and dependencies are complex
Resource contentions
L1: 2-4 cycles; L2: ~10 cycles; DRAM: ~200 cycles

Latencies in shared-memory multiprocessors 
Remote memory accesses cost much more than local
Remote transactions in coherence protocol: 10-100x

More transistors are available
Simple cores may have multiple issues
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Classification of Multithreading

Explicit 
Multithreading

Interleaved
Multithreading

Issue from
a single thread

Coarse-grained
Multithreading

Issue from
multiple threads

Simultaneous
MultiThreading
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1 thread vs. Interleaved vs. coarse-grained

1 thread: dependencies limit HW utilization
Interleaved instruction streams improve HW utilization

A A B C D A B C D
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Multiple Issue: 1 thread vs. IMT vs. BMT

A A B C D A B C D
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CDC 6600 Peripheral Processors (Cray, 1965)

First multithreaded hardware
10 “virtual” I/O processors
Fixed interleave on simple pipeline

Pipeline has 100ns cycle time
Each processor executes one instruction / 10 cycles
accumulator-based instruction set to reduce processor state

15

Simple Multithreaded Pipeline

Thread select drives the pipeline to ensure correct state bits 
read/written at each pipe stage
If there is no ready thread to select, insert a bubble
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Multithreading Costs

Appears to software (including OS) as multiple slower 
processors
Each thread requires its own user state

GPRs
PC

Also, needs own OS control state
virtual memory page table base register
exception handling registers
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HEP (Heterogeneous Element Processor)

Burdon Smith at Denelcor (1982)
Parallel machine

16 processors
128 threads per processor
Share registers

Processor pipeline
8 stages
Each thread per stage
Switch to a different thread every clock cycle
If thread queue is empty, schedule the independent 
instruction from the last thread
No need to worry about dependencies among stages
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HEP Architecture in more detail

Basic components
PEM: Processing Element Module
DMM: Data Memory Module
Interconnection network is multi-stage 

How things work
Each PEM has 2k registers
Each PEM has a DMM
Any PEM can access any memory (all 
physical)
Any PEM can access any registers

Full/empty bit 
Each word has a F/E bit
Empty: no data
Full: valid data
Read memory w/ empty bit causes a 
stall or an exception 
Why is this useful?

PEM DMM
SW

PEM DMM
SW

Interconnection
network

19

Instruction Latency Hiding

Every cycle an instruction from a different thread is 
launched into the pipeline
Worst case DRAM access might be many cycles 
(more threads)
How to balance CPU and Memory?

A B C D E F G H
A B C D E F G H

A B C D E F G H
A B C D E F G H

A B C D E F G H
A B C D E F G H

A B C D E F G H
A B C D E F G H

A B C D E F G H

Inst0
Inst1
Inst2
Inst3
Inst4
Inst5
Inst6
Inst7
inst8
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Horizon (Paper design 1988)

Basic components
Up to 256 processors
Up to 512 memory modules
Internal network 16 x 16 x 6

Processor
Up to 128 active threads per processor
128 register sets
Context switch every clock cycle
Allow multiple memory accesses outstanding per 
thread
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Tera/Cray MTA (1990-)
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MTX Linux

Compute Service & IO

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs
IO Server PEs
Network Server PEs
FS Metadata Server PEs
Database Server PEs

Compute Partition
MTX (BSD)

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

MTX (evolved from MTA) System Architecture
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MTA/MTX Processor (from Cray)

i = n

i = 3

i = 2

i = 1

.   .     .

 1  2  3  4 

Sub- 
problem 

A

i = n

i = 1

i = 0

.   .     .
Sub- 

problem 
B

Subproblem A

Serial 
Code

Unused streams

. . . .

Programs 
running in 
parallel

Concurrent 
threads of 
computation

Hardware 
streams 
(128)

Instruction 
Ready 
Pool;

Pipeline of 
executing 
instructions
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MTA/MTX System (from Cray)

i = n

i = 3

i = 2

i = 1

.   .     .

 1  2  3  4 

Sub- 
problem 

A

i = n

i = 1

i = 0

.   .     .
Sub- 

problem 
B

Subproblem A

Serial 
Code

Programs 
running in 
parallel

Concurrent 
threads of 
computation

Multithreaded 
across 
multiple 
processors

. . . . . . . . . . . .
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MTA/MXT Processor

Each processor supports 128 active threads
1 x 128 status word registers
8 x 128 branch-target registers
32 x 128 GP registers

Each 64-bit instruction does 3 operations
Memory (M), arithmetic (A), arithmetic or branch (C)
3-bit lookahead field indicating # of independent 
subsequent instructions 

21 pipeline stages
Each stage does a context-switch

8 outstanding memory requests per thread
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MTA Pipeline

Every cycle, an 
instruction of an active 
thread is issued
Memory operation incurs 
about 150 cycles
Assuming 

A thread issues 1 
instruction/21 cycles
220 Mhz clock

What’s the performance?
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MTA-2 / MXT Comparisons (from Cray)

15.36 * P2/3 GB/s3.5 * P GB/s
Network bisection 
bandwidth

3D torusModified Cayley
graph

Network topology

Variable (next slide)220 MW/s per 
processor

Network injection 
rate

128 TB128 GBTLB reach

128 TB  (16 GB/P)1 TB  (4 GB/P)Max memory 
capacity

8192 P256 PMax system size

500 MHz220 MHzCPU clock speed
MXTMTA-2

How many threads can the largest MXT support?
28

4 DIMM Slots4 DIMM Slots

CRAY
Seastar™

CRAY
Seastar™

CRAY
Seastar™

CRAY
Seastar™

L0 RAS ComputerL0 RAS Computer
Redundant 
VRMs
Redundant 
VRMs

Red Storm Compute Board (from Cray)
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4 DIMM Slots4 DIMM Slots

CRAY
Seastar2™

CRAY
Seastar2™

CRAY
Seastar2™

CRAY
Seastar2™

L0 RAS ComputerL0 RAS Computer
Redundant 
VRMs
Redundant 
VRMs

MTX Compute Board (from Cray)

30

CANAL

Compiler 
ANALysis
Static tool
Shows how 
the code is 
compiled and 
why
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Traceview

32

Dashboard
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Sparse Matrix – Vector Multiply

C n x 1 = A n x m * B m x 1

Store A in packed row form
A[nz], where nz is the number of non-zeros
cols[nz] stores the column index of the non-
zeros
rows[n] stores the start index of each row in A#pragma mta use 100 streams

#pragma mta assert no dependence
for (i = 0; i < n; i++) {

int j;
double sum = 0.0;
for (j = rows[i]; j < rows[i+1]; j++)

sum += A[j] * B[cols[j]];
C[i] = sum;

}
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Canal Report

| #pragma mta use 100 streams
| #pragma mta assert no dependence
| for (i = 0; i < n; i++) {
|     int j;

3 P   |     double sum = 0.0;
4 P- |     for (j = rows[i]; j < rows[i+1]; j++)

|         sum += A[j] * B[cols[j]];
3 P   |       C[i] = sum;

|   }

Parallel region   2 in SpMVM
Multiple processor implementation
Requesting at least 100 streams

Loop   3 in SpMVM at line 33 in region 2
In parallel phase 1
Dynamically scheduled

Loop   4 in SpMVM at line 34 in loop 3
Loop summary: 3 memory operations, 2 floating point operations

3 instructions, needs 30 streams for full utilization, 
pipelined
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Performance

N = M = 1,000,000
Non-zeros 0 to 1000 per row, uniform distribution

Nz = 499,902,410

T SpP

1

2

4

8

7.11

3.59

1.83

0.94

1.0

1.98

3.88

7.56

Time = (3 cycles * 499902410 iterations) / 220000000 cycles/sec = 6.82 sec

96% utilization
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MTX’s Sweet Spot (Cray’s claim)

Any cache-unfriendly parallel application
Any application whose performance depends upon ...

Random access tables (GUPS, hash tables)
Linked data structures (binary trees, relational graphs)
Highly unstructured, sparse methods
Sorting

Some candidate application areas:
Adaptive meshes
Graph problems (intelligence, protein folding, bioinformatics)
Optimization problems (branch-and-bound, linear programming)
Computational geometry (graphics, scene recognition and 
tracking)
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Alewife Prototype (MIT, 1994)
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Sparcle Processor (Coarse-Grained)

Leverage Sparc
Use each reg window
as frames
Loaded threads are 
bound to frames
Every memory word
has a full/empty bit

J-structure:
Raise exception
L-structure:
Block / nonblock

Only switch on long latency
Coherence
Access empty data
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Simultaneous Multithreading 
(Tullsen, Eggers, Levy, 1995)

Main idea
dynamic and flexible sharing of functional unites among 
threads

Main observation
Increase utilization ⇒ increase throughput

Change OOO pipeline
Multiple context and fetch engines
Utilize wide OOO superscalar processor issue
Resources can satisfy superscalar or multiple threads

40

OOO Superscalar vs. SMT Pipeline
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SMT Processors

Alpha EV8 (cancelled)
8-wide superscalar with 4-way SMT support
SMT mode is like 4-CPU with shared caches and TLBs
Replicated PCs and registers
Shared inst queue, caches, TLB, branch predictors

Pentium4 HT (2 threads)
Logical CPUs share caches, FUs, predictors
Separate context, registers, etc. 
No synchronization support (such as full/empty bit)
Accessing the same cache line will trigger an 
expensive event

IBM Power5 
Sun Niagara I and Niagara II (Kunle’s talk)
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SMT vs. Multi-Issue CMP

A B C D A B C D
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Challenges to Use SMT Better

Shared resources
Shared execution unit (Niagara II has two)
Shared cache

Thread coordination
Spinning consume resources

False sharing of cache lines
May trigger expensive events
Pentium4 HT calls it Memory Order Machine Clear or 
MOMC event
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SMT Architectural Support

Which thread to schedule?
Thread with min “ICOUNT” counting # instructions in 
the pipeline of a thread

What happens if a thread is spining?
Use “quiescing” instruction to allow a thread to “sleep”
until memory changes its state

Loop: 
ARM r1, 0(r2) //load and watch 0(r2)
BEQ r1, got_it
QUIESCE //not schedule until 0(r2)changes
BR loop

got_it:
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SMT-Aware Programming

Divide input and use a separate thread to process 
each part

E.g., one thread for even tuples, one for odd tuples.
Explicit partitioning step not required.

Avoid false sharing
Partition output and use separate places
Merge the final result

Use shared cache better
Schedule threads for cache locality

Use a helper thread
Preload data into the cache 
Cannot be too fast or slow (especially on P4 HT)
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Parallel Operator Performance 
(from Zhou, Cieslewicz, Ross, Shah, 2005)

52% 55%20%
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Parallel Operator Performance
(from Zhou, Cieslewicz, Ross, Shah, 2005)

26% 29%
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Summary

Reducing communication cost
Reducing overhead
Overlapping computation with communication

Multithreading
Improve HW utilization with multiple threads
Key is to create many threads (e.g. MTX supports 1M 
threads)

Simultaneous Multiple Threading (SMT)
Combine multithreads with superscalar
Combine with multiple cores
Need work to use SMT well


