Latency Tolerance

2

Topics

+ Reducing communication cost

+ Multithreaded processors

+ Simultaneous multiple threading

Reducing Communication Cost

+ Reducing effective latency
+ Avoiding Latency
¢ Tolerating Latency

+ Communication latency
vS. synchronization latency
VS. instruction latency

¢ Sender initiated
VS receiver initiated communication

Examples

for (i = 0; i <=N; i++) {
compute A[i];

write A[i];
compute othfi/§ﬁufff/////
send A[i];

for (i = 0; 1 <= N; i++) {
| » receive myA[i];

compute myA[i];

compute other stuff;

}

Message passing

for (i = 0; 1 <= N; i++) {
compute A[i];
write A[i];
compute other stuff;

}

for (i = 0; 1 <= N; i++) {
read Ali];
use A[i];
compute other stuff;

}

Shared address space




Communication Pipeline

An )

P1 P2

P1 send,

NI buffer, NI send, SW stage, ... , SW stage,NI recv,
P2 recv

Send overhead

vS. time between switches
VS. receive overhead

Approaches to Latency Tolerance

Block data transfer

e Combine multiple transfers into one
e Why is this helpful?
Precommunication

e Generate communication before it is actually needed
(asynchronous prefetching)

Proceeding past an outstanding communication event

e Continue with independent work in same thread while
event outstanding (more asynchronous)

Multithreading - finding independent work
e Switch processor to another thread

Another Example

for (i =0; 1 <= N; i++) { for (i = 0; 1 <= N; i++) {
compute A[i]; [ receive myA[i];
write A[i]; compute myA[i];
send A[i]; //,receive myB[i];
compute B[i]; compute myB[i];
write B[i]; compute other stuff;
send B[i]; 3
compute other stuff;
}
Methods

e Merge multiple sends into one
e Asynchronous send
e Asynchronous receive (provide buffer early)

Fundamental Requirements

Extra parallelism
Bandwidth
Storage

Sophisticated protocols
or automatic tools
or architectural support




Why Multiple Threads?

+ Power wall
e Transistors are free, but power is not

e Many simpler cores with lower clock rates yield better
performance/watt

¢ ILP wall

e Diminishing return on superscalar

e Multi-threaded apps get better performance/chip
+ Memory wall

e Gap between CPU and memory access time is increasing
exponentially

e Multiple threads can hide memory latency more effectively than
00O single thread

All “Walls” lead us towards “multiple threads” and multicores

Beyond Simple Multi-core Design

+ Latency reduction is important in processor designs
e Latencies are variable and dependencies are complex
e Resource contentions
e L1: 2-4 cycles; L2: ~10 cycles; DRAM: ~200 cycles
+ Latencies in shared-memory multiprocessors
e Remote memory accesses cost much more than local
e Remote transactions in coherence protocol: 10-100x
+ More transistors are available
e Simple cores may have multiple issues

10

Classification of Multithreading

Explicit
Multithreading

/\

Issue from Issue from
a single thread multiple threads

N

Interleaved Coarse-grained
Multithreading Multithreading

Simultaneous
MultiThreading

11

1 thread vs. Interleaved vs. coarse-grained

BAcE RAHcH

!

¢ 1 thread: dependencies limit HW utilization

+ Interleaved instruction streams improve HW utilization
12




Multiple Issue: 1 thread vs. IMT vs. BMT

RAcE BAcB

13

CDC 6600 Peripheral Processors (cray, 1965)

¢ First multithreaded hardware
¢ 10 “virtual” I/O processors
+ Fixed interleave on simple pipeline
e Pipeline has 100ns cycle time
e Each processor executes one instruction / 10 cycles
e accumulator-based instruction set to reduce processor state

14

Simple Multithreaded Pipeline

W 2 Thread
select

—

¢ Thread select drives the pipeline to ensure correct state bits
read/written at each pipe stage

+ If there is no ready thread to select, insert a bubble

15

Multithreading Costs

+ Appears to software (including OS) as multiple slower
processors
¢ Each thread requires its own user state
o GPRs
e PC
+ Also, needs own OS control state
e virtual memory page table base register
e exception handling registers

16




HEP (Heterogeneous Element Processor)

¢ Burdon Smith at Denelcor (1982)
+ Parallel machine
e 16 processors
e 128 threads per processor
e Share registers
+ Processor pipeline
e 8 stages
e Each thread per stage
e Switch to a different thread every clock cycle

e If thread queue is empty, schedule the independent
instruction from the last thread

e No need to worry about dependencies among stages

17

HEP Architecture in more detall

¢ Basic components

e PEM: Processing Element Module

e DMM: Data Memory Module

e Interconnection network is multi-stage
+ How things work

e Each PEM has 2k registers

e Each PEM has a DMM

e Any PEM can access any memory (all

physical)

e Any PEM can access any registers
¢ Full/empty bit

e Each word has a F/E bit

e Empty: no data
e Full: valid data
[

Read memory w/ empty bit causes a
stall or an exception

e Why is this useful?

PEM DMM

Interconnection
network

PEM DMM

18

Instruction Latency Hiding

+ Every cycle an instruction from a different thread is
launched into the pipeline

+ Worst case DRAM access might be many cycles
(more threads)

+ How to balance CPU and Memory?

SO A B C D E F G H
|A[B[C|D|E[F|[§[H]
Inst3 A B C D E F G H
A[B|J[D|E[F[G]|H]
A|H|Cc|[D|EJF[G|H]
[A[B|IC|D|[EJF[G[H]
inst8

Horizon (Paper design 1988)

+ Basic components
e Up to 256 processors
e Up to 512 memory modules
e Internal network 16 x 16 x 6
¢ Processor
e Up to 128 active threads per processor
e 128 register sets
e Context switch every clock cycle

e Allow multiple memory accesses outstanding per
thread

20




Tera/Cray MTA (1990-)

Computational Processors (max 256) /O Processors (max 256)

CP||CP]| CP 1OP||IOP] 10P
[ 3D Toroidal Interconnection Network ]
MU MUY} - MU IOC| [IOC]| e 10C
Memories (max 512) I/0 Caches (max 512)

MTX (evolved from MTA) System Architecture

Compute Service & 10
MTX Linux

PCI-X

. 10 GigE
3B g Network

Fiber Channel

21 22
Programs
running in Programs
parallel
Concurrent Sub- i
bl Serial
threads of pro Aem C?th;e Concurrent
computation threads of
Sub- computation
problem
B
Subproblem A
Hardware
streams
(128) Multithreaded
across
Unused streams multiple
rocessors
Instruction g
Ready
Pool; I I I I
Pipeline of
executing
instructions

23

24




MTA/MXT Processor

¢ Each processor supports 128 active threads
e 1 x 128 status word registers
e 8 x 128 branch-target registers
e 32 x 128 GP registers
+ Each 64-bit instruction does 3 operations
e Memory (M), arithmetic (A), arithmetic or branch (C)

e 3-bit lookahead field indicating # of independent
subsequent instructions

+ 21 pipeline stages
e Each stage does a context-switch
+ 8 outstanding memory requests per thread

25

MTA Pipeline
V'S Every CyCIe, an —ﬂ:I[ Issue Pool ]| Inst Fetch |
instruction of an active w | / :

thread is issued

¢ Memory operation incurs +f]
about 150 cycles

¢ Assuming
e A thread issues 1 —

instruction/21 cycles —ﬂ Q—
e 220 Mhz clock ]
+ What's the performance? [

| Memory pipeline
:  — :

26

MTA-2 [ MXT Comparisons (from Cray)

MTA-2 MXT

CPU clock speed | 220 MHz 500 MHz
Max system size 256 P 8192 P
Max memory 1TB (4 GB/P) 128 TB (16 GB/P)
capacity
TLB reach 128 GB 128 TB
Network topology | Modified Cayley 3D torus

graph
Network bisection
bandwidth 3.5*P GB/s 15.36 * P23 GB/s
Network injection | 220 MW/s per Variable (next slide)
rate processor

How many threads can the largest MXT support?

27

Red Storm Compute Board (from Cray)

4 DIMM Slots I

LO RAS Computer |
Redundant

CRAY
Seastar™

CRAY

‘Seastar™ @

28




MTX Compute Board (from Cray)

4 DIMM Slots I

Redundant

LO RAS Computer |

29

CANAL

+ Compiler
ANALYysiIs

+ Static tool

¢ Shows how
the code is
compiled and
why

woid counting_sortinsigned #sre, unsigned #dst, unsigned n} £
unsigned buckets = 1 << 163
unsigned #start = new unsignedibucketsl;
unsigned #count = new unsignedibuckets1:
For (unsigned i = 03 i < buckets: i++)
count[il = 03
unsigned mask = (1 << 16 - 1p
for (unsigned i = 07 i < np i++) {

count [keyl++

k3
start0] = 0r
for {unsigned i =13 i < buckets: i++}
start(il = startli - 11 + countli - 11¢
#pragna nta assert nodep
fon

Cnrimnad § = A+ 5 me iadd

Logp 5 in counting sort{unsigned int %, wnsigned int %, unsigned int) at line & in loop 4
Loop sumaryt 2 menory cperations, O floating point opsrations
2 instructions, needs 30 streams for full utilization
pipelined

Loop 4 in counting sort{unsianed int ¥, wnsigned int ¥, unsigned int} in region 1
in parallel phase 2
dynanically scheduled, variable chunks, min size = &

Parallel Region 1 in counting_sort{unsigned int *, unsigned int , unsigned int)
wultiple processor inplementation
requesting at least 40 streams

Traceview

31

Dashboard

Utilization

1002

Stream Usage Flops (M/s3 Ready Streams/CPU Memory Pie

502 0.5

1002 1.0
i 29.7G

Free [ 0S

3 Q. Q.
17:33:30 17:33:30 17:33:50 17:33:30 17:33:50 S O ron

Selectable: Traps (#/s/| Filesystem (MBE/S) Netuorking (MB/s) MenOps (M/s)

10
5

17:33:30  17:33:50 17:33:30 17 :33:50 17:33:30  17:33:50 17:33:30  17:33:50

Memory Distribution

1002

Suspping (#B/s) Processor Balance

1 1007

o
17:33:30  17:33:150

Running wtx

Running Pttop

Running dashd

Running tar

Running 1fs_clesnerd

Running 1fs_cleanerd

Rurning cron

Running suslozd

Rumning wtarune

Sleeping partmap

32




Sparse Matrix — Vector Multiply

«C ,;=A *B
+ Store A in packed row form
e A[nz], where nz is the number of non-zeros

e cols[nz] stores the column index of the non-
zeros

o rowgipdpiones: thesiart sgex,of each row in A
#pragma mta assert no dependence
for (i = 0; 1 <nj; i++) {
int j;
double sum = 0.0;
for ( = rows[i]; J < rows[i+1]; j++)
sum += A[j] * B[cols[}]1]1;

nxm mx1

Canal Report

| #pragma mta use 100 streams

| #pragma mta assert no dependence
| for (i = 0; 1 <n; i++) {

int j;

|

3P | double sum = 0.0;

4 P- | for (J = rows[i]; J < rows[i+1]; j++)
| sum += A[J] * B[cols[j1]:

3P | CLi] = sum;
|

Parallel region 2 in SpMVM
Multiple processor implementation
Requesting at least 100 streams

Loop 3 in SpMVM at line 33 in region 2
In parallel phase 1
Dynamically scheduled

Loop 4 in SpMVM at line 34 in loop 3

CLi] = sum; Loop summary: 3 memory operations, 2 floating point operations
} 3 instructions, needs 30 streams for full utilization,
pipelined
33 34
Performance MTX’'s Sweet Spot (Cray’s claim)

¢+ N=M= 1,000,000
+ Non-zeros 0 to 1000 per row, uniform distribution
e Nz =499,902,410

P T Sp
1 7.11 1.0
2 3.59 1.98
4 1.83 3.88
8 0.94 7.56

Time = (3 cycles * 499902410 iterations) / 220000000 cycles/sec = 6.82 sec

96% utilization
35

¢ Any cache-unfriendly parallel application

+ Any application whose performance depends upon ...

Random access tables (GUPS, hash tables)

Linked data structures (binary trees, relational graphs)

Highly unstructured, sparse methods

Sorting

+ Some candidate application areas:

Adaptive meshes

Graph problems (intelligence, protein folding, bioinformatics)
Optimization problems (branch-and-bound, linear programming)

Computational geometry (graphics, scene recognition and
tracking)

36




Alewife Prototype (MIT, 1994)

Sparcle Processor (Coarse-Grained)

S ’ Leverage Sparc Processor State Ready Memo;{lspended
Alewife node + Use each reg window Queve  Quewe
Global register
as frames frame
1 a0
N \ + Loaded threads are ccmirsn | ]
| AQ}uter Distributed Shared Memory \ oeT bou nd to frames frames 00 i
E — i i L, —
; D '| - + Every memory word 031
[| cache cMMU | h fulll bi L5 _
as a full/lempty bit cP H -
ll'. \—/L Distributed Directory a,'l 1o BI’ %ﬁ p y 27181 L
\ N | ° J—s_tructure. . . 52’31
@I Sparcle ] ‘\/‘ '_/| @E,_/ _\NTE:EACE Ralse exceptlon EIE':G 3;:31 ‘\
N - o e L-structure: Register
e Block / nonblock ;;;;;;;;;;"
L &) 4 _@? + Only switch on long latency R —
Alewife machine GO) GO GEN e Coherence B Loaded thread
. % e Access empty data
37 38
Simultaneous Multithreadin T
9 OO0O Superscalar vs. SMT Pipeline
(Tullsen, Eggers, Levy, 1995)
Fetch Decode Queue Reg Execute Dcache Reg Retire
. . M Read St Wit
+ Main idea fiap = bty
e dynamic and flexible sharing of functional unites among
threads

+ Main observation
e Increase utilization = increase throughput

+ Change OOQO pipeline
e Multiple context and fetch engines
e Utilize wide OOO superscalar processor issue
e Resources can satisfy superscalar or multiple threads

39

> Bm B

Regs Regs
DOcache

&

Dcache

-

Regs

LLE

Regs

40




SMT Processors

+ Alpha EV8 (cancelled)
e 8-wide superscalar with 4-way SMT support
e SMT mode is like 4-CPU with shared caches and TLBs
e Replicated PCs and registers
e Shared inst queue, caches, TLB, branch predictors
¢ Pentium4 HT (2 threads)
e Logical CPUs share caches, FUs, predictors
e Separate context, registers, etc.
e No synchronization support (such as full/empty bit)

e Accessing the same cache line will trigger an
expensive event

+ |IBM Power5
+ Sun Niagara | and Niagara Il (Kunle’s talk)

41

SMT vs. Multi-Issue CMP

EEgE

AEcH

42

Challenges to Use SMT Better

+ Shared resources
e Shared execution unit (Niagara Il has two)
e Shared cache
+ Thread coordination
e Spinning consume resources
+ False sharing of cache lines
e May trigger expensive events

e Pentium4 HT calls it Memory Order Machine Clear or
MOMC event

43

SMT Architectural Support

¢ Which thread to schedule?

e Thread with min “ICOUNT” counting # instructions in
the pipeline of a thread

+ What happens if a thread is spining?

e Use “quiescing” instruction to allow a thread to “sleep”
until memory changes its state
Loop:
ARM r1, 0(r2) //load and watch 0(r2)
BEQ rl1, got it
QUIESCE
BR loop

//not schedule until 0(r2)changes

got_it:

44




SMT-Aware Programming

Divide input and use a separate thread to process

Parallel Operator Performance
(from Zhou, Cieslewicz, Ross, Shah, 2005)

o
()]
]

each part k=

e E.g., one thread for even tuples, one for odd tuples. % 9

e Explicit partitioning step not required. -“"5

. : 4

Avoid fglse sharing E' i5 20% 52%[ 55%]

e Partition output and use separate places (= J

e Merge the final result = | oy T o T
Use shared cache better x 1

e Schedule threads for cache locality "g'_

Use a helper thread 5 05

e Preload data into the cache 3

e Cannot be too fast or slow (especially on P4 HT) = 0 | | | |

Ignore SMT Naive SMT Aware  Work-ahead
45 Parallelism Set
Parallel Operator Performance Summary

(from Zhou, Cieslewicz, Ross, Shah, 2005)

o -
(8] - (8] %]

Throughput ( x 1M Tuples/Second)

o

g
3y
]

Ignore SMT

Naive SMT Aware Work-ahead
Parallelism Set

Reducing communication cost

e Reducing overhead

e Overlapping computation with communication
Multithreading

e Improve HW utilization with multiple threads

e Key is to create many threads (e.g. MTX supports 1M
threads)

Simultaneous Multiple Threading (SMT)
e Combine multithreads with superscalar
e Combine with multiple cores
e Need work to use SMT well

48




